aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/common/thread_common.c
blob: 638dc4c9514527473b74040d25adb68fb97ceaf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "config/aom_config.h"
#include "config/aom_scale_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropymode.h"
#include "av1/common/thread_common.h"
#include "av1/common/reconinter.h"

// Set up nsync by width.
static INLINE int get_sync_range(int width) {
  // nsync numbers are picked by testing. For example, for 4k
  // video, using 4 gives best performance.
  if (width < 640)
    return 1;
  else if (width <= 1280)
    return 2;
  else if (width <= 4096)
    return 4;
  else
    return 8;
}

#if !CONFIG_REALTIME_ONLY
static INLINE int get_lr_sync_range(int width) {
#if 0
  // nsync numbers are picked by testing. For example, for 4k
  // video, using 4 gives best performance.
  if (width < 640)
    return 1;
  else if (width <= 1280)
    return 2;
  else if (width <= 4096)
    return 4;
  else
    return 8;
#else
  (void)width;
  return 1;
#endif
}
#endif

// Allocate memory for lf row synchronization
static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
                              int width, int num_workers) {
  lf_sync->rows = rows;
#if CONFIG_MULTITHREAD
  {
    int i, j;

    for (j = 0; j < MAX_MB_PLANE; j++) {
      CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
                      aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
      if (lf_sync->mutex_[j]) {
        for (i = 0; i < rows; ++i) {
          pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
        }
      }

      CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
                      aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
      if (lf_sync->cond_[j]) {
        for (i = 0; i < rows; ++i) {
          pthread_cond_init(&lf_sync->cond_[j][i], NULL);
        }
      }
    }

    CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
                    aom_malloc(sizeof(*(lf_sync->job_mutex))));
    if (lf_sync->job_mutex) {
      pthread_mutex_init(lf_sync->job_mutex, NULL);
    }
  }
#endif  // CONFIG_MULTITHREAD
  CHECK_MEM_ERROR(cm, lf_sync->lfdata,
                  aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
  lf_sync->num_workers = num_workers;

  for (int j = 0; j < MAX_MB_PLANE; j++) {
    CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
                    aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
  }
  CHECK_MEM_ERROR(
      cm, lf_sync->job_queue,
      aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
  // Set up nsync.
  lf_sync->sync_range = get_sync_range(width);
}

// Deallocate lf synchronization related mutex and data
void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
  if (lf_sync != NULL) {
    int j;
#if CONFIG_MULTITHREAD
    int i;
    for (j = 0; j < MAX_MB_PLANE; j++) {
      if (lf_sync->mutex_[j] != NULL) {
        for (i = 0; i < lf_sync->rows; ++i) {
          pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
        }
        aom_free(lf_sync->mutex_[j]);
      }
      if (lf_sync->cond_[j] != NULL) {
        for (i = 0; i < lf_sync->rows; ++i) {
          pthread_cond_destroy(&lf_sync->cond_[j][i]);
        }
        aom_free(lf_sync->cond_[j]);
      }
    }
    if (lf_sync->job_mutex != NULL) {
      pthread_mutex_destroy(lf_sync->job_mutex);
      aom_free(lf_sync->job_mutex);
    }
#endif  // CONFIG_MULTITHREAD
    aom_free(lf_sync->lfdata);
    for (j = 0; j < MAX_MB_PLANE; j++) {
      aom_free(lf_sync->cur_sb_col[j]);
    }

    aom_free(lf_sync->job_queue);
    // clear the structure as the source of this call may be a resize in which
    // case this call will be followed by an _alloc() which may fail.
    av1_zero(*lf_sync);
  }
}

static void loop_filter_data_reset(LFWorkerData *lf_data,
                                   YV12_BUFFER_CONFIG *frame_buffer,
                                   struct AV1Common *cm, MACROBLOCKD *xd) {
  struct macroblockd_plane *pd = xd->plane;
  lf_data->frame_buffer = frame_buffer;
  lf_data->cm = cm;
  lf_data->xd = xd;
  for (int i = 0; i < MAX_MB_PLANE; i++) {
    memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
    lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
    lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
  }
}

static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
                             int plane) {
#if CONFIG_MULTITHREAD
  const int nsync = lf_sync->sync_range;

  if (r && !(c & (nsync - 1))) {
    pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
    pthread_mutex_lock(mutex);

    while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
      pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
    }
    pthread_mutex_unlock(mutex);
  }
#else
  (void)lf_sync;
  (void)r;
  (void)c;
  (void)plane;
#endif  // CONFIG_MULTITHREAD
}

static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
                              const int sb_cols, int plane) {
#if CONFIG_MULTITHREAD
  const int nsync = lf_sync->sync_range;
  int cur;
  // Only signal when there are enough filtered SB for next row to run.
  int sig = 1;

  if (c < sb_cols - 1) {
    cur = c;
    if (c % nsync) sig = 0;
  } else {
    cur = sb_cols + nsync;
  }

  if (sig) {
    pthread_mutex_lock(&lf_sync->mutex_[plane][r]);

    lf_sync->cur_sb_col[plane][r] = cur;

    pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
    pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
  }
#else
  (void)lf_sync;
  (void)r;
  (void)c;
  (void)sb_cols;
  (void)plane;
#endif  // CONFIG_MULTITHREAD
}

static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start,
                            int stop,
#if CONFIG_LPF_MASK
                            int is_decoding,
#endif
                            int plane_start, int plane_end) {
  int mi_row, plane, dir;
  AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
  lf_sync->jobs_enqueued = 0;
  lf_sync->jobs_dequeued = 0;

  for (dir = 0; dir < 2; dir++) {
    for (plane = plane_start; plane < plane_end; plane++) {
      if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
        break;
      else if (plane == 1 && !(cm->lf.filter_level_u))
        continue;
      else if (plane == 2 && !(cm->lf.filter_level_v))
        continue;
#if CONFIG_LPF_MASK
      int step = MAX_MIB_SIZE;
      if (is_decoding) {
        step = MI_SIZE_64X64;
      }
      for (mi_row = start; mi_row < stop; mi_row += step)
#else
      for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE)
#endif
      {
        lf_job_queue->mi_row = mi_row;
        lf_job_queue->plane = plane;
        lf_job_queue->dir = dir;
        lf_job_queue++;
        lf_sync->jobs_enqueued++;
      }
    }
  }
}

static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
  AV1LfMTInfo *cur_job_info = NULL;

#if CONFIG_MULTITHREAD
  pthread_mutex_lock(lf_sync->job_mutex);

  if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
    cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
    lf_sync->jobs_dequeued++;
  }

  pthread_mutex_unlock(lf_sync->job_mutex);
#else
  (void)lf_sync;
#endif

  return cur_job_info;
}

// Implement row loopfiltering for each thread.
static INLINE void thread_loop_filter_rows(
    const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
    struct macroblockd_plane *planes, MACROBLOCKD *xd,
    AV1LfSync *const lf_sync) {
  const int sb_cols =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2) >>
      MAX_MIB_SIZE_LOG2;
  int mi_row, mi_col, plane, dir;
  int r, c;

  while (1) {
    AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);

    if (cur_job_info != NULL) {
      mi_row = cur_job_info->mi_row;
      plane = cur_job_info->plane;
      dir = cur_job_info->dir;
      r = mi_row >> MAX_MIB_SIZE_LOG2;

      if (dir == 0) {
        for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
             mi_col += MAX_MIB_SIZE) {
          c = mi_col >> MAX_MIB_SIZE_LOG2;

          av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
                               mi_row, mi_col, plane, plane + 1);

          av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
                                      mi_col);
          sync_write(lf_sync, r, c, sb_cols, plane);
        }
      } else if (dir == 1) {
        for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
             mi_col += MAX_MIB_SIZE) {
          c = mi_col >> MAX_MIB_SIZE_LOG2;

          // Wait for vertical edge filtering of the top-right block to be
          // completed
          sync_read(lf_sync, r, c, plane);

          // Wait for vertical edge filtering of the right block to be
          // completed
          sync_read(lf_sync, r + 1, c, plane);

          av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
                               mi_row, mi_col, plane, plane + 1);
          av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
                                      mi_col);
        }
      }
    } else {
      break;
    }
  }
}

// Row-based multi-threaded loopfilter hook
static int loop_filter_row_worker(void *arg1, void *arg2) {
  AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
  LFWorkerData *const lf_data = (LFWorkerData *)arg2;
  thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
                          lf_data->xd, lf_sync);
  return 1;
}

#if CONFIG_LPF_MASK
static INLINE void thread_loop_filter_bitmask_rows(
    const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
    struct macroblockd_plane *planes, MACROBLOCKD *xd,
    AV1LfSync *const lf_sync) {
  const int sb_cols =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MIN_MIB_SIZE_LOG2) >>
      MIN_MIB_SIZE_LOG2;
  int mi_row, mi_col, plane, dir;
  int r, c;
  (void)xd;

  while (1) {
    AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);

    if (cur_job_info != NULL) {
      mi_row = cur_job_info->mi_row;
      plane = cur_job_info->plane;
      dir = cur_job_info->dir;
      r = mi_row >> MIN_MIB_SIZE_LOG2;

      if (dir == 0) {
        for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
             mi_col += MI_SIZE_64X64) {
          c = mi_col >> MIN_MIB_SIZE_LOG2;

          av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
                               mi_col, plane, plane + 1);

          av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row,
                                              mi_col);
          sync_write(lf_sync, r, c, sb_cols, plane);
        }
      } else if (dir == 1) {
        for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
             mi_col += MI_SIZE_64X64) {
          c = mi_col >> MIN_MIB_SIZE_LOG2;

          // Wait for vertical edge filtering of the top-right block to be
          // completed
          sync_read(lf_sync, r, c, plane);

          // Wait for vertical edge filtering of the right block to be
          // completed
          sync_read(lf_sync, r + 1, c, plane);

          av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
                               mi_col, plane, plane + 1);
          av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row,
                                              mi_col);
        }
      }
    } else {
      break;
    }
  }
}

// Row-based multi-threaded loopfilter hook
static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) {
  AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
  LFWorkerData *const lf_data = (LFWorkerData *)arg2;
  thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm,
                                  lf_data->planes, lf_data->xd, lf_sync);
  return 1;
}
#endif  // CONFIG_LPF_MASK

static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
                                MACROBLOCKD *xd, int start, int stop,
                                int plane_start, int plane_end,
#if CONFIG_LPF_MASK
                                int is_decoding,
#endif
                                AVxWorker *workers, int nworkers,
                                AV1LfSync *lf_sync) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
#if CONFIG_LPF_MASK
  int sb_rows;
  if (is_decoding) {
    sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MIN_MIB_SIZE_LOG2) >>
              MIN_MIB_SIZE_LOG2;
  } else {
    sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
              MAX_MIB_SIZE_LOG2;
  }
#else
  // Number of superblock rows and cols
  const int sb_rows =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
      MAX_MIB_SIZE_LOG2;
#endif
  const int num_workers = nworkers;
  int i;

  if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
      num_workers > lf_sync->num_workers) {
    av1_loop_filter_dealloc(lf_sync);
    loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
  }

  // Initialize cur_sb_col to -1 for all SB rows.
  for (i = 0; i < MAX_MB_PLANE; i++) {
    memset(lf_sync->cur_sb_col[i], -1,
           sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
  }

  enqueue_lf_jobs(lf_sync, cm, start, stop,
#if CONFIG_LPF_MASK
                  is_decoding,
#endif
                  plane_start, plane_end);

  // Set up loopfilter thread data.
  for (i = num_workers - 1; i >= 0; --i) {
    AVxWorker *const worker = &workers[i];
    LFWorkerData *const lf_data = &lf_sync->lfdata[i];

#if CONFIG_LPF_MASK
    if (is_decoding) {
      worker->hook = loop_filter_bitmask_row_worker;
    } else {
      worker->hook = loop_filter_row_worker;
    }
#else
    worker->hook = loop_filter_row_worker;
#endif
    worker->data1 = lf_sync;
    worker->data2 = lf_data;

    // Loopfilter data
    loop_filter_data_reset(lf_data, frame, cm, xd);

    // Start loopfiltering
    if (i == 0) {
      winterface->execute(worker);
    } else {
      winterface->launch(worker);
    }
  }

  // Wait till all rows are finished
  for (i = 0; i < num_workers; ++i) {
    winterface->sync(&workers[i]);
  }
}

void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
                              MACROBLOCKD *xd, int plane_start, int plane_end,
                              int partial_frame,
#if CONFIG_LPF_MASK
                              int is_decoding,
#endif
                              AVxWorker *workers, int num_workers,
                              AV1LfSync *lf_sync) {
  int start_mi_row, end_mi_row, mi_rows_to_filter;

  start_mi_row = 0;
  mi_rows_to_filter = cm->mi_params.mi_rows;
  if (partial_frame && cm->mi_params.mi_rows > 8) {
    start_mi_row = cm->mi_params.mi_rows >> 1;
    start_mi_row &= 0xfffffff8;
    mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
  }
  end_mi_row = start_mi_row + mi_rows_to_filter;
  av1_loop_filter_frame_init(cm, plane_start, plane_end);

#if CONFIG_LPF_MASK
  if (is_decoding) {
    cm->is_decoding = is_decoding;
    // TODO(chengchen): currently use one thread to build bitmasks for the
    // frame. Make it support multi-thread later.
    for (int plane = plane_start; plane < plane_end; plane++) {
      if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
        break;
      else if (plane == 1 && !(cm->lf.filter_level_u))
        continue;
      else if (plane == 2 && !(cm->lf.filter_level_v))
        continue;

      // TODO(chengchen): can we remove this?
      struct macroblockd_plane *pd = xd->plane;
      av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame, 0, 0, plane,
                           plane + 1);

      av1_build_bitmask_vert_info(cm, &pd[plane], plane);
      av1_build_bitmask_horz_info(cm, &pd[plane], plane);
    }
    loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
                        plane_end, 1, workers, num_workers, lf_sync);
  } else {
    loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
                        plane_end, 0, workers, num_workers, lf_sync);
  }
#else
  loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
                      plane_end, workers, num_workers, lf_sync);
#endif
}

#if !CONFIG_REALTIME_ONLY
static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
#if CONFIG_MULTITHREAD
  AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
  const int nsync = loop_res_sync->sync_range;

  if (r && !(c & (nsync - 1))) {
    pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
    pthread_mutex_lock(mutex);

    while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
      pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
    }
    pthread_mutex_unlock(mutex);
  }
#else
  (void)lr_sync;
  (void)r;
  (void)c;
  (void)plane;
#endif  // CONFIG_MULTITHREAD
}

static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
                                 const int sb_cols, int plane) {
#if CONFIG_MULTITHREAD
  AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
  const int nsync = loop_res_sync->sync_range;
  int cur;
  // Only signal when there are enough filtered SB for next row to run.
  int sig = 1;

  if (c < sb_cols - 1) {
    cur = c;
    if (c % nsync) sig = 0;
  } else {
    cur = sb_cols + nsync;
  }

  if (sig) {
    pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);

    loop_res_sync->cur_sb_col[plane][r] = cur;

    pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
    pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
  }
#else
  (void)lr_sync;
  (void)r;
  (void)c;
  (void)sb_cols;
  (void)plane;
#endif  // CONFIG_MULTITHREAD
}

// Allocate memory for loop restoration row synchronization
static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
                                   int num_workers, int num_rows_lr,
                                   int num_planes, int width) {
  lr_sync->rows = num_rows_lr;
  lr_sync->num_planes = num_planes;
#if CONFIG_MULTITHREAD
  {
    int i, j;

    for (j = 0; j < num_planes; j++) {
      CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
                      aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
      if (lr_sync->mutex_[j]) {
        for (i = 0; i < num_rows_lr; ++i) {
          pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
        }
      }

      CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
                      aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
      if (lr_sync->cond_[j]) {
        for (i = 0; i < num_rows_lr; ++i) {
          pthread_cond_init(&lr_sync->cond_[j][i], NULL);
        }
      }
    }

    CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
                    aom_malloc(sizeof(*(lr_sync->job_mutex))));
    if (lr_sync->job_mutex) {
      pthread_mutex_init(lr_sync->job_mutex, NULL);
    }
  }
#endif  // CONFIG_MULTITHREAD
  CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
                  aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));

  for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
    if (worker_idx < num_workers - 1) {
      CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
                      (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
      CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
                      aom_malloc(sizeof(RestorationLineBuffers)));

    } else {
      lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
      lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
    }
  }

  lr_sync->num_workers = num_workers;

  for (int j = 0; j < num_planes; j++) {
    CHECK_MEM_ERROR(
        cm, lr_sync->cur_sb_col[j],
        aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
  }
  CHECK_MEM_ERROR(
      cm, lr_sync->job_queue,
      aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
  // Set up nsync.
  lr_sync->sync_range = get_lr_sync_range(width);
}

// Deallocate loop restoration synchronization related mutex and data
void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
  if (lr_sync != NULL) {
    int j;
#if CONFIG_MULTITHREAD
    int i;
    for (j = 0; j < MAX_MB_PLANE; j++) {
      if (lr_sync->mutex_[j] != NULL) {
        for (i = 0; i < lr_sync->rows; ++i) {
          pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
        }
        aom_free(lr_sync->mutex_[j]);
      }
      if (lr_sync->cond_[j] != NULL) {
        for (i = 0; i < lr_sync->rows; ++i) {
          pthread_cond_destroy(&lr_sync->cond_[j][i]);
        }
        aom_free(lr_sync->cond_[j]);
      }
    }
    if (lr_sync->job_mutex != NULL) {
      pthread_mutex_destroy(lr_sync->job_mutex);
      aom_free(lr_sync->job_mutex);
    }
#endif  // CONFIG_MULTITHREAD
    for (j = 0; j < MAX_MB_PLANE; j++) {
      aom_free(lr_sync->cur_sb_col[j]);
    }

    aom_free(lr_sync->job_queue);

    if (lr_sync->lrworkerdata) {
      for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
        LRWorkerData *const workerdata_data =
            lr_sync->lrworkerdata + worker_idx;

        aom_free(workerdata_data->rst_tmpbuf);
        aom_free(workerdata_data->rlbs);
      }
      aom_free(lr_sync->lrworkerdata);
    }

    // clear the structure as the source of this call may be a resize in which
    // case this call will be followed by an _alloc() which may fail.
    av1_zero(*lr_sync);
  }
}

static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
                            AV1_COMMON *cm) {
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;

  const int num_planes = av1_num_planes(cm);
  AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
  int32_t lr_job_counter[2], num_even_lr_jobs = 0;
  lr_sync->jobs_enqueued = 0;
  lr_sync->jobs_dequeued = 0;

  for (int plane = 0; plane < num_planes; plane++) {
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
    num_even_lr_jobs =
        num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
  }
  lr_job_counter[0] = 0;
  lr_job_counter[1] = num_even_lr_jobs;

  for (int plane = 0; plane < num_planes; plane++) {
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
    const int is_uv = plane > 0;
    const int ss_y = is_uv && cm->seq_params.subsampling_y;

    AV1PixelRect tile_rect = ctxt[plane].tile_rect;
    const int unit_size = ctxt[plane].rsi->restoration_unit_size;

    const int tile_h = tile_rect.bottom - tile_rect.top;
    const int ext_size = unit_size * 3 / 2;

    int y0 = 0, i = 0;
    while (y0 < tile_h) {
      int remaining_h = tile_h - y0;
      int h = (remaining_h < ext_size) ? remaining_h : unit_size;

      RestorationTileLimits limits;
      limits.v_start = tile_rect.top + y0;
      limits.v_end = tile_rect.top + y0 + h;
      assert(limits.v_end <= tile_rect.bottom);
      // Offset the tile upwards to align with the restoration processing stripe
      const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
      limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
      if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;

      assert(lr_job_counter[0] <= num_even_lr_jobs);

      lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
      lr_job_queue[lr_job_counter[i & 1]].plane = plane;
      lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
      lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
      lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
      if ((i & 1) == 0) {
        lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
            limits.v_start + RESTORATION_BORDER;
        lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
            limits.v_end - RESTORATION_BORDER;
        if (i == 0) {
          assert(limits.v_start == tile_rect.top);
          lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
        }
        if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
          assert(limits.v_end == tile_rect.bottom);
          lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
        }
      } else {
        lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
            AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
        lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
            AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
      }
      lr_job_counter[i & 1]++;
      lr_sync->jobs_enqueued++;

      y0 += h;
      ++i;
    }
  }
}

static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
  AV1LrMTInfo *cur_job_info = NULL;

#if CONFIG_MULTITHREAD
  pthread_mutex_lock(lr_sync->job_mutex);

  if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
    cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
    lr_sync->jobs_dequeued++;
  }

  pthread_mutex_unlock(lr_sync->job_mutex);
#else
  (void)lr_sync;
#endif

  return cur_job_info;
}

// Implement row loop restoration for each thread.
static int loop_restoration_row_worker(void *arg1, void *arg2) {
  AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
  LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
  AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
  int lr_unit_row;
  int plane;
  const int tile_row = LR_TILE_ROW;
  const int tile_col = LR_TILE_COL;
  const int tile_cols = LR_TILE_COLS;
  const int tile_idx = tile_col + tile_row * tile_cols;
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
                           int vstart, int vend);
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
                                         aom_yv12_partial_coloc_copy_u,
                                         aom_yv12_partial_coloc_copy_v };

  while (1) {
    AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
    if (cur_job_info != NULL) {
      RestorationTileLimits limits;
      sync_read_fn_t on_sync_read;
      sync_write_fn_t on_sync_write;
      limits.v_start = cur_job_info->v_start;
      limits.v_end = cur_job_info->v_end;
      lr_unit_row = cur_job_info->lr_unit_row;
      plane = cur_job_info->plane;
      const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;

      // sync_mode == 1 implies only sync read is required in LR Multi-threading
      // sync_mode == 0 implies only sync write is required.
      on_sync_read =
          cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
      on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
                                                   : av1_lr_sync_write_dummy;

      av1_foreach_rest_unit_in_row(
          &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
          ctxt[plane].rsi->restoration_unit_size, unit_idx0,
          ctxt[plane].rsi->horz_units_per_tile,
          ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
          lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
          on_sync_write, lr_sync);

      copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
                       ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
                       cur_job_info->v_copy_end);
    } else {
      break;
    }
  }
  return 1;
}

static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
                                           AVxWorker *workers, int nworkers,
                                           AV1LrSync *lr_sync, AV1_COMMON *cm) {
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;

  const int num_planes = av1_num_planes(cm);

  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int num_rows_lr = 0;

  for (int plane = 0; plane < num_planes; plane++) {
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;

    const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
    const int max_tile_h = tile_rect.bottom - tile_rect.top;

    const int unit_size = cm->rst_info[plane].restoration_unit_size;

    num_rows_lr =
        AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
  }

  const int num_workers = nworkers;
  int i;
  assert(MAX_MB_PLANE == 3);

  if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows ||
      num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) {
    av1_loop_restoration_dealloc(lr_sync, num_workers);
    loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes,
                           cm->width);
  }

  // Initialize cur_sb_col to -1 for all SB rows.
  for (i = 0; i < num_planes; i++) {
    memset(lr_sync->cur_sb_col[i], -1,
           sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
  }

  enqueue_lr_jobs(lr_sync, lr_ctxt, cm);

  // Set up looprestoration thread data.
  for (i = num_workers - 1; i >= 0; --i) {
    AVxWorker *const worker = &workers[i];
    lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
    worker->hook = loop_restoration_row_worker;
    worker->data1 = lr_sync;
    worker->data2 = &lr_sync->lrworkerdata[i];

    // Start loop restoration
    if (i == 0) {
      winterface->execute(worker);
    } else {
      winterface->launch(worker);
    }
  }

  // Wait till all rows are finished
  for (i = 0; i < num_workers; ++i) {
    winterface->sync(&workers[i]);
  }
}

void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
                                          AV1_COMMON *cm, int optimized_lr,
                                          AVxWorker *workers, int num_workers,
                                          AV1LrSync *lr_sync, void *lr_ctxt) {
  assert(!cm->features.all_lossless);

  const int num_planes = av1_num_planes(cm);

  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;

  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
                                         optimized_lr, num_planes);

  foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
                                 cm);
}
#endif