aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/common/blockd.h
blob: 1d1c381bcaff70688de340ee244c5992e3d901a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_AV1_COMMON_BLOCKD_H_
#define AOM_AV1_COMMON_BLOCKD_H_

#include "config/aom_config.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_scale/yv12config.h"

#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"

#ifdef __cplusplus
extern "C" {
#endif

#define USE_B_QUANT_NO_TRELLIS 1

#define MAX_MB_PLANE 3

#define MAX_DIFFWTD_MASK_BITS 1

#define INTERINTRA_WEDGE_SIGN 0

/*!\cond */

// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
enum {
  DIFFWTD_38 = 0,
  DIFFWTD_38_INV,
  DIFFWTD_MASK_TYPES,
} UENUM1BYTE(DIFFWTD_MASK_TYPE);

enum {
  KEY_FRAME = 0,
  INTER_FRAME = 1,
  INTRA_ONLY_FRAME = 2,  // replaces intra-only
  S_FRAME = 3,
  FRAME_TYPES,
} UENUM1BYTE(FRAME_TYPE);

static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}

static INLINE int is_inter_mode(PREDICTION_MODE mode) {
  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
}

typedef struct {
  uint8_t *plane[MAX_MB_PLANE];
  int stride[MAX_MB_PLANE];
} BUFFER_SET;

static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
}
static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
}

static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
  static const PREDICTION_MODE lut[] = {
    DC_PRED,        // DC_PRED
    V_PRED,         // V_PRED
    H_PRED,         // H_PRED
    D45_PRED,       // D45_PRED
    D135_PRED,      // D135_PRED
    D113_PRED,      // D113_PRED
    D157_PRED,      // D157_PRED
    D203_PRED,      // D203_PRED
    D67_PRED,       // D67_PRED
    SMOOTH_PRED,    // SMOOTH_PRED
    SMOOTH_V_PRED,  // SMOOTH_V_PRED
    SMOOTH_H_PRED,  // SMOOTH_H_PRED
    PAETH_PRED,     // PAETH_PRED
    NEARESTMV,      // NEARESTMV
    NEARMV,         // NEARMV
    GLOBALMV,       // GLOBALMV
    NEWMV,          // NEWMV
    NEARESTMV,      // NEAREST_NEARESTMV
    NEARMV,         // NEAR_NEARMV
    NEARESTMV,      // NEAREST_NEWMV
    NEWMV,          // NEW_NEARESTMV
    NEARMV,         // NEAR_NEWMV
    NEWMV,          // NEW_NEARMV
    GLOBALMV,       // GLOBAL_GLOBALMV
    NEWMV,          // NEW_NEWMV
  };
  assert(NELEMENTS(lut) == MB_MODE_COUNT);
  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
  return lut[mode];
}

static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
  static const PREDICTION_MODE lut[] = {
    MB_MODE_COUNT,  // DC_PRED
    MB_MODE_COUNT,  // V_PRED
    MB_MODE_COUNT,  // H_PRED
    MB_MODE_COUNT,  // D45_PRED
    MB_MODE_COUNT,  // D135_PRED
    MB_MODE_COUNT,  // D113_PRED
    MB_MODE_COUNT,  // D157_PRED
    MB_MODE_COUNT,  // D203_PRED
    MB_MODE_COUNT,  // D67_PRED
    MB_MODE_COUNT,  // SMOOTH_PRED
    MB_MODE_COUNT,  // SMOOTH_V_PRED
    MB_MODE_COUNT,  // SMOOTH_H_PRED
    MB_MODE_COUNT,  // PAETH_PRED
    MB_MODE_COUNT,  // NEARESTMV
    MB_MODE_COUNT,  // NEARMV
    MB_MODE_COUNT,  // GLOBALMV
    MB_MODE_COUNT,  // NEWMV
    NEARESTMV,      // NEAREST_NEARESTMV
    NEARMV,         // NEAR_NEARMV
    NEWMV,          // NEAREST_NEWMV
    NEARESTMV,      // NEW_NEARESTMV
    NEWMV,          // NEAR_NEWMV
    NEARMV,         // NEW_NEARMV
    GLOBALMV,       // GLOBAL_GLOBALMV
    NEWMV,          // NEW_NEWMV
  };
  assert(NELEMENTS(lut) == MB_MODE_COUNT);
  assert(is_inter_compound_mode(mode));
  return lut[mode];
}

static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
          mode == NEW_NEARMV);
}

static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
          mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
}

static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
}

/* For keyframes, intra block modes are predicted by the (already decoded)
   modes for the Y blocks to the left and above us; for interframes, there
   is a single probability table. */

typedef struct {
  // Value of base colors for Y, U, and V
  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
  // Number of base colors for Y (0) and UV (1)
  uint8_t palette_size[2];
} PALETTE_MODE_INFO;

typedef struct {
  FILTER_INTRA_MODE filter_intra_mode;
  uint8_t use_filter_intra;
} FILTER_INTRA_MODE_INFO;

static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
};

#if CONFIG_RD_DEBUG
#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
#endif

typedef struct RD_STATS {
  int rate;
  int64_t dist;
  // Please be careful of using rdcost, it's not guaranteed to be set all the
  // time.
  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
  // these functions, make sure rdcost is always up-to-date according to
  // rate/dist.
  int64_t rdcost;
  int64_t sse;
  int skip_txfm;  // sse should equal to dist when skip_txfm == 1
  int zero_rate;
#if CONFIG_RD_DEBUG
  int txb_coeff_cost[MAX_MB_PLANE];
  // TODO(jingning): Temporary solution to silence stack over-size warning
  // in handle_inter_mode. This should be fixed after rate-distortion
  // optimization refactoring.
  int16_t txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
                            [TXB_COEFF_COST_MAP_SIZE];
#endif  // CONFIG_RD_DEBUG
} RD_STATS;

// This struct is used to group function args that are commonly
// sent together in functions related to interinter compound modes
typedef struct {
  uint8_t *seg_mask;
  int8_t wedge_index;
  int8_t wedge_sign;
  DIFFWTD_MASK_TYPE mask_type;
  COMPOUND_TYPE type;
} INTERINTER_COMPOUND_DATA;

#define INTER_TX_SIZE_BUF_LEN 16
#define TXK_TYPE_BUF_LEN 64
/*!\endcond */

/*! \brief Stores the prediction/txfm mode of the current coding block
 */
typedef struct MB_MODE_INFO {
  /*****************************************************************************
   * \name General Info of the Coding Block
   ****************************************************************************/
  /**@{*/
  /*! \brief The block size of the current coding block */
  BLOCK_SIZE bsize;
  /*! \brief The partition type of the current coding block. */
  PARTITION_TYPE partition;
  /*! \brief The prediction mode used */
  PREDICTION_MODE mode;
  /*! \brief The UV mode when intra is used */
  UV_PREDICTION_MODE uv_mode;
  /*! \brief The q index for the current coding block. */
  int current_qindex;
  /**@}*/

  /*****************************************************************************
   * \name Inter Mode Info
   ****************************************************************************/
  /**@{*/
  /*! \brief The motion vectors used by the current inter mode */
  int_mv mv[2];
  /*! \brief The reference frames for the MV */
  MV_REFERENCE_FRAME ref_frame[2];
  /*! \brief Filter used in subpel interpolation. */
  int_interpfilters interp_filters;
  /*! \brief The motion mode used by the inter prediction. */
  MOTION_MODE motion_mode;
  /*! \brief Number of samples used by warp causal */
  uint8_t num_proj_ref;
  /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
   * mode. */
  uint8_t overlappable_neighbors;
  /*! \brief The parameters used in warp motion mode. */
  WarpedMotionParams wm_params;
  /*! \brief The type of intra mode used by inter-intra */
  INTERINTRA_MODE interintra_mode;
  /*! \brief The type of wedge used in interintra mode. */
  int8_t interintra_wedge_index;
  /*! \brief Struct that stores the data used in interinter compound mode. */
  INTERINTER_COMPOUND_DATA interinter_comp;
  /**@}*/

  /*****************************************************************************
   * \name Intra Mode Info
   ****************************************************************************/
  /**@{*/
  /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
   * step). */
  int8_t angle_delta[PLANE_TYPES];
  /*! \brief The type of filter intra mode used (if applicable). */
  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
  /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
  int8_t cfl_alpha_signs;
  /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
  uint8_t cfl_alpha_idx;
  /*! \brief Stores the size and colors of palette mode */
  PALETTE_MODE_INFO palette_mode_info;
  /**@}*/

  /*****************************************************************************
   * \name Transform Info
   ****************************************************************************/
  /**@{*/
  /*! \brief Whether to skip transforming and sending. */
  int8_t skip_txfm;
  /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
  TX_SIZE tx_size;
  /*! \brief Transform size when recursive txfm tree is on. */
  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
  /**@}*/

  /*****************************************************************************
   * \name Loop Filter Info
   ****************************************************************************/
  /**@{*/
  /*! \copydoc MACROBLOCKD::delta_lf_from_base */
  int8_t delta_lf_from_base;
  /*! \copydoc MACROBLOCKD::delta_lf */
  int8_t delta_lf[FRAME_LF_COUNT];
  /**@}*/

  /*****************************************************************************
   * \name Bitfield for Memory Reduction
   ****************************************************************************/
  /**@{*/
  /*! \brief The segment id */
  uint8_t segment_id : 3;
  /*! \brief Only valid when temporal update if off. */
  uint8_t seg_id_predicted : 1;
  /*! \brief Which ref_mv to use */
  uint8_t ref_mv_idx : 2;
  /*! \brief Inter skip mode */
  uint8_t skip_mode : 1;
  /*! \brief Whether intrabc is used. */
  uint8_t use_intrabc : 1;
  /*! \brief Indicates if masked compound is used(1) or not (0). */
  uint8_t comp_group_idx : 1;
  /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
  uint8_t compound_idx : 1;
  /*! \brief Whether to use interintra wedge */
  uint8_t use_wedge_interintra : 1;
  /*! \brief CDEF strength per BLOCK_64X64 */
  int8_t cdef_strength : 4;
  /**@}*/

#if CONFIG_RD_DEBUG
  /*! \brief RD info used for debugging */
  RD_STATS rd_stats;
  /*! \brief The current row in unit of 4x4 blocks for debugging */
  int mi_row;
  /*! \brief The current col in unit of 4x4 blocks for debugging */
  int mi_col;
#endif
#if CONFIG_INSPECTION
  /*! \brief Whether we are skipping the current rows or columns. */
  int16_t tx_skip[TXK_TYPE_BUF_LEN];
#endif
} MB_MODE_INFO;

/*!\cond */

static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
  return mbmi->use_intrabc;
}

static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
  assert(mode < UV_INTRA_MODES);
  static const PREDICTION_MODE uv2y[] = {
    DC_PRED,        // UV_DC_PRED
    V_PRED,         // UV_V_PRED
    H_PRED,         // UV_H_PRED
    D45_PRED,       // UV_D45_PRED
    D135_PRED,      // UV_D135_PRED
    D113_PRED,      // UV_D113_PRED
    D157_PRED,      // UV_D157_PRED
    D203_PRED,      // UV_D203_PRED
    D67_PRED,       // UV_D67_PRED
    SMOOTH_PRED,    // UV_SMOOTH_PRED
    SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED
    SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED
    PAETH_PRED,     // UV_PAETH_PRED
    DC_PRED,        // UV_CFL_PRED
    INTRA_INVALID,  // UV_INTRA_MODES
    INTRA_INVALID,  // UV_MODE_INVALID
  };
  return uv2y[mode];
}

static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
}

static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
  return mbmi->ref_frame[1] > INTRA_FRAME;
}

static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
                                    (mbmi->ref_frame[1] >= BWDREF_FRAME)));
}

static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
  static const MV_REFERENCE_FRAME lut[] = {
    LAST_FRAME,     // LAST_LAST2_FRAMES,
    LAST_FRAME,     // LAST_LAST3_FRAMES,
    LAST_FRAME,     // LAST_GOLDEN_FRAMES,
    BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES,
    LAST2_FRAME,    // LAST2_LAST3_FRAMES
    LAST2_FRAME,    // LAST2_GOLDEN_FRAMES,
    LAST3_FRAME,    // LAST3_GOLDEN_FRAMES,
    BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES,
    ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES,
  };
  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
  return lut[ref_idx];
}

static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
  static const MV_REFERENCE_FRAME lut[] = {
    LAST2_FRAME,    // LAST_LAST2_FRAMES,
    LAST3_FRAME,    // LAST_LAST3_FRAMES,
    GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES,
    ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES,
    LAST3_FRAME,    // LAST2_LAST3_FRAMES
    GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES,
    GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES,
    ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES,
    ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES,
  };
  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
  return lut[ref_idx];
}

PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);

PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);

static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
                                     TransformationType type) {
  const PREDICTION_MODE mode = mbmi->mode;
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int block_size_allowed =
      AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
         block_size_allowed;
}

#if CONFIG_MISMATCH_DEBUG
static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
                                   int mi_row, int tx_blk_col, int tx_blk_row,
                                   int subsampling_x, int subsampling_y) {
  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
             (tx_blk_col << MI_SIZE_LOG2);
  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
             (tx_blk_row << MI_SIZE_LOG2);
}
#endif

enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);

struct buf_2d {
  uint8_t *buf;
  uint8_t *buf0;
  int width;
  int height;
  int stride;
};

typedef struct eob_info {
  uint16_t eob;
  uint16_t max_scan_line;
} eob_info;

typedef struct {
  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
  eob_info eob_data[MAX_MB_PLANE]
                   [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
} CB_BUFFER;

typedef struct macroblockd_plane {
  PLANE_TYPE plane_type;
  int subsampling_x;
  int subsampling_y;
  struct buf_2d dst;
  struct buf_2d pre[2];
  ENTROPY_CONTEXT *above_entropy_context;
  ENTROPY_CONTEXT *left_entropy_context;

  // The dequantizers below are true dequantizers used only in the
  // dequantization process.  They have the same coefficient
  // shift/scale as TX.
  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
  // Pointer to color index map of:
  // - Current coding block, on encoder side.
  // - Current superblock, on decoder side.
  uint8_t *color_index_map;

  // block size in pixels
  uint8_t width, height;

  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
} MACROBLOCKD_PLANE;

#define BLOCK_OFFSET(i) ((i) << 4)

/*!\endcond */

/*!\brief Parameters related to Wiener Filter */
typedef struct {
  /*!
   * Vertical filter kernel.
   */
  DECLARE_ALIGNED(16, InterpKernel, vfilter);

  /*!
   * Horizontal filter kernel.
   */
  DECLARE_ALIGNED(16, InterpKernel, hfilter);
} WienerInfo;

/*!\brief Parameters related to Sgrproj Filter */
typedef struct {
  /*!
   * Parameter index.
   */
  int ep;

  /*!
   * Weights for linear combination of filtered versions
   */
  int xqd[2];
} SgrprojInfo;

/*!\cond */

#if CONFIG_DEBUG
#define CFL_SUB8X8_VAL_MI_SIZE (4)
#define CFL_SUB8X8_VAL_MI_SQUARE \
  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
#endif  // CONFIG_DEBUG
#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
#define CFL_BUF_LINE (32)
#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
typedef struct cfl_ctx {
  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
  // shifts)
  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
  int16_t ac_buf_q3[CFL_BUF_SQUARE];

  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
  // for every scaling parameter
  int dc_pred_is_cached[CFL_PRED_PLANES];
  // The DC_PRED cache is disable when decoding
  int use_dc_pred_cache;
  // Only cache the first row of the DC_PRED
  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];

  // Height and width currently used in the CfL prediction buffer.
  int buf_height, buf_width;

  int are_parameters_computed;

  // Chroma subsampling
  int subsampling_x, subsampling_y;

  // Whether the reconstructed luma pixels need to be stored
  int store_y;

#if CONFIG_DEBUG
  int rate;
#endif  // CONFIG_DEBUG
} CFL_CTX;

typedef struct dist_wtd_comp_params {
  int use_dist_wtd_comp_avg;
  int fwd_offset;
  int bck_offset;
} DIST_WTD_COMP_PARAMS;

struct scale_factors;

/*!\endcond */

/*! \brief Variables related to current coding block.
 *
 * This is a common set of variables used by both encoder and decoder.
 * Most/all of the pointers are mere pointers to actual arrays are allocated
 * elsewhere. This is mostly for coding convenience.
 */
typedef struct macroblockd {
  /**
   * \name Position of current macroblock in mi units
   */
  /**@{*/
  int mi_row; /*!< Row position in mi units. */
  int mi_col; /*!< Column position in mi units. */
  /**@}*/

  /*!
   * Same as cm->mi_params.mi_stride, copied here for convenience.
   */
  int mi_stride;

  /*!
   * True if current block transmits chroma information.
   * More detail:
   * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
   * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
   * blocks smaller than 8x8 maybe combined into one chroma block.
   * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
   * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
   * these four luma blocks. This is implemented in bitstream as follows:
   * - There are four MB_MODE_INFO structs for the four luma blocks.
   * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
   * any information for chroma planes.
   * - Last block will have is_chroma_ref = true and transmits chroma
   * information for the 4x4 chroma block that covers whole 8x8 area covered by
   * four luma blocks.
   * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
   */
  bool is_chroma_ref;

  /*!
   * Info specific to each plane.
   */
  struct macroblockd_plane plane[MAX_MB_PLANE];

  /*!
   * Tile related info.
   */
  TileInfo tile;

  /*!
   * Appropriate offset inside cm->mi_params.mi_grid_base based on current
   * mi_row and mi_col.
   */
  MB_MODE_INFO **mi;

  /*!
   * True if 4x4 block above the current block is available.
   */
  bool up_available;
  /*!
   * True if 4x4 block to the left of the current block is available.
   */
  bool left_available;
  /*!
   * True if the above chrome reference block is available.
   */
  bool chroma_up_available;
  /*!
   * True if the left chrome reference block is available.
   */
  bool chroma_left_available;

  /*!
   * MB_MODE_INFO for 4x4 block to the left of the current block, if
   * left_available == true; otherwise NULL.
   */
  MB_MODE_INFO *left_mbmi;
  /*!
   * MB_MODE_INFO for 4x4 block above the current block, if
   * up_available == true; otherwise NULL.
   */
  MB_MODE_INFO *above_mbmi;
  /*!
   * Above chroma reference block if is_chroma_ref == true for the current block
   * and chroma_up_available == true; otherwise NULL.
   * See also: the special case logic when current chroma block covers more than
   * one luma blocks in set_mi_row_col().
   */
  MB_MODE_INFO *chroma_left_mbmi;
  /*!
   * Left chroma reference block if is_chroma_ref == true for the current block
   * and chroma_left_available == true; otherwise NULL.
   * See also: the special case logic when current chroma block covers more than
   * one luma blocks in set_mi_row_col().
   */
  MB_MODE_INFO *chroma_above_mbmi;

  /*!
   * Appropriate offset based on current 'mi_row' and 'mi_col', inside
   * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
   * 'MACROBLOCK' structs.
   */
  uint8_t *tx_type_map;
  /*!
   * Stride for 'tx_type_map'. Note that this may / may not be same as
   * 'mi_stride', depending on which actual array 'tx_type_map' points to.
   */
  int tx_type_map_stride;

  /**
   * \name Distance of this macroblock from frame edges in 1/8th pixel units.
   */
  /**@{*/
  int mb_to_left_edge;   /*!< Distance from left edge */
  int mb_to_right_edge;  /*!< Distance from right edge */
  int mb_to_top_edge;    /*!< Distance from top edge */
  int mb_to_bottom_edge; /*!< Distance from bottom edge */
  /**@}*/

  /*!
   * Scale factors for reference frames of the current block.
   * These are pointers into 'cm->ref_scale_factors'.
   */
  const struct scale_factors *block_ref_scale_factors[2];

  /*!
   * - On encoder side: points to cpi->source, which is the buffer containing
   * the current *source* frame (maybe filtered).
   * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
   * which current frame is being *decoded*.
   */
  const YV12_BUFFER_CONFIG *cur_buf;

  /*!
   * Entropy contexts for the above blocks.
   * above_entropy_context[i][j] corresponds to above entropy context for ith
   * plane and jth mi column of this *frame*, wrt current 'mi_row'.
   * These are pointers into 'cm->above_contexts.entropy'.
   */
  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
  /*!
   * Entropy contexts for the left blocks.
   * left_entropy_context[i][j] corresponds to left entropy context for ith
   * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
   * Note: These contain actual data, NOT pointers.
   */
  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];

  /*!
   * Partition contexts for the above blocks.
   * above_partition_context[i] corresponds to above partition context for ith
   * mi column of this *frame*, wrt current 'mi_row'.
   * This is a pointer into 'cm->above_contexts.partition'.
   */
  PARTITION_CONTEXT *above_partition_context;
  /*!
   * Partition contexts for the left blocks.
   * left_partition_context[i] corresponds to left partition context for ith
   * mi row of this *superblock*, wrt current 'mi_col'.
   * Note: These contain actual data, NOT pointers.
   */
  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];

  /*!
   * Transform contexts for the above blocks.
   * above_txfm_context[i] corresponds to above transform context for ith mi col
   * from the current position (mi row and mi column) for this *frame*.
   * This is a pointer into 'cm->above_contexts.txfm'.
   */
  TXFM_CONTEXT *above_txfm_context;
  /*!
   * Transform contexts for the left blocks.
   * left_txfm_context[i] corresponds to left transform context for ith mi row
   * from the current position (mi_row and mi_col) for this *superblock*.
   * This is a pointer into 'left_txfm_context_buffer'.
   */
  TXFM_CONTEXT *left_txfm_context;
  /*!
   * left_txfm_context_buffer[i] is the left transform context for ith mi_row
   * in this *superblock*.
   * Behaves like an internal actual buffer which 'left_txt_context' points to,
   * and never accessed directly except to fill in initial default values.
   */
  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];

  /**
   * \name Default values for the two restoration filters for each plane.
   * Default values for the two restoration filters for each plane.
   * These values are used as reference values when writing the bitstream. That
   * is, we transmit the delta between the actual values in
   * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
   */
  /**@{*/
  WienerInfo wiener_info[MAX_MB_PLANE];   /*!< Defaults for Wiener filter*/
  SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
  /**@}*/

  /**
   * \name Block dimensions in MB_MODE_INFO units.
   */
  /**@{*/
  uint8_t width;  /*!< Block width in MB_MODE_INFO units */
  uint8_t height; /*!< Block height in MB_MODE_INFO units */
  /**@}*/

  /*!
   * Contains the motion vector candidates found during motion vector prediction
   * process. ref_mv_stack[i] contains the candidates for ith type of
   * reference frame (single/compound). The actual number of candidates found in
   * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
   * or mbmi_ext->ref_mv_count[i] (encoder side).
   */
  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
  /*!
   * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
   * DRL (dynamic reference list) mode contexts.
   */
  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];

  /*!
   * True if this is the last vertical rectangular block in a VERTICAL or
   * VERTICAL_4 partition.
   */
  bool is_last_vertical_rect;
  /*!
   * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
   * HORIZONTAL_4 partition.
   */
  bool is_first_horizontal_rect;

  /*!
   * Counts of each reference frame in the above and left neighboring blocks.
   * NOTE: Take into account both single and comp references.
   */
  uint8_t neighbors_ref_counts[REF_FRAMES];

  /*!
   * Current CDFs of all the symbols for the current tile.
   */
  FRAME_CONTEXT *tile_ctx;

  /*!
   * Bit depth: copied from cm->seq_params.bit_depth for convenience.
   */
  int bd;

  /*!
   * Quantizer index for each segment (base qindex + delta for each segment).
   */
  int qindex[MAX_SEGMENTS];
  /*!
   * lossless[s] is true if segment 's' is coded losslessly.
   */
  int lossless[MAX_SEGMENTS];
  /*!
   * Q index for the coding blocks in this superblock will be stored in
   * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
   * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
   * the base, and adding any transmitted delta qindex on top of it.
   * Precisely, this is the latest qindex used by the first coding block of a
   * non-skip superblock in the current tile; OR
   * same as cm->quant_params.base_qindex (if not explicitly set yet).
   * Note: This is 'CurrentQIndex' in the AV1 spec.
   */
  int current_base_qindex;

  /*!
   * Same as cm->features.cur_frame_force_integer_mv.
   */
  int cur_frame_force_integer_mv;

  /*!
   * Pointer to cm->error.
   */
  struct aom_internal_error_info *error_info;

  /*!
   * Same as cm->global_motion.
   */
  const WarpedMotionParams *global_motion;

  /*!
   * Since actual frame level loop filtering level value is not available
   * at the beginning of the tile (only available during actual filtering)
   * at encoder side.we record the delta_lf (against the frame level loop
   * filtering level) and code the delta between previous superblock's delta
   * lf and current delta lf. It is equivalent to the delta between previous
   * superblock's actual lf and current lf.
   */
  int8_t delta_lf_from_base;
  /*!
   * We have four frame filter levels for different plane and direction. So, to
   * support the per superblock update, we need to add a few more params:
   * 0. delta loop filter level for y plane vertical
   * 1. delta loop filter level for y plane horizontal
   * 2. delta loop filter level for u plane
   * 3. delta loop filter level for v plane
   * To make it consistent with the reference to each filter level in segment,
   * we need to -1, since
   * - SEG_LVL_ALT_LF_Y_V = 1;
   * - SEG_LVL_ALT_LF_Y_H = 2;
   * - SEG_LVL_ALT_LF_U   = 3;
   * - SEG_LVL_ALT_LF_V   = 4;
   */
  int8_t delta_lf[FRAME_LF_COUNT];
  /*!
   * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
   * current superblock has already been read from (decoder) / written to
   * (encoder) the bitstream; and false otherwise.
   * More detail:
   * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
   * non-skip coding block. So, we need this array to keep track of whether CDEF
   * strengths for the given CDEF units have been transmitted yet or not.
   * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
   * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
   * superblock size is 128x128). Hence the array size is 4.
   * 3. In the current implementation, CDEF strength for this CDEF unit is
   * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
   * cm->mi_params.mi_grid_base).
   */
  bool cdef_transmitted[4];

  /*!
   * Mask for this block used for compound prediction.
   */
  DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);

  /*!
   * CFL (chroma from luma) related parameters.
   */
  CFL_CTX cfl;

  /*!
   * Offset to plane[p].color_index_map.
   * Currently:
   * - On encoder side, this is always 0 as 'color_index_map' is allocated per
   * *coding block* there.
   * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
   * memory pointing to the base of a *superblock* there, and we need an offset
   * to it to get the color index map for current coding block.
   */
  uint16_t color_index_map_offset[2];

  /*!
   * Temporary buffer used for convolution in case of compound reference only
   * for (weighted or uniform) averaging operation.
   * There are pointers to actual buffers allocated elsewhere: e.g.
   * - In decoder, 'pbi->td.tmp_conv_dst' or
   * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
   * - In encoder, 'x->tmp_conv_dst' or
   * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
   */
  CONV_BUF_TYPE *tmp_conv_dst;
  /*!
   * Temporary buffers used to build OBMC prediction by above (index 0) and left
   * (index 1) predictors respectively.
   * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
   * There are pointers to actual buffers allocated elsewhere: e.g.
   * - In decoder, 'pbi->td.tmp_obmc_bufs' or
   * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
   * -In encoder, 'x->tmp_pred_bufs' or
   * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
   */
  uint8_t *tmp_obmc_bufs[2];
} MACROBLOCKD;

/*!\cond */

static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
}

static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
             ? CONVERT_TO_BYTEPTR(buf16)
             : buf16;
}

static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
  switch (bsize) {
    case BLOCK_4X4: return 0;
    case BLOCK_8X8: return 1;
    case BLOCK_16X16: return 2;
    case BLOCK_32X32: return 3;
    case BLOCK_64X64: return 4;
    case BLOCK_128X128: return 5;
    default: return SQR_BLOCK_SIZES;
  }
}

// For a square block size 'bsize', returns the size of the sub-blocks used by
// the given partition type. If the partition produces sub-blocks of different
// sizes, then the function returns the largest sub-block size.
// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
// Conversion tables).
// Note: the input block size should be square.
// Otherwise it's considered invalid.
static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
                                               PARTITION_TYPE partition) {
  if (partition == PARTITION_INVALID) {
    return BLOCK_INVALID;
  } else {
    const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
    return sqr_bsize_idx >= SQR_BLOCK_SIZES
               ? BLOCK_INVALID
               : subsize_lookup[partition][sqr_bsize_idx];
  }
}

static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
                                     PLANE_TYPE plane_type) {
  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
    DCT_DCT,    // DC_PRED
    ADST_DCT,   // V_PRED
    DCT_ADST,   // H_PRED
    DCT_DCT,    // D45_PRED
    ADST_ADST,  // D135_PRED
    ADST_DCT,   // D113_PRED
    DCT_ADST,   // D157_PRED
    DCT_ADST,   // D203_PRED
    ADST_DCT,   // D67_PRED
    ADST_ADST,  // SMOOTH_PRED
    ADST_DCT,   // SMOOTH_V_PRED
    DCT_ADST,   // SMOOTH_H_PRED
    ADST_ADST,  // PAETH_PRED
  };
  const PREDICTION_MODE mode =
      (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
  assert(mode < INTRA_MODES);
  return _intra_mode_to_tx_type[mode];
}

static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }

static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
  return bsize > BLOCK_4X4;
}

// Number of transform types in each set type
static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
  1, 2, 5, 7, 12, 16,
};

static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
};

// The bitmask corresponds to the transform types as defined in
// enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
// the use of the corresponding transform type in that table.
// The av1_derived_intra_tx_used_flag table is used when
// use_reduced_intra_txset is set to 2, where one only searches
// the transform types derived from residual statistics.
static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
  0x0209,  // DC_PRED:       0000 0010 0000 1001
  0x0403,  // V_PRED:        0000 0100 0000 0011
  0x0805,  // H_PRED:        0000 1000 0000 0101
  0x020F,  // D45_PRED:      0000 0010 0000 1111
  0x0009,  // D135_PRED:     0000 0000 0000 1001
  0x0009,  // D113_PRED:     0000 0000 0000 1001
  0x0009,  // D157_PRED:     0000 0000 0000 1001
  0x0805,  // D203_PRED:     0000 1000 0000 0101
  0x0403,  // D67_PRED:      0000 0100 0000 0011
  0x0205,  // SMOOTH_PRED:   0000 0010 0000 1001
  0x0403,  // SMOOTH_V_PRED: 0000 0100 0000 0011
  0x0805,  // SMOOTH_H_PRED: 0000 1000 0000 0101
  0x0209,  // PAETH_PRED:    0000 0010 0000 1001
};

static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
  0x080F,  // DC_PRED:       0000 1000 0000 1111
  0x040F,  // V_PRED:        0000 0100 0000 1111
  0x080F,  // H_PRED:        0000 1000 0000 1111
  0x020F,  // D45_PRED:      0000 0010 0000 1111
  0x080F,  // D135_PRED:     0000 1000 0000 1111
  0x040F,  // D113_PRED:     0000 0100 0000 1111
  0x080F,  // D157_PRED:     0000 1000 0000 1111
  0x080F,  // D203_PRED:     0000 1000 0000 1111
  0x040F,  // D67_PRED:      0000 0100 0000 1111
  0x080F,  // SMOOTH_PRED:   0000 1000 0000 1111
  0x040F,  // SMOOTH_V_PRED: 0000 0100 0000 1111
  0x080F,  // SMOOTH_H_PRED: 0000 1000 0000 1111
  0x0C0E,  // PAETH_PRED:    0000 1100 0000 1110
};

static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
  0x0001,  // 0000 0000 0000 0001
  0x0201,  // 0000 0010 0000 0001
  0x020F,  // 0000 0010 0000 1111
  0x0E0F,  // 0000 1110 0000 1111
  0x0FFF,  // 0000 1111 1111 1111
  0xFFFF,  // 1111 1111 1111 1111
};

static const TxSetType av1_ext_tx_set_lookup[2][2] = {
  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
};

static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
                                                int use_reduced_set) {
  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
  if (tx_size_sqr_up == TX_32X32)
    return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
  if (use_reduced_set)
    return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
}

// Maps tx set types to the indices.
static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
  { // Intra
    0, -1, 2, 1, -1, -1 },
  { // Inter
    0, 3, -1, -1, 2, 1 },
};

static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
                                 int use_reduced_set) {
  const TxSetType set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
  return ext_tx_set_index[is_inter][set_type];
}

static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
                                   int use_reduced_set) {
  const int set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
  return av1_num_ext_tx_set[set_type];
}

#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))

static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
  if (bsize == BLOCK_4X4)
    return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
    return max_rect_tx_size;
  else
    return largest_tx_size;
}

static const uint8_t mode_to_angle_map[] = {
  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
};

// Converts block_index for given transform size to index of the block in raster
// order.
static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
                                                  int block_idx) {
  // For transform size 4x8, the possible block_idx values are 0 & 2, because
  // block_idx values are incremented in steps of size 'tx_width_unit x
  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
  // block number 1 in raster order, inside an 8x8 MI block.
  // For any other transform size, the two indices are equivalent.
  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
}

// Inverse of above function.
// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
                                                  int raster_order) {
  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
}

static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
                                          const MACROBLOCKD *xd,
                                          TX_SIZE tx_size,
                                          int use_screen_content_tools) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];

  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
      xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
      use_screen_content_tools)
    return DCT_DCT;

  return intra_mode_to_tx_type(mbmi, plane_type);
}

// Implements the get_plane_residual_size() function in the spec (Section
// 5.11.38. Get plane residual size function).
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
                                              int subsampling_x,
                                              int subsampling_y) {
  assert(bsize < BLOCK_SIZES_ALL);
  assert(subsampling_x >= 0 && subsampling_x < 2);
  assert(subsampling_y >= 0 && subsampling_y < 2);
  return ss_size_lookup[bsize][subsampling_x][subsampling_y];
}

/*
 * Logic to generate the lookup tables:
 *
 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
 *   txs = sub_tx_size_map[txs];
 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
 */
static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
                                         int blk_col) {
  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
  };
  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
  };
  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
  };
  const int index =
      ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
      (blk_col >> tw_w_log2_table[bsize]);
  assert(index < INTER_TX_SIZE_BUF_LEN);
  return index;
}

#if CONFIG_INSPECTION
/*
 * Here is the logic to generate the lookup tables:
 *
 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
 *   txs = sub_tx_size_map[txs];
 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
 */
static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
                                         int blk_col) {
  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
  };
  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
  };
  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
    0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
  };
  const int index =
      ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
      (blk_col >> tw_w_log2_table[bsize]);
  assert(index < TXK_TYPE_BUF_LEN);
  return index;
}
#endif  // CONFIG_INSPECTION

static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
                                    int blk_col, TX_SIZE tx_size,
                                    TX_TYPE tx_type) {
  const int stride = xd->tx_type_map_stride;
  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;

  const int txw = tx_size_wide_unit[tx_size];
  const int txh = tx_size_high_unit[tx_size];
  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
  // the intricacy, cover all the 16x16 units inside a 64 level transform.
  if (txw == tx_size_wide_unit[TX_64X64] ||
      txh == tx_size_high_unit[TX_64X64]) {
    const int tx_unit = tx_size_wide_unit[TX_16X16];
    for (int idy = 0; idy < txh; idy += tx_unit) {
      for (int idx = 0; idx < txw; idx += tx_unit) {
        xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
      }
    }
  }
}

static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
                                      PLANE_TYPE plane_type, int blk_row,
                                      int blk_col, TX_SIZE tx_size,
                                      int reduced_tx_set) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
    return DCT_DCT;
  }

  TX_TYPE tx_type;
  if (plane_type == PLANE_TYPE_Y) {
    tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
  } else {
    if (is_inter_block(mbmi)) {
      // scale back to y plane's coordinate
      const struct macroblockd_plane *const pd = &xd->plane[plane_type];
      blk_row <<= pd->subsampling_y;
      blk_col <<= pd->subsampling_x;
      tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
    } else {
      // In intra mode, uv planes don't share the same prediction mode as y
      // plane, so the tx_type should not be shared
      tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
    }
    const TxSetType tx_set_type =
        av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
    if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
  }
  assert(tx_type < TX_TYPES);
  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
                                                 reduced_tx_set)][tx_type]);
  return tx_type;
}

void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
                            const int num_planes);

/*
 * Logic to generate the lookup table:
 *
 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
 * int depth = 0;
 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
 *   depth++;
 *   tx_size = sub_tx_size_map[tx_size];
 * }
 */
static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
    0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  };
  return bsize_to_max_depth_table[bsize];
}

/*
 * Logic to generate the lookup table:
 *
 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
 * assert(tx_size != TX_4X4);
 * int depth = 0;
 * while (tx_size != TX_4X4) {
 *   depth++;
 *   tx_size = sub_tx_size_map[tx_size];
 * }
 * assert(depth < 10);
 */
static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
  assert(bsize < BLOCK_SIZES_ALL);
  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
    0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
  };
  const int depth = bsize_to_tx_size_depth_table[bsize];
  assert(depth <= MAX_TX_CATS);
  return depth - 1;
}

static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
  TX_SIZE tx_size = max_tx_size;
  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
  return tx_size;
}

static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
  switch (tx_size) {
    case TX_64X64:
    case TX_64X32:
    case TX_32X64: return TX_32X32;
    case TX_64X16: return TX_32X16;
    case TX_16X64: return TX_16X32;
    default: return tx_size;
  }
}

static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
                                            int subsampling_y) {
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(bsize, subsampling_x, subsampling_y);
  assert(plane_bsize < BLOCK_SIZES_ALL);
  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
  return av1_get_adjusted_tx_size(uv_tx);
}

static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
  const MB_MODE_INFO *mbmi = xd->mi[0];
  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
  if (plane == 0) return mbmi->tx_size;
  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
                               pd->subsampling_y);
}

void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
                               const int num_planes);

void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);

void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);

typedef void (*foreach_transformed_block_visitor)(int plane, int block,
                                                  int blk_row, int blk_col,
                                                  BLOCK_SIZE plane_bsize,
                                                  TX_SIZE tx_size, void *arg);

void av1_set_entropy_contexts(const MACROBLOCKD *xd,
                              struct macroblockd_plane *pd, int plane,
                              BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                              int has_eob, int aoff, int loff);

#define MAX_INTERINTRA_SB_SQUARE 32 * 32
static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
  return (mbmi->ref_frame[0] > INTRA_FRAME &&
          mbmi->ref_frame[1] == INTRA_FRAME);
}

static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
}

static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
}

static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
}

static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
  return is_interintra_allowed_bsize(mbmi->bsize) &&
         is_interintra_allowed_mode(mbmi->mode) &&
         is_interintra_allowed_ref(mbmi->ref_frame);
}

static INLINE int is_interintra_allowed_bsize_group(int group) {
  int i;
  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
    if (size_group_lookup[i] == group &&
        is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
      return 1;
    }
  }
  return 0;
}

static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
  return mbmi->ref_frame[0] > INTRA_FRAME &&
         mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
}

static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
                                       int plane) {
  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
  if (plane == 0) return max_txsize;            // luma
  return av1_get_adjusted_tx_size(max_txsize);  // chroma
}

static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
  assert(bsize < BLOCK_SIZES_ALL);
  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}

static INLINE int is_motion_variation_allowed_compound(
    const MB_MODE_INFO *mbmi) {
  return !has_second_ref(mbmi);
}

// input: log2 of length, 0(4), 1(8), ...
static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };

static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
  return mbmi->overlappable_neighbors != 0;
}

static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
                    const MB_MODE_INFO *mbmi, int allow_warped_motion) {
  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
  if (xd->cur_frame_force_integer_mv == 0) {
    const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
    if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
  }
  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
      is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
      is_motion_variation_allowed_compound(mbmi)) {
    assert(!has_second_ref(mbmi));
    if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
        !xd->cur_frame_force_integer_mv &&
        !av1_is_scaled(xd->block_ref_scale_factors[0])) {
      return WARPED_CAUSAL;
    }
    return OBMC_CAUSAL;
  }
  return SIMPLE_TRANSLATION;
}

static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
  return (is_inter_block(mbmi));
}

static INLINE int av1_allow_palette(int allow_screen_content_tools,
                                    BLOCK_SIZE sb_type) {
  assert(sb_type < BLOCK_SIZES_ALL);
  return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
         block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
}

// Returns sub-sampled dimensions of the given block.
// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
// differ from 'height' and 'width' when part of the block is outside the
// right
// and/or bottom image boundary.
static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
                                            const MACROBLOCKD *xd, int *width,
                                            int *height,
                                            int *rows_within_bounds,
                                            int *cols_within_bounds) {
  const int block_height = block_size_high[bsize];
  const int block_width = block_size_wide[bsize];
  const int block_rows = (xd->mb_to_bottom_edge >= 0)
                             ? block_height
                             : (xd->mb_to_bottom_edge >> 3) + block_height;
  const int block_cols = (xd->mb_to_right_edge >= 0)
                             ? block_width
                             : (xd->mb_to_right_edge >> 3) + block_width;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
  assert(block_width >= block_cols);
  assert(block_height >= block_rows);
  const int plane_block_width = block_width >> pd->subsampling_x;
  const int plane_block_height = block_height >> pd->subsampling_y;
  // Special handling for chroma sub8x8.
  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
  if (width) {
    *width = plane_block_width + 2 * is_chroma_sub8_x;
    assert(*width >= 0);
  }
  if (height) {
    *height = plane_block_height + 2 * is_chroma_sub8_y;
    assert(*height >= 0);
  }
  if (rows_within_bounds) {
    *rows_within_bounds =
        (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
    assert(*rows_within_bounds >= 0);
  }
  if (cols_within_bounds) {
    *cols_within_bounds =
        (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
    assert(*cols_within_bounds >= 0);
  }
}

/* clang-format off */
// Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
                              [CDF_SIZE(PALETTE_COLORS)];
// Pointer to a const three-dimensional array whose first dimension is
// PALETTE_SIZES.
typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
/* clang-format on */

typedef struct {
  int rows;
  int cols;
  int n_colors;
  int plane_width;
  int plane_height;
  uint8_t *color_map;
  MapCdf map_cdf;
  ColorCost color_cost;
} Av1ColorMapParam;

static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
                                            const MB_MODE_INFO *mbmi) {
  int ref;

  // First check if all modes are GLOBALMV
  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;

  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
    return 0;

  // Now check if all global motion is non translational
  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
    if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
  }
  return 1;
}

static INLINE PLANE_TYPE get_plane_type(int plane) {
  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
}

static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
    return 1024;
  }
  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
    return 512;
  }
  return tx_size_2d[tx_size];
}

/*!\endcond */

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AOM_AV1_COMMON_BLOCKD_H_