aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/decoder/decodemv.c
blob: 412be8698976bc032497a1f2ced6a581a561c266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>

#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/warped_motion.h"

#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"

#include "aom_dsp/aom_dsp_common.h"

#define ACCT_STR __func__

#define DEC_MISMATCH_DEBUG 0

static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
  return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR);
}

static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) {
  const int skip_txfm = xd->mi[0]->skip_txfm;
  if (cm->features.coded_lossless) return;
  if (cm->features.allow_intrabc) {
    assert(cm->cdef_info.cdef_bits == 0);
    return;
  }

  // At the start of a superblock, mark that we haven't yet read CDEF strengths
  // for any of the CDEF units contained in this superblock.
  const int sb_mask = (cm->seq_params.mib_size - 1);
  const int mi_row_in_sb = (xd->mi_row & sb_mask);
  const int mi_col_in_sb = (xd->mi_col & sb_mask);
  if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
    xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
        xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
  }

  // CDEF unit size is 64x64 irrespective of the superblock size.
  const int cdef_size = 1 << (6 - MI_SIZE_LOG2);

  // Find index of this CDEF unit in this superblock.
  const int index_mask = cdef_size;
  const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
  const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
  const int index = (cm->seq_params.sb_size == BLOCK_128X128)
                        ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
                        : 0;

  // Read CDEF strength from the first non-skip coding block in this CDEF unit.
  if (!xd->cdef_transmitted[index] && !skip_txfm) {
    // CDEF strength for this CDEF unit needs to be read into the MB_MODE_INFO
    // of the 1st block in this CDEF unit.
    const int first_block_mask = ~(cdef_size - 1);
    CommonModeInfoParams *const mi_params = &cm->mi_params;
    const int grid_idx =
        get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
                        xd->mi_col & first_block_mask);
    MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
    mbmi->cdef_strength =
        aom_read_literal(r, cm->cdef_info.cdef_bits, ACCT_STR);
    xd->cdef_transmitted[index] = true;
  }
}

static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd,
                             aom_reader *r, MB_MODE_INFO *const mbmi) {
  int sign, abs, reduced_delta_qindex = 0;
  BLOCK_SIZE bsize = mbmi->bsize;
  const int b_col = xd->mi_col & (cm->seq_params.mib_size - 1);
  const int b_row = xd->mi_row & (cm->seq_params.mib_size - 1);
  const int read_delta_q_flag = (b_col == 0 && b_row == 0);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if ((bsize != cm->seq_params.sb_size || mbmi->skip_txfm == 0) &&
      read_delta_q_flag) {
    abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR);
    const int smallval = (abs < DELTA_Q_SMALL);

    if (!smallval) {
      const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
      const int thr = (1 << rem_bits) + 1;
      abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
    }

    if (abs) {
      sign = aom_read_bit(r, ACCT_STR);
    } else {
      sign = 1;
    }

    reduced_delta_qindex = sign ? -abs : abs;
  }
  return reduced_delta_qindex;
}
static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r,
                              aom_cdf_prob *const cdf,
                              const MB_MODE_INFO *const mbmi, int mi_col,
                              int mi_row) {
  int reduced_delta_lflevel = 0;
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int b_col = mi_col & (cm->seq_params.mib_size - 1);
  const int b_row = mi_row & (cm->seq_params.mib_size - 1);
  const int read_delta_lf_flag = (b_col == 0 && b_row == 0);

  if ((bsize != cm->seq_params.sb_size || mbmi->skip_txfm == 0) &&
      read_delta_lf_flag) {
    int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR);
    const int smallval = (abs < DELTA_LF_SMALL);
    if (!smallval) {
      const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
      const int thr = (1 << rem_bits) + 1;
      abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
    }
    const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1;
    reduced_delta_lflevel = sign ? -abs : abs;
  }
  return reduced_delta_lflevel;
}

static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx,
                                             aom_reader *r,
                                             CFL_ALLOWED_TYPE cfl_allowed,
                                             PREDICTION_MODE y_mode) {
  const UV_PREDICTION_MODE uv_mode =
      aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode],
                      UV_INTRA_MODES - !cfl_allowed, ACCT_STR);
  return uv_mode;
}

static uint8_t read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r,
                               int8_t *signs_out) {
  const int8_t joint_sign =
      aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs");
  uint8_t idx = 0;
  // Magnitudes are only coded for nonzero values
  if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
    aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
    idx = (uint8_t)aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u")
          << CFL_ALPHABET_SIZE_LOG2;
  }
  if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
    aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
    idx += (uint8_t)aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v");
  }
  *signs_out = joint_sign;
  return idx;
}

static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r,
                                            int size_group) {
  const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol(
      r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES,
      ACCT_STR);
  return ii_mode;
}

static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r,
                                       int16_t ctx) {
  int16_t mode_ctx = ctx & NEWMV_CTX_MASK;
  int is_newmv, is_zeromv, is_refmv;
  is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
  if (is_newmv) return NEWMV;

  mode_ctx = (ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
  is_zeromv =
      aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0;
  if (is_zeromv) return GLOBALMV;

  mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
  is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
  if (is_refmv)
    return NEARESTMV;
  else
    return NEARMV;
}

static void read_drl_idx(FRAME_CONTEXT *ec_ctx, DecoderCodingBlock *dcb,
                         MB_MODE_INFO *mbmi, aom_reader *r) {
  MACROBLOCKD *const xd = &dcb->xd;
  uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  mbmi->ref_mv_idx = 0;
  if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
    for (int idx = 0; idx < 2; ++idx) {
      if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
        int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
        mbmi->ref_mv_idx = idx + drl_idx;
        if (!drl_idx) return;
      }
    }
  }
  if (have_nearmv_in_inter_mode(mbmi->mode)) {
    // Offset the NEARESTMV mode.
    // TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV
    // mode is factored in.
    for (int idx = 1; idx < 3; ++idx) {
      if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
        int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
        mbmi->ref_mv_idx = idx + drl_idx - 1;
        if (!drl_idx) return;
      }
    }
  }
}

static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
                                    MB_MODE_INFO *mbmi, aom_reader *r) {
  if (cm->features.switchable_motion_mode == 0) return SIMPLE_TRANSLATION;
  if (mbmi->skip_mode) return SIMPLE_TRANSLATION;

  const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(
      xd->global_motion, xd, mbmi, cm->features.allow_warped_motion);
  int motion_mode;

  if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;

  if (last_motion_mode_allowed == OBMC_CAUSAL) {
    motion_mode =
        aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->bsize], 2, ACCT_STR);
    return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
  } else {
    motion_mode = aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
                                  MOTION_MODES, ACCT_STR);
    return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
  }
}

static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r,
                                                int16_t ctx) {
  const int mode =
      aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
                      INTER_COMPOUND_MODES, ACCT_STR);
  assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode));
  return NEAREST_NEARESTMV + mode;
}

int av1_neg_deinterleave(int diff, int ref, int max) {
  if (!ref) return diff;
  if (ref >= (max - 1)) return max - diff - 1;
  if (2 * ref < max) {
    if (diff <= 2 * ref) {
      if (diff & 1)
        return ref + ((diff + 1) >> 1);
      else
        return ref - (diff >> 1);
    }
    return diff;
  } else {
    if (diff <= 2 * (max - ref - 1)) {
      if (diff & 1)
        return ref + ((diff + 1) >> 1);
      else
        return ref - (diff >> 1);
    }
    return max - (diff + 1);
  }
}

static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd,
                           aom_reader *r, int skip) {
  int cdf_num;
  const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
  if (skip) return pred;

  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  struct segmentation *const seg = &cm->seg;
  struct segmentation_probs *const segp = &ec_ctx->seg;
  aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
  const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR);
  const int segment_id =
      av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1);

  if (segment_id < 0 || segment_id > seg->last_active_segid) {
    aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Corrupted segment_ids");
  }
  return segment_id;
}

static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
                              int mi_offset, int x_mis, int y_mis) {
  int segment_id = INT_MAX;

  for (int y = 0; y < y_mis; y++)
    for (int x = 0; x < x_mis; x++)
      segment_id = AOMMIN(
          segment_id, segment_ids[mi_offset + y * cm->mi_params.mi_cols + x]);

  assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
  return segment_id;
}

static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis,
                           int segment_id) {
  assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);

  for (int y = 0; y < y_mis; y++)
    for (int x = 0; x < x_mis; x++)
      cm->cur_frame->seg_map[mi_offset + y * cm->mi_params.mi_cols + x] =
          segment_id;
}

static int read_intra_segment_id(AV1_COMMON *const cm,
                                 const MACROBLOCKD *const xd, int bsize,
                                 aom_reader *r, int skip) {
  struct segmentation *const seg = &cm->seg;
  if (!seg->enabled) return 0;  // Default for disabled segmentation
  assert(seg->update_map && !seg->temporal_update);

  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
  const int bw = mi_size_wide[bsize];
  const int bh = mi_size_high[bsize];
  const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
  const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);
  const int segment_id = read_segment_id(cm, xd, r, skip);
  set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
  return segment_id;
}

static void copy_segment_id(const CommonModeInfoParams *const mi_params,
                            const uint8_t *last_segment_ids,
                            uint8_t *current_segment_ids, int mi_offset,
                            int x_mis, int y_mis) {
  for (int y = 0; y < y_mis; y++)
    for (int x = 0; x < x_mis; x++)
      current_segment_ids[mi_offset + y * mi_params->mi_cols + x] =
          last_segment_ids
              ? last_segment_ids[mi_offset + y * mi_params->mi_cols + x]
              : 0;
}

static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset,
                                    int x_mis, int y_mis) {
  return cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map,
                                                     mi_offset, x_mis, y_mis)
                                : 0;
}

static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                                 int preskip, aom_reader *r) {
  struct segmentation *const seg = &cm->seg;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
  const int bw = mi_size_wide[mbmi->bsize];
  const int bh = mi_size_high[mbmi->bsize];

  // TODO(slavarnway): move x_mis, y_mis into xd ?????
  const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
  const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);

  if (!seg->enabled) return 0;  // Default for disabled segmentation

  if (!seg->update_map) {
    copy_segment_id(mi_params, cm->last_frame_seg_map, cm->cur_frame->seg_map,
                    mi_offset, x_mis, y_mis);
    return get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
  }

  int segment_id;
  if (preskip) {
    if (!seg->segid_preskip) return 0;
  } else {
    if (mbmi->skip_txfm) {
      if (seg->temporal_update) {
        mbmi->seg_id_predicted = 0;
      }
      segment_id = read_segment_id(cm, xd, r, 1);
      set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
      return segment_id;
    }
  }

  if (seg->temporal_update) {
    const int ctx = av1_get_pred_context_seg_id(xd);
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    struct segmentation_probs *const segp = &ec_ctx->seg;
    aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx];
    mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR);
    if (mbmi->seg_id_predicted) {
      segment_id = get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
    } else {
      segment_id = read_segment_id(cm, xd, r, 0);
    }
  } else {
    segment_id = read_segment_id(cm, xd, r, 0);
  }
  set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
  return segment_id;
}

static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
                          aom_reader *r) {
  if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;

  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
    return 0;
  }

  if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return 0;

  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
      segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
    // These features imply single-reference mode, while skip mode implies
    // compound reference. Hence, the two are mutually exclusive.
    // In other words, skip_mode is implicitly 0 here.
    return 0;
  }

  const int ctx = av1_get_skip_mode_context(xd);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const int skip_mode =
      aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR);
  return skip_mode;
}

static int read_skip_txfm(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
                          aom_reader *r) {
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
    return 1;
  } else {
    const int ctx = av1_get_skip_txfm_context(xd);
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    const int skip_txfm =
        aom_read_symbol(r, ec_ctx->skip_txfm_cdfs[ctx], 2, ACCT_STR);
    return skip_txfm;
  }
}

// Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1])
// and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into
// one single sorted list(colors[...]).
static void merge_colors(uint16_t *colors, uint16_t *cached_colors,
                         int n_colors, int n_cached_colors) {
  if (n_cached_colors == 0) return;
  int cache_idx = 0, trans_idx = n_cached_colors;
  for (int i = 0; i < n_colors; ++i) {
    if (cache_idx < n_cached_colors &&
        (trans_idx >= n_colors ||
         cached_colors[cache_idx] <= colors[trans_idx])) {
      colors[i] = cached_colors[cache_idx++];
    } else {
      assert(trans_idx < n_colors);
      colors[i] = colors[trans_idx++];
    }
  }
}

static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth,
                                  PALETTE_MODE_INFO *const pmi, aom_reader *r) {
  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
  uint16_t cached_colors[PALETTE_MAX_SIZE];
  const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
  const int n = pmi->palette_size[0];
  int idx = 0;
  for (int i = 0; i < n_cache && idx < n; ++i)
    if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
  if (idx < n) {
    const int n_cached_colors = idx;
    pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
    if (idx < n) {
      const int min_bits = bit_depth - 3;
      int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
      int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
      for (; idx < n; ++idx) {
        assert(range >= 0);
        const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
        pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
                                         0, (1 << bit_depth) - 1);
        range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
        bits = AOMMIN(bits, av1_ceil_log2(range));
      }
    }
    merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors);
  } else {
    memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0]));
  }
}

static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth,
                                   PALETTE_MODE_INFO *const pmi,
                                   aom_reader *r) {
  const int n = pmi->palette_size[1];
  // U channel colors.
  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
  uint16_t cached_colors[PALETTE_MAX_SIZE];
  const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
  int idx = 0;
  for (int i = 0; i < n_cache && idx < n; ++i)
    if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
  if (idx < n) {
    const int n_cached_colors = idx;
    idx += PALETTE_MAX_SIZE;
    pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
    if (idx < PALETTE_MAX_SIZE + n) {
      const int min_bits = bit_depth - 3;
      int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
      int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
      for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
        assert(range >= 0);
        const int delta = aom_read_literal(r, bits, ACCT_STR);
        pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
                                         0, (1 << bit_depth) - 1);
        range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
        bits = AOMMIN(bits, av1_ceil_log2(range));
      }
    }
    merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n,
                 n_cached_colors);
  } else {
    memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors,
           n * sizeof(cached_colors[0]));
  }

  // V channel colors.
  if (aom_read_bit(r, ACCT_STR)) {  // Delta encoding.
    const int min_bits_v = bit_depth - 4;
    const int max_val = 1 << bit_depth;
    int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR);
    pmi->palette_colors[2 * PALETTE_MAX_SIZE] =
        aom_read_literal(r, bit_depth, ACCT_STR);
    for (int i = 1; i < n; ++i) {
      int delta = aom_read_literal(r, bits, ACCT_STR);
      if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta;
      int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta;
      if (val < 0) val += max_val;
      if (val >= max_val) val -= max_val;
      pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val;
    }
  } else {
    for (int i = 0; i < n; ++i) {
      pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
          aom_read_literal(r, bit_depth, ACCT_STR);
    }
  }
}

static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                                   aom_reader *r) {
  const int num_planes = av1_num_planes(cm);
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;
  assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);

  if (mbmi->mode == DC_PRED) {
    const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
    const int modev = aom_read_symbol(
        r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2,
        ACCT_STR);
    if (modev) {
      pmi->palette_size[0] =
          aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
                          PALETTE_SIZES, ACCT_STR) +
          2;
      read_palette_colors_y(xd, cm->seq_params.bit_depth, pmi, r);
    }
  }
  if (num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref) {
    const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
    const int modev = aom_read_symbol(
        r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR);
    if (modev) {
      pmi->palette_size[1] =
          aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
                          PALETTE_SIZES, ACCT_STR) +
          2;
      read_palette_colors_uv(xd, cm->seq_params.bit_depth, pmi, r);
    }
  }
}

static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) {
  const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR);
  return sym - MAX_ANGLE_DELTA;
}

static void read_filter_intra_mode_info(const AV1_COMMON *const cm,
                                        MACROBLOCKD *const xd, aom_reader *r) {
  MB_MODE_INFO *const mbmi = xd->mi[0];
  FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
      &mbmi->filter_intra_mode_info;

  if (av1_filter_intra_allowed(cm, mbmi)) {
    filter_intra_mode_info->use_filter_intra = aom_read_symbol(
        r, xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2, ACCT_STR);
    if (filter_intra_mode_info->use_filter_intra) {
      filter_intra_mode_info->filter_intra_mode = aom_read_symbol(
          r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR);
    }
  } else {
    filter_intra_mode_info->use_filter_intra = 0;
  }
}

void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row,
                      int blk_col, TX_SIZE tx_size, aom_reader *r) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  uint8_t *tx_type =
      &xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
  *tx_type = DCT_DCT;

  // No need to read transform type if block is skipped.
  if (mbmi->skip_txfm ||
      segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
    return;

  // No need to read transform type for lossless mode(qindex==0).
  const int qindex = xd->qindex[mbmi->segment_id];
  if (qindex == 0) return;

  const int inter_block = is_inter_block(mbmi);
  if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) >
      1) {
    const TxSetType tx_set_type = av1_get_ext_tx_set_type(
        tx_size, inter_block, cm->features.reduced_tx_set_used);
    const int eset =
        get_ext_tx_set(tx_size, inter_block, cm->features.reduced_tx_set_used);
    // eset == 0 should correspond to a set with only DCT_DCT and
    // there is no need to read the tx_type
    assert(eset != 0);

    const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    if (inter_block) {
      *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
          r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
          av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
    } else {
      const PREDICTION_MODE intra_mode =
          mbmi->filter_intra_mode_info.use_filter_intra
              ? fimode_to_intradir[mbmi->filter_intra_mode_info
                                       .filter_intra_mode]
              : mbmi->mode;
      *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
          r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode],
          av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
    }
  }
}

static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
                           nmv_context *ctx, MvSubpelPrecision precision);

static INLINE int is_mv_valid(const MV *mv);

static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv,
                            const int_mv *ref_mv, int mi_row, int mi_col,
                            BLOCK_SIZE bsize, aom_reader *r) {
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, MV_SUBPEL_NONE);
  // DV should not have sub-pel.
  assert((mv->as_mv.col & 7) == 0);
  assert((mv->as_mv.row & 7) == 0);
  mv->as_mv.col = (mv->as_mv.col >> 3) * 8;
  mv->as_mv.row = (mv->as_mv.row >> 3) * 8;
  int valid = is_mv_valid(&mv->as_mv) &&
              av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize,
                              cm->seq_params.mib_size_log2);
  return valid;
}

static void read_intrabc_info(AV1_COMMON *const cm, DecoderCodingBlock *dcb,
                              aom_reader *r) {
  MACROBLOCKD *const xd = &dcb->xd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
  if (mbmi->use_intrabc) {
    BLOCK_SIZE bsize = mbmi->bsize;
    mbmi->mode = DC_PRED;
    mbmi->uv_mode = UV_DC_PRED;
    mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
    mbmi->motion_mode = SIMPLE_TRANSLATION;

    int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
    int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES];

    av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, dcb->ref_mv_count,
                     xd->ref_mv_stack, xd->weight, ref_mvs, /*global_mvs=*/NULL,
                     inter_mode_ctx);

    int_mv nearestmv, nearmv;

    av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0);
    int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
    if (dv_ref.as_int == 0)
      av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params.mib_size, xd->mi_row);
    // Ref DV should not have sub-pel.
    int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0;
    dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8;
    dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8;
    valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, xd->mi_row,
                                     xd->mi_col, bsize, r);
    if (!valid_dv) {
      // Intra bc motion vectors are not valid - signal corrupt frame
      aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                         "Invalid intrabc dv");
    }
  }
}

// If delta q is present, reads delta_q index.
// Also reads delta_q loop filter levels, if present.
static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                                aom_reader *r) {
  DeltaQInfo *const delta_q_info = &cm->delta_q_info;

  if (delta_q_info->delta_q_present_flag) {
    MB_MODE_INFO *const mbmi = xd->mi[0];
    xd->current_base_qindex +=
        read_delta_qindex(cm, xd, r, mbmi) * delta_q_info->delta_q_res;
    /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */
    xd->current_base_qindex = clamp(xd->current_base_qindex, 1, MAXQ);
    FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
    if (delta_q_info->delta_lf_present_flag) {
      const int mi_row = xd->mi_row;
      const int mi_col = xd->mi_col;
      if (delta_q_info->delta_lf_multi) {
        const int frame_lf_count =
            av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
        for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
          const int tmp_lvl =
              xd->delta_lf[lf_id] +
              read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi,
                                 mi_col, mi_row) *
                  delta_q_info->delta_lf_res;
          mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] =
              clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
        }
      } else {
        const int tmp_lvl = xd->delta_lf_from_base +
                            read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf,
                                               mbmi, mi_col, mi_row) *
                                delta_q_info->delta_lf_res;
        mbmi->delta_lf_from_base = xd->delta_lf_from_base =
            clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
      }
    }
  }
}

static void read_intra_frame_mode_info(AV1_COMMON *const cm,
                                       DecoderCodingBlock *dcb, aom_reader *r) {
  MACROBLOCKD *const xd = &dcb->xd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const MB_MODE_INFO *above_mi = xd->above_mbmi;
  const MB_MODE_INFO *left_mi = xd->left_mbmi;
  const BLOCK_SIZE bsize = mbmi->bsize;
  struct segmentation *const seg = &cm->seg;

  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if (seg->segid_preskip)
    mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, 0);

  mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);

  if (!seg->segid_preskip)
    mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, mbmi->skip_txfm);

  read_cdef(cm, r, xd);

  read_delta_q_params(cm, xd, r);

  mbmi->current_qindex = xd->current_base_qindex;

  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;
  mbmi->filter_intra_mode_info.use_filter_intra = 0;

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);

  if (av1_allow_intrabc(cm)) {
    read_intrabc_info(cm, dcb, r);
    if (is_intrabc_block(mbmi)) return;
  }

  mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi));

  const int use_angle_delta = av1_use_angle_delta(bsize);
  mbmi->angle_delta[PLANE_TYPE_Y] =
      (use_angle_delta && av1_is_directional_mode(mbmi->mode))
          ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
          : 0;

  if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
    mbmi->uv_mode =
        read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
    if (mbmi->uv_mode == UV_CFL_PRED) {
      mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs);
    }
    mbmi->angle_delta[PLANE_TYPE_UV] =
        (use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)))
            ? read_angle_delta(r,
                               ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED])
            : 0;
  } else {
    // Avoid decoding angle_info if there is is no chroma prediction
    mbmi->uv_mode = UV_DC_PRED;
  }
  xd->cfl.store_y = store_cfl_required(cm, xd);

  if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
    read_palette_mode_info(cm, xd, r);

  read_filter_intra_mode_info(cm, xd, r);
}

static int read_mv_component(aom_reader *r, nmv_component *mvcomp,
                             int use_subpel, int usehp) {
  int mag, d, fr, hp;
  const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR);
  const int mv_class =
      aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR);
  const int class0 = mv_class == MV_CLASS_0;

  // Integer part
  if (class0) {
    d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR);
    mag = 0;
  } else {
    const int n = mv_class + CLASS0_BITS - 1;  // number of bits
    d = 0;
    for (int i = 0; i < n; ++i)
      d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i;
    mag = CLASS0_SIZE << (mv_class + 2);
  }

  if (use_subpel) {
    // Fractional part
    fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
                         MV_FP_SIZE, ACCT_STR);

    // High precision part (if hp is not used, the default value of the hp is 1)
    hp = usehp ? aom_read_symbol(
                     r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2,
                     ACCT_STR)
               : 1;
  } else {
    fr = 3;
    hp = 1;
  }

  // Result
  mag += ((d << 3) | (fr << 1) | hp) + 1;
  return sign ? -mag : mag;
}

static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
                           nmv_context *ctx, MvSubpelPrecision precision) {
  MV diff = kZeroMv;
  const MV_JOINT_TYPE joint_type =
      (MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf, MV_JOINTS, ACCT_STR);

  if (mv_joint_vertical(joint_type))
    diff.row = read_mv_component(r, &ctx->comps[0], precision > MV_SUBPEL_NONE,
                                 precision > MV_SUBPEL_LOW_PRECISION);

  if (mv_joint_horizontal(joint_type))
    diff.col = read_mv_component(r, &ctx->comps[1], precision > MV_SUBPEL_NONE,
                                 precision > MV_SUBPEL_LOW_PRECISION);

  mv->row = ref->row + diff.row;
  mv->col = ref->col + diff.col;
}

static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
                                                const MACROBLOCKD *xd,
                                                aom_reader *r) {
  if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return SINGLE_REFERENCE;
  if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
    const int ctx = av1_get_reference_mode_context(xd);
    const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol(
        r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR);
    return mode;  // SINGLE_REFERENCE or COMPOUND_REFERENCE
  } else {
    assert(cm->current_frame.reference_mode == SINGLE_REFERENCE);
    return cm->current_frame.reference_mode;
  }
}

#define READ_REF_BIT(pname) \
  aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR)

static COMP_REFERENCE_TYPE read_comp_reference_type(const MACROBLOCKD *xd,
                                                    aom_reader *r) {
  const int ctx = av1_get_comp_reference_type_context(xd);
  const COMP_REFERENCE_TYPE comp_ref_type =
      (COMP_REFERENCE_TYPE)aom_read_symbol(
          r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR);
  return comp_ref_type;  // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE
}

static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm,
                                         MV_REFERENCE_FRAME ref_frame[2]) {
  ref_frame[0] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_0;
  ref_frame[1] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_1;
}

// Read the referncence frame
static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                            aom_reader *r, int segment_id,
                            MV_REFERENCE_FRAME ref_frame[2]) {
  if (xd->mi[0]->skip_mode) {
    set_ref_frames_for_skip_mode(cm, ref_frame);
    return;
  }

  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
    ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
                                                   SEG_LVL_REF_FRAME);
    ref_frame[1] = NONE_FRAME;
  } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
             segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
    ref_frame[0] = LAST_FRAME;
    ref_frame[1] = NONE_FRAME;
  } else {
    const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);

    if (mode == COMPOUND_REFERENCE) {
      const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(xd, r);

      if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
        const int bit = READ_REF_BIT(uni_comp_ref_p);
        if (bit) {
          ref_frame[0] = BWDREF_FRAME;
          ref_frame[1] = ALTREF_FRAME;
        } else {
          const int bit1 = READ_REF_BIT(uni_comp_ref_p1);
          if (bit1) {
            const int bit2 = READ_REF_BIT(uni_comp_ref_p2);
            if (bit2) {
              ref_frame[0] = LAST_FRAME;
              ref_frame[1] = GOLDEN_FRAME;
            } else {
              ref_frame[0] = LAST_FRAME;
              ref_frame[1] = LAST3_FRAME;
            }
          } else {
            ref_frame[0] = LAST_FRAME;
            ref_frame[1] = LAST2_FRAME;
          }
        }

        return;
      }

      assert(comp_ref_type == BIDIR_COMP_REFERENCE);

      const int idx = 1;
      const int bit = READ_REF_BIT(comp_ref_p);
      // Decode forward references.
      if (!bit) {
        const int bit1 = READ_REF_BIT(comp_ref_p1);
        ref_frame[!idx] = bit1 ? LAST2_FRAME : LAST_FRAME;
      } else {
        const int bit2 = READ_REF_BIT(comp_ref_p2);
        ref_frame[!idx] = bit2 ? GOLDEN_FRAME : LAST3_FRAME;
      }

      // Decode backward references.
      const int bit_bwd = READ_REF_BIT(comp_bwdref_p);
      if (!bit_bwd) {
        const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1);
        ref_frame[idx] = bit1_bwd ? ALTREF2_FRAME : BWDREF_FRAME;
      } else {
        ref_frame[idx] = ALTREF_FRAME;
      }
    } else if (mode == SINGLE_REFERENCE) {
      const int bit0 = READ_REF_BIT(single_ref_p1);
      if (bit0) {
        const int bit1 = READ_REF_BIT(single_ref_p2);
        if (!bit1) {
          const int bit5 = READ_REF_BIT(single_ref_p6);
          ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME;
        } else {
          ref_frame[0] = ALTREF_FRAME;
        }
      } else {
        const int bit2 = READ_REF_BIT(single_ref_p3);
        if (bit2) {
          const int bit4 = READ_REF_BIT(single_ref_p5);
          ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME;
        } else {
          const int bit3 = READ_REF_BIT(single_ref_p4);
          ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME;
        }
      }

      ref_frame[1] = NONE_FRAME;
    } else {
      assert(0 && "Invalid prediction mode.");
    }
  }
}

static INLINE void read_mb_interp_filter(const MACROBLOCKD *const xd,
                                         InterpFilter interp_filter,
                                         bool enable_dual_filter,
                                         MB_MODE_INFO *const mbmi,
                                         aom_reader *r) {
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if (!av1_is_interp_needed(xd)) {
    set_default_interp_filters(mbmi, interp_filter);
    return;
  }

  if (interp_filter != SWITCHABLE) {
    mbmi->interp_filters = av1_broadcast_interp_filter(interp_filter);
  } else {
    InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
    for (int dir = 0; dir < 2; ++dir) {
      const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
      ref0_filter[dir] = (InterpFilter)aom_read_symbol(
          r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
      if (!enable_dual_filter) {
        ref0_filter[1] = ref0_filter[0];
        break;
      }
    }
    // The index system works as: (0, 1) -> (vertical, horizontal) filter types
    mbmi->interp_filters.as_filters.x_filter = ref0_filter[1];
    mbmi->interp_filters.as_filters.y_filter = ref0_filter[0];
  }
}

static void read_intra_block_mode_info(AV1_COMMON *const cm,
                                       MACROBLOCKD *const xd,
                                       MB_MODE_INFO *const mbmi,
                                       aom_reader *r) {
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int use_angle_delta = av1_use_angle_delta(bsize);

  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;

  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]);

  mbmi->angle_delta[PLANE_TYPE_Y] =
      use_angle_delta && av1_is_directional_mode(mbmi->mode)
          ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
          : 0;
  if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
    mbmi->uv_mode =
        read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
    if (mbmi->uv_mode == UV_CFL_PRED) {
      mbmi->cfl_alpha_idx =
          read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs);
    }
    mbmi->angle_delta[PLANE_TYPE_UV] =
        use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))
            ? read_angle_delta(r,
                               ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED])
            : 0;
  } else {
    // Avoid decoding angle_info if there is is no chroma prediction
    mbmi->uv_mode = UV_DC_PRED;
  }
  xd->cfl.store_y = store_cfl_required(cm, xd);

  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;
  if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
    read_palette_mode_info(cm, xd, r);

  read_filter_intra_mode_info(cm, xd, r);
}

static INLINE int is_mv_valid(const MV *mv) {
  return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
         mv->col < MV_UPP;
}

static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
                            PREDICTION_MODE mode,
                            MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2],
                            int_mv ref_mv[2], int_mv nearest_mv[2],
                            int_mv near_mv[2], int is_compound, int allow_hp,
                            aom_reader *r) {
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  MB_MODE_INFO *mbmi = xd->mi[0];
  BLOCK_SIZE bsize = mbmi->bsize;
  FeatureFlags *const features = &cm->features;
  if (features->cur_frame_force_integer_mv) {
    allow_hp = MV_SUBPEL_NONE;
  }
  switch (mode) {
    case NEWMV: {
      nmv_context *const nmvc = &ec_ctx->nmvc;
      read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
      break;
    }
    case NEARESTMV: {
      mv[0].as_int = nearest_mv[0].as_int;
      break;
    }
    case NEARMV: {
      mv[0].as_int = near_mv[0].as_int;
      break;
    }
    case GLOBALMV: {
      mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
                                          features->allow_high_precision_mv,
                                          bsize, xd->mi_col, xd->mi_row,
                                          features->cur_frame_force_integer_mv)
                         .as_int;
      break;
    }
    case NEW_NEWMV: {
      assert(is_compound);
      for (int i = 0; i < 2; ++i) {
        nmv_context *const nmvc = &ec_ctx->nmvc;
        read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, allow_hp);
      }
      break;
    }
    case NEAREST_NEARESTMV: {
      assert(is_compound);
      mv[0].as_int = nearest_mv[0].as_int;
      mv[1].as_int = nearest_mv[1].as_int;
      break;
    }
    case NEAR_NEARMV: {
      assert(is_compound);
      mv[0].as_int = near_mv[0].as_int;
      mv[1].as_int = near_mv[1].as_int;
      break;
    }
    case NEW_NEARESTMV: {
      nmv_context *const nmvc = &ec_ctx->nmvc;
      read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
      assert(is_compound);
      mv[1].as_int = nearest_mv[1].as_int;
      break;
    }
    case NEAREST_NEWMV: {
      nmv_context *const nmvc = &ec_ctx->nmvc;
      mv[0].as_int = nearest_mv[0].as_int;
      read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
      assert(is_compound);
      break;
    }
    case NEAR_NEWMV: {
      nmv_context *const nmvc = &ec_ctx->nmvc;
      mv[0].as_int = near_mv[0].as_int;
      read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
      assert(is_compound);
      break;
    }
    case NEW_NEARMV: {
      nmv_context *const nmvc = &ec_ctx->nmvc;
      read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
      assert(is_compound);
      mv[1].as_int = near_mv[1].as_int;
      break;
    }
    case GLOBAL_GLOBALMV: {
      assert(is_compound);
      mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
                                          features->allow_high_precision_mv,
                                          bsize, xd->mi_col, xd->mi_row,
                                          features->cur_frame_force_integer_mv)
                         .as_int;
      mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
                                          features->allow_high_precision_mv,
                                          bsize, xd->mi_col, xd->mi_row,
                                          features->cur_frame_force_integer_mv)
                         .as_int;
      break;
    }
    default: { return 0; }
  }

  int ret = is_mv_valid(&mv[0].as_mv);
  if (is_compound) {
    ret = ret && is_mv_valid(&mv[1].as_mv);
  }
  return ret;
}

static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
                               int segment_id, aom_reader *r) {
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
    const int frame = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
    if (frame < LAST_FRAME) return 0;
    return frame != INTRA_FRAME;
  }
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
    return 1;
  }
  const int ctx = av1_get_intra_inter_context(xd);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const int is_inter =
      aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR);
  return is_inter;
}

#if DEC_MISMATCH_DEBUG
static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row,
                          int mi_col, int16_t mode_ctx) {
  int_mv mv[2] = { { 0 } };
  for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref)
    mv[ref].as_mv = mbmi->mv[ref].as_mv;

  const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
  int16_t zeromv_ctx = -1;
  int16_t refmv_ctx = -1;
  if (mbmi->mode != NEWMV) {
    zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
    if (mbmi->mode != GLOBALMV)
      refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
  }

#define FRAME_TO_CHECK 11
  if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) {
    printf(
        "=== DECODER ===: "
        "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
        "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
        "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
        "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
        cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
        mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row,
        mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
        mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx,
        refmv_ctx, mbmi->tx_size);
  }
}
#endif  // DEC_MISMATCH_DEBUG

static void read_inter_block_mode_info(AV1Decoder *const pbi,
                                       DecoderCodingBlock *dcb,
                                       MB_MODE_INFO *const mbmi,
                                       aom_reader *r) {
  AV1_COMMON *const cm = &pbi->common;
  FeatureFlags *const features = &cm->features;
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int allow_hp = features->allow_high_precision_mv;
  int_mv nearestmv[2], nearmv[2];
  int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } };
  int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
  int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
  MACROBLOCKD *const xd = &dcb->xd;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  mbmi->uv_mode = UV_DC_PRED;
  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;

  av1_collect_neighbors_ref_counts(xd);

  read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
  const int is_compound = has_second_ref(mbmi);

  const MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
  av1_find_mv_refs(cm, xd, mbmi, ref_frame, dcb->ref_mv_count, xd->ref_mv_stack,
                   xd->weight, ref_mvs, /*global_mvs=*/NULL, inter_mode_ctx);

  mbmi->ref_mv_idx = 0;

  if (mbmi->skip_mode) {
    assert(is_compound);
    mbmi->mode = NEAREST_NEARESTMV;
  } else {
    if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
        segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_GLOBALMV)) {
      mbmi->mode = GLOBALMV;
    } else {
      const int mode_ctx =
          av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame);
      if (is_compound)
        mbmi->mode = read_inter_compound_mode(xd, r, mode_ctx);
      else
        mbmi->mode = read_inter_mode(ec_ctx, r, mode_ctx);
      if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV ||
          have_nearmv_in_inter_mode(mbmi->mode))
        read_drl_idx(ec_ctx, dcb, mbmi, r);
    }
  }

  if (is_compound != is_inter_compound_mode(mbmi->mode)) {
    aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
                       "Prediction mode %d invalid with ref frame %d %d",
                       mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
  }

  if (!is_compound && mbmi->mode != GLOBALMV) {
    av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[0]], &nearestmv[0],
                          &nearmv[0], features->cur_frame_force_integer_mv);
  }

  if (is_compound && mbmi->mode != GLOBAL_GLOBALMV) {
    const int ref_mv_idx = mbmi->ref_mv_idx + 1;
    nearestmv[0] = xd->ref_mv_stack[ref_frame][0].this_mv;
    nearestmv[1] = xd->ref_mv_stack[ref_frame][0].comp_mv;
    nearmv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;
    nearmv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
    lower_mv_precision(&nearestmv[0].as_mv, allow_hp,
                       features->cur_frame_force_integer_mv);
    lower_mv_precision(&nearestmv[1].as_mv, allow_hp,
                       features->cur_frame_force_integer_mv);
    lower_mv_precision(&nearmv[0].as_mv, allow_hp,
                       features->cur_frame_force_integer_mv);
    lower_mv_precision(&nearmv[1].as_mv, allow_hp,
                       features->cur_frame_force_integer_mv);
  } else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) {
    nearmv[0] =
        xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv;
  }

  int_mv ref_mv[2] = { nearestmv[0], nearestmv[1] };

  if (is_compound) {
    int ref_mv_idx = mbmi->ref_mv_idx;
    // Special case: NEAR_NEWMV and NEW_NEARMV modes use
    // 1 + mbmi->ref_mv_idx (like NEARMV) instead of
    // mbmi->ref_mv_idx (like NEWMV)
    if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV)
      ref_mv_idx = 1 + mbmi->ref_mv_idx;

    // TODO(jingning, yunqing): Do we need a lower_mv_precision() call here?
    if (compound_ref0_mode(mbmi->mode) == NEWMV)
      ref_mv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;

    if (compound_ref1_mode(mbmi->mode) == NEWMV)
      ref_mv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
  } else {
    if (mbmi->mode == NEWMV) {
      if (dcb->ref_mv_count[ref_frame] > 1)
        ref_mv[0] = xd->ref_mv_stack[ref_frame][mbmi->ref_mv_idx].this_mv;
    }
  }

  if (mbmi->skip_mode) assert(mbmi->mode == NEAREST_NEARESTMV);

  const int mv_corrupted_flag =
      !assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, mbmi->mv, ref_mv,
                 nearestmv, nearmv, is_compound, allow_hp, r);
  aom_merge_corrupted_flag(&dcb->corrupted, mv_corrupted_flag);

  mbmi->use_wedge_interintra = 0;
  if (cm->seq_params.enable_interintra_compound && !mbmi->skip_mode &&
      is_interintra_allowed(mbmi)) {
    const int bsize_group = size_group_lookup[bsize];
    const int interintra =
        aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR);
    assert(mbmi->ref_frame[1] == NONE_FRAME);
    if (interintra) {
      const INTERINTRA_MODE interintra_mode =
          read_interintra_mode(xd, r, bsize_group);
      mbmi->ref_frame[1] = INTRA_FRAME;
      mbmi->interintra_mode = interintra_mode;
      mbmi->angle_delta[PLANE_TYPE_Y] = 0;
      mbmi->angle_delta[PLANE_TYPE_UV] = 0;
      mbmi->filter_intra_mode_info.use_filter_intra = 0;
      if (av1_is_wedge_used(bsize)) {
        mbmi->use_wedge_interintra = aom_read_symbol(
            r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR);
        if (mbmi->use_wedge_interintra) {
          mbmi->interintra_wedge_index = (int8_t)aom_read_symbol(
              r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
        }
      }
    }
  }

  for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
    const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
    xd->block_ref_scale_factors[ref] = get_ref_scale_factors_const(cm, frame);
  }

  mbmi->motion_mode = SIMPLE_TRANSLATION;
  if (is_motion_variation_allowed_bsize(mbmi->bsize) && !mbmi->skip_mode &&
      !has_second_ref(mbmi)) {
    mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
  }
  av1_count_overlappable_neighbors(cm, xd);

  if (mbmi->ref_frame[1] != INTRA_FRAME)
    mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r);

  // init
  mbmi->comp_group_idx = 0;
  mbmi->compound_idx = 1;
  mbmi->interinter_comp.type = COMPOUND_AVERAGE;

  if (has_second_ref(mbmi) && !mbmi->skip_mode) {
    // Read idx to indicate current compound inter prediction mode group
    const int masked_compound_used = is_any_masked_compound_used(bsize) &&
                                     cm->seq_params.enable_masked_compound;

    if (masked_compound_used) {
      const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
      mbmi->comp_group_idx = (uint8_t)aom_read_symbol(
          r, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2, ACCT_STR);
    }

    if (mbmi->comp_group_idx == 0) {
      if (cm->seq_params.order_hint_info.enable_dist_wtd_comp) {
        const int comp_index_ctx = get_comp_index_context(cm, xd);
        mbmi->compound_idx = (uint8_t)aom_read_symbol(
            r, ec_ctx->compound_index_cdf[comp_index_ctx], 2, ACCT_STR);
        mbmi->interinter_comp.type =
            mbmi->compound_idx ? COMPOUND_AVERAGE : COMPOUND_DISTWTD;
      } else {
        // Distance-weighted compound is disabled, so always use average
        mbmi->compound_idx = 1;
        mbmi->interinter_comp.type = COMPOUND_AVERAGE;
      }
    } else {
      assert(cm->current_frame.reference_mode != SINGLE_REFERENCE &&
             is_inter_compound_mode(mbmi->mode) &&
             mbmi->motion_mode == SIMPLE_TRANSLATION);
      assert(masked_compound_used);

      // compound_diffwtd, wedge
      if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
        mbmi->interinter_comp.type =
            COMPOUND_WEDGE + aom_read_symbol(r,
                                             ec_ctx->compound_type_cdf[bsize],
                                             MASKED_COMPOUND_TYPES, ACCT_STR);
      } else {
        mbmi->interinter_comp.type = COMPOUND_DIFFWTD;
      }

      if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
        assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
        mbmi->interinter_comp.wedge_index = (int8_t)aom_read_symbol(
            r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
        mbmi->interinter_comp.wedge_sign = (int8_t)aom_read_bit(r, ACCT_STR);
      } else {
        assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
        mbmi->interinter_comp.mask_type =
            aom_read_literal(r, MAX_DIFFWTD_MASK_BITS, ACCT_STR);
      }
    }
  }

  read_mb_interp_filter(xd, features->interp_filter,
                        cm->seq_params.enable_dual_filter, mbmi, r);

#if !CONFIG_REALTIME_ONLY
  if (mbmi->motion_mode == WARPED_CAUSAL) {
    const int mi_row = xd->mi_row;
    const int mi_col = xd->mi_col;
    mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
    mbmi->wm_params.invalid = 0;

    if (mbmi->num_proj_ref > 1) {
      mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
                                             mbmi->num_proj_ref, bsize);
    }

    if (av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
                            mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
                            &mbmi->wm_params, mi_row, mi_col)) {
#if WARPED_MOTION_DEBUG
      printf("Warning: unexpected warped model from aomenc\n");
#endif
      mbmi->wm_params.invalid = 1;
    }
  }
#endif

  xd->cfl.store_y = store_cfl_required(cm, xd);

#if DEC_MISMATCH_DEBUG
  dec_dump_logs(cm, mi, mi_row, mi_col, mode_ctx);
#endif  // DEC_MISMATCH_DEBUG
}

static void read_inter_frame_mode_info(AV1Decoder *const pbi,
                                       DecoderCodingBlock *dcb, aom_reader *r) {
  AV1_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &dcb->xd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int inter_block = 1;

  mbmi->mv[0].as_int = 0;
  mbmi->mv[1].as_int = 0;
  mbmi->segment_id = read_inter_segment_id(cm, xd, 1, r);

  mbmi->skip_mode = read_skip_mode(cm, xd, mbmi->segment_id, r);

  if (mbmi->skip_mode)
    mbmi->skip_txfm = 1;
  else
    mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);

  if (!cm->seg.segid_preskip)
    mbmi->segment_id = read_inter_segment_id(cm, xd, 0, r);

  read_cdef(cm, r, xd);

  read_delta_q_params(cm, xd, r);

  if (!mbmi->skip_mode)
    inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);

  mbmi->current_qindex = xd->current_base_qindex;

  xd->above_txfm_context =
      cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);

  if (inter_block)
    read_inter_block_mode_info(pbi, dcb, mbmi, r);
  else
    read_intra_block_mode_info(cm, xd, mbmi, r);
}

static void intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col,
                                 int x_mis, int y_mis) {
  const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1);
  MV_REF *frame_mvs =
      cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1);
  x_mis = ROUND_POWER_OF_TWO(x_mis, 1);
  y_mis = ROUND_POWER_OF_TWO(y_mis, 1);

  for (int h = 0; h < y_mis; h++) {
    MV_REF *mv = frame_mvs;
    for (int w = 0; w < x_mis; w++) {
      mv->ref_frame = NONE_FRAME;
      mv++;
    }
    frame_mvs += frame_mvs_stride;
  }
}

void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb,
                        aom_reader *r, int x_mis, int y_mis) {
  AV1_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &dcb->xd;
  MB_MODE_INFO *const mi = xd->mi[0];
  mi->use_intrabc = 0;

  if (frame_is_intra_only(cm)) {
    read_intra_frame_mode_info(cm, dcb, r);
    if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
      intra_copy_frame_mvs(cm, xd->mi_row, xd->mi_col, x_mis, y_mis);
  } else {
    read_inter_frame_mode_info(pbi, dcb, r);
    if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
      av1_copy_frame_mvs(cm, mi, xd->mi_row, xd->mi_col, x_mis, y_mis);
  }
}