aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/bitstream.c
blob: 85c0183b17b3b5388251ff50156d20ab7d9a7b6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <limits.h>
#include <stdio.h>

#include "aom/aom_encoder.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif  // CONFIG_BITSTREAM_DEBUG

#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"

#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"

#define ENC_MISMATCH_DEBUG 0

static INLINE void write_uniform(aom_writer *w, int n, int v) {
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
  if (l == 0) return;
  if (v < m) {
    aom_write_literal(w, v, l - 1);
  } else {
    aom_write_literal(w, m + ((v - m) >> 1), l - 1);
    aom_write_literal(w, (v - m) & 1, 1);
  }
}

#if !CONFIG_REALTIME_ONLY
static AOM_INLINE void loop_restoration_write_sb_coeffs(
    const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
    aom_writer *const w, int plane, FRAME_COUNTS *counts);
#endif

static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
                                             const MB_MODE_INFO *mi,
                                             const MB_MODE_INFO *above_mi,
                                             const MB_MODE_INFO *left_mi,
                                             PREDICTION_MODE mode,
                                             aom_writer *w) {
  assert(!is_intrabc_block(mi));
  (void)mi;
  aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
                   INTRA_MODES);
}

static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
                                        FRAME_CONTEXT *ec_ctx,
                                        const int16_t mode_ctx) {
  const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;

  aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);

  if (mode != NEWMV) {
    const int16_t zeromv_ctx =
        (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
    aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);

    if (mode != GLOBALMV) {
      int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
      aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
    }
  }
}

static AOM_INLINE void write_drl_idx(
    FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
    const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
  assert(mbmi->ref_mv_idx < 3);

  const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
  if (new_mv) {
    int idx;
    for (idx = 0; idx < 2; ++idx) {
      if (mbmi_ext_frame->ref_mv_count > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);

        aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
                         2);
        if (mbmi->ref_mv_idx == idx) return;
      }
    }
    return;
  }

  if (have_nearmv_in_inter_mode(mbmi->mode)) {
    int idx;
    // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
    for (idx = 1; idx < 3; ++idx) {
      if (mbmi_ext_frame->ref_mv_count > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
        aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
                         ec_ctx->drl_cdf[drl_ctx], 2);
        if (mbmi->ref_mv_idx == (idx - 1)) return;
      }
    }
    return;
  }
}

static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
                                                 PREDICTION_MODE mode,
                                                 const int16_t mode_ctx) {
  assert(is_inter_compound_mode(mode));
  aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
                   xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
                   INTER_COMPOUND_MODES);
}

static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
                                           const MB_MODE_INFO *mbmi,
                                           TX_SIZE tx_size, int depth,
                                           int blk_row, int blk_col,
                                           aom_writer *w) {
  FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
  const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  if (depth == MAX_VARTX_DEPTH) {
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
    return;
  }

  const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
                                         xd->left_txfm_context + blk_row,
                                         mbmi->bsize, tx_size);
  const int txb_size_index =
      av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
  const int write_txfm_partition =
      tx_size == mbmi->inter_tx_size[txb_size_index];
  if (write_txfm_partition) {
    aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);

    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
    // TODO(yuec): set correct txfm partition update for qttx
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];

    aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);

    if (sub_txs == TX_4X4) {
      txfm_partition_update(xd->above_txfm_context + blk_col,
                            xd->left_txfm_context + blk_row, sub_txs, tx_size);
      return;
    }

    assert(bsw > 0 && bsh > 0);
    for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
      const int offsetr = blk_row + row;
      for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
        const int offsetc = blk_col + col;
        write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
      }
    }
  }
}

static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
                                              aom_writer *w) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  if (block_signals_txsize(bsize)) {
    const TX_SIZE tx_size = mbmi->tx_size;
    const int tx_size_ctx = get_tx_size_context(xd);
    const int depth = tx_size_to_depth(tx_size, bsize);
    const int max_depths = bsize_to_max_depth(bsize);
    const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);

    assert(depth >= 0 && depth <= max_depths);
    assert(!is_inter_block(mbmi));
    assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));

    aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
                     max_depths + 1);
  }
}

static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
                      int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
    return 1;
  } else {
    const int skip_txfm = mi->skip_txfm;
    const int ctx = av1_get_skip_txfm_context(xd);
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
    return skip_txfm;
  }
}

static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
                           int segment_id, const MB_MODE_INFO *mi,
                           aom_writer *w) {
  if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
    return 0;
  }
  const int skip_mode = mi->skip_mode;
  if (!is_comp_ref_allowed(mi->bsize)) {
    assert(!skip_mode);
    return 0;
  }
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
      segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
    // These features imply single-reference mode, while skip mode implies
    // compound reference. Hence, the two are mutually exclusive.
    // In other words, skip_mode is implicitly 0 here.
    assert(!skip_mode);
    return 0;
  }
  const int ctx = av1_get_skip_mode_context(xd);
  aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
  return skip_mode;
}

static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
                                      const MACROBLOCKD *xd, int segment_id,
                                      aom_writer *w, const int is_inter) {
  if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
    if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
      assert(is_inter);
      return;
    }
    const int ctx = av1_get_intra_inter_context(xd);
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
  }
}

static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                         const MB_MODE_INFO *mbmi,
                                         aom_writer *w) {
  MOTION_MODE last_motion_mode_allowed =
      cm->features.switchable_motion_mode
          ? motion_mode_allowed(cm->global_motion, xd, mbmi,
                                cm->features.allow_warped_motion)
          : SIMPLE_TRANSLATION;
  assert(mbmi->motion_mode <= last_motion_mode_allowed);
  switch (last_motion_mode_allowed) {
    case SIMPLE_TRANSLATION: break;
    case OBMC_CAUSAL:
      aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
                       xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
      break;
    default:
      aom_write_symbol(w, mbmi->motion_mode,
                       xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
                       MOTION_MODES);
  }
}

static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
                                          int delta_qindex, aom_writer *w) {
  int sign = delta_qindex < 0;
  int abs = sign ? -delta_qindex : delta_qindex;
  int rem_bits, thr;
  int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
                   DELTA_Q_PROBS + 1);

  if (!smallval) {
    rem_bits = get_msb(abs - 1);
    thr = (1 << rem_bits) + 1;
    aom_write_literal(w, rem_bits - 1, 3);
    aom_write_literal(w, abs - thr, rem_bits);
  }
  if (abs > 0) {
    aom_write_bit(w, sign);
  }
}

static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
                                           const MACROBLOCKD *xd, int lf_id,
                                           int delta_lflevel,
                                           int delta_lf_multi, aom_writer *w) {
  int sign = delta_lflevel < 0;
  int abs = sign ? -delta_lflevel : delta_lflevel;
  int rem_bits, thr;
  int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  (void)cm;

  if (delta_lf_multi) {
    assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
                                                         : FRAME_LF_COUNT - 2));
    aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
                     ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
  } else {
    aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
                     DELTA_LF_PROBS + 1);
  }

  if (!smallval) {
    rem_bits = get_msb(abs - 1);
    thr = (1 << rem_bits) + 1;
    aom_write_literal(w, rem_bits - 1, 3);
    aom_write_literal(w, abs - thr, rem_bits);
  }
  if (abs > 0) {
    aom_write_bit(w, sign);
  }
}

static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
                                       int n, int num, MapCdf map_pb_cdf) {
  const TokenExtra *p = *tp;
  const int palette_size_idx = n - PALETTE_MIN_SIZE;
  write_uniform(w, n, p->token);  // The first color index.
  ++p;
  --num;
  for (int i = 0; i < num; ++i) {
    assert((p->color_ctx >= 0) &&
           (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
    aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
    aom_write_symbol(w, p->token, color_map_cdf, n);
    ++p;
  }
  *tp = p;
}

static AOM_INLINE void pack_txb_tokens(
    aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
    const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
    int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
    int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const TX_SIZE plane_tx_size =
      plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
                                    pd->subsampling_y)
            : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
                                                         blk_col)];

  if (tx_size == plane_tx_size || plane) {
    av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
#if CONFIG_RD_DEBUG
    TOKEN_STATS tmp_token_stats;
    init_token_stats(&tmp_token_stats);
    token_stats->cost += tmp_token_stats.cost;
#endif
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];
    const int step = bsh * bsw;
    const int row_end =
        AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
    const int col_end =
        AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);

    assert(bsw > 0 && bsh > 0);

    for (int r = 0; r < row_end; r += bsh) {
      const int offsetr = blk_row + r;
      for (int c = 0; c < col_end; c += bsw) {
        const int offsetc = blk_col + c;
        pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
                        bit_depth, block, offsetr, offsetc, sub_txs,
                        token_stats);
        block += step;
      }
    }
  }
}

static INLINE void set_spatial_segment_id(
    const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
    BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) {
  const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
  const int bw = mi_size_wide[bsize];
  const int bh = mi_size_high[bsize];
  const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
  const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);

  for (int y = 0; y < ymis; ++y) {
    for (int x = 0; x < xmis; ++x) {
      segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id;
    }
  }
}

int av1_neg_interleave(int x, int ref, int max) {
  assert(x < max);
  const int diff = x - ref;
  if (!ref) return x;
  if (ref >= (max - 1)) return -x + max - 1;
  if (2 * ref < max) {
    if (abs(diff) <= ref) {
      if (diff > 0)
        return (diff << 1) - 1;
      else
        return ((-diff) << 1);
    }
    return x;
  } else {
    if (abs(diff) < (max - ref)) {
      if (diff > 0)
        return (diff << 1) - 1;
      else
        return ((-diff) << 1);
    }
    return (max - x) - 1;
  }
}

static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
                                        const MB_MODE_INFO *const mbmi,
                                        aom_writer *w,
                                        const struct segmentation *seg,
                                        struct segmentation_probs *segp,
                                        int skip_txfm) {
  if (!seg->enabled || !seg->update_map) return;

  AV1_COMMON *const cm = &cpi->common;
  int cdf_num;
  const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;

  if (skip_txfm) {
    // Still need to transmit tx size for intra blocks even if skip_txfm is
    // true. Changing segment_id may make the tx size become invalid, e.g
    // changing from lossless to lossy.
    assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);

    set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
                           mi_row, mi_col, pred);
    set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
                           mi_row, mi_col, pred);
    /* mbmi is read only but we need to update segment_id */
    ((MB_MODE_INFO *)mbmi)->segment_id = pred;
    return;
  }

  const int coded_id =
      av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
  aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
  aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
  set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
                         mi_row, mi_col, mbmi->segment_id);
}

#define WRITE_REF_BIT(bname, pname) \
  aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)

// This function encodes the reference frame
static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
                                        const MACROBLOCKD *xd, aom_writer *w) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_compound = has_second_ref(mbmi);
  const int segment_id = mbmi->segment_id;

  // If segment level coding of this signal is disabled...
  // or the segment allows multiple reference frame options
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
    assert(!is_compound);
    assert(mbmi->ref_frame[0] ==
           get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
  } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
             segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
    assert(!is_compound);
    assert(mbmi->ref_frame[0] == LAST_FRAME);
  } else {
    // does the feature use compound prediction or not
    // (if not specified at the frame/segment level)
    if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
      if (is_comp_ref_allowed(mbmi->bsize))
        aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
    } else {
      assert((!is_compound) ==
             (cm->current_frame.reference_mode == SINGLE_REFERENCE));
    }

    if (is_compound) {
      const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
                                                    ? UNIDIR_COMP_REFERENCE
                                                    : BIDIR_COMP_REFERENCE;
      aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
                       2);

      if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
        const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
        WRITE_REF_BIT(bit, uni_comp_ref_p);

        if (!bit) {
          assert(mbmi->ref_frame[0] == LAST_FRAME);
          const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
                           mbmi->ref_frame[1] == GOLDEN_FRAME;
          WRITE_REF_BIT(bit1, uni_comp_ref_p1);
          if (bit1) {
            const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
            WRITE_REF_BIT(bit2, uni_comp_ref_p2);
          }
        } else {
          assert(mbmi->ref_frame[1] == ALTREF_FRAME);
        }

        return;
      }

      assert(comp_ref_type == BIDIR_COMP_REFERENCE);

      const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
                       mbmi->ref_frame[0] == LAST3_FRAME);
      WRITE_REF_BIT(bit, comp_ref_p);

      if (!bit) {
        const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
        WRITE_REF_BIT(bit1, comp_ref_p1);
      } else {
        const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
        WRITE_REF_BIT(bit2, comp_ref_p2);
      }

      const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
      WRITE_REF_BIT(bit_bwd, comp_bwdref_p);

      if (!bit_bwd) {
        WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
      }

    } else {
      const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
                        mbmi->ref_frame[0] >= BWDREF_FRAME);
      WRITE_REF_BIT(bit0, single_ref_p1);

      if (bit0) {
        const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
        WRITE_REF_BIT(bit1, single_ref_p2);

        if (!bit1) {
          WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
        }
      } else {
        const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
                          mbmi->ref_frame[0] == GOLDEN_FRAME);
        WRITE_REF_BIT(bit2, single_ref_p3);

        if (!bit2) {
          const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
          WRITE_REF_BIT(bit3, single_ref_p4);
        } else {
          const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
          WRITE_REF_BIT(bit4, single_ref_p5);
        }
      }
    }
  }
}

static AOM_INLINE void write_filter_intra_mode_info(
    const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
    aom_writer *w) {
  if (av1_filter_intra_allowed(cm, mbmi)) {
    aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
                     xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
    if (mbmi->filter_intra_mode_info.use_filter_intra) {
      const FILTER_INTRA_MODE mode =
          mbmi->filter_intra_mode_info.filter_intra_mode;
      aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
                       FILTER_INTRA_MODES);
    }
  }
}

static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
                                         aom_cdf_prob *cdf) {
  aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
                   2 * MAX_ANGLE_DELTA + 1);
}

static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
                                              ThreadData *td, aom_writer *w) {
  const MACROBLOCKD *xd = &td->mb.e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if (!av1_is_interp_needed(xd)) {
    int_interpfilters filters = av1_broadcast_interp_filter(
        av1_unswitchable_filter(cm->features.interp_filter));
    assert(mbmi->interp_filters.as_int == filters.as_int);
    (void)filters;
    return;
  }
  if (cm->features.interp_filter == SWITCHABLE) {
    int dir;
    for (dir = 0; dir < 2; ++dir) {
      const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
      InterpFilter filter =
          av1_extract_interp_filter(mbmi->interp_filters, dir);
      aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
                       SWITCHABLE_FILTERS);
      ++td->interp_filter_selected[filter];
      if (cm->seq_params->enable_dual_filter == 0) return;
    }
  }
}

// Transmit color values with delta encoding. Write the first value as
// literal, and the deltas between each value and the previous one. "min_val" is
// the smallest possible value of the deltas.
static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
                                                   int bit_depth, int min_val,
                                                   aom_writer *w) {
  if (num <= 0) return;
  assert(colors[0] < (1 << bit_depth));
  aom_write_literal(w, colors[0], bit_depth);
  if (num == 1) return;
  int max_delta = 0;
  int deltas[PALETTE_MAX_SIZE];
  memset(deltas, 0, sizeof(deltas));
  for (int i = 1; i < num; ++i) {
    assert(colors[i] < (1 << bit_depth));
    const int delta = colors[i] - colors[i - 1];
    deltas[i - 1] = delta;
    assert(delta >= min_val);
    if (delta > max_delta) max_delta = delta;
  }
  const int min_bits = bit_depth - 3;
  int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
  assert(bits <= bit_depth);
  int range = (1 << bit_depth) - colors[0] - min_val;
  aom_write_literal(w, bits - min_bits, 2);
  for (int i = 0; i < num - 1; ++i) {
    aom_write_literal(w, deltas[i] - min_val, bits);
    range -= deltas[i];
    bits = AOMMIN(bits, av1_ceil_log2(range));
  }
}

// Transmit luma palette color values. First signal if each color in the color
// cache is used. Those colors that are not in the cache are transmitted with
// delta encoding.
static AOM_INLINE void write_palette_colors_y(
    const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
    int bit_depth, aom_writer *w) {
  const int n = pmi->palette_size[0];
  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
  const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
  int out_cache_colors[PALETTE_MAX_SIZE];
  uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
  const int n_out_cache =
      av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
                            cache_color_found, out_cache_colors);
  int n_in_cache = 0;
  for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
    const int found = cache_color_found[i];
    aom_write_bit(w, found);
    n_in_cache += found;
  }
  assert(n_in_cache + n_out_cache == n);
  delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
}

// Write chroma palette color values. U channel is handled similarly to the luma
// channel. For v channel, either use delta encoding or transmit raw values
// directly, whichever costs less.
static AOM_INLINE void write_palette_colors_uv(
    const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
    int bit_depth, aom_writer *w) {
  const int n = pmi->palette_size[1];
  const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
  const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
  // U channel colors.
  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
  const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
  int out_cache_colors[PALETTE_MAX_SIZE];
  uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
  const int n_out_cache = av1_index_color_cache(
      color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
  int n_in_cache = 0;
  for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
    const int found = cache_color_found[i];
    aom_write_bit(w, found);
    n_in_cache += found;
  }
  delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);

  // V channel colors. Don't use color cache as the colors are not sorted.
  const int max_val = 1 << bit_depth;
  int zero_count = 0, min_bits_v = 0;
  int bits_v =
      av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
  const int rate_using_delta =
      2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
  const int rate_using_raw = bit_depth * n;
  if (rate_using_delta < rate_using_raw) {  // delta encoding
    assert(colors_v[0] < (1 << bit_depth));
    aom_write_bit(w, 1);
    aom_write_literal(w, bits_v - min_bits_v, 2);
    aom_write_literal(w, colors_v[0], bit_depth);
    for (int i = 1; i < n; ++i) {
      assert(colors_v[i] < (1 << bit_depth));
      if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit.
        aom_write_literal(w, 0, bits_v);
        continue;
      }
      const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
      const int sign_bit = colors_v[i] < colors_v[i - 1];
      if (delta <= max_val - delta) {
        aom_write_literal(w, delta, bits_v);
        aom_write_bit(w, sign_bit);
      } else {
        aom_write_literal(w, max_val - delta, bits_v);
        aom_write_bit(w, !sign_bit);
      }
    }
  } else {  // Transmit raw values.
    aom_write_bit(w, 0);
    for (int i = 0; i < n; ++i) {
      assert(colors_v[i] < (1 << bit_depth));
      aom_write_literal(w, colors_v[i], bit_depth);
    }
  }
}

static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
                                               const MACROBLOCKD *xd,
                                               const MB_MODE_INFO *const mbmi,
                                               aom_writer *w) {
  const int num_planes = av1_num_planes(cm);
  const BLOCK_SIZE bsize = mbmi->bsize;
  assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
  const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);

  if (mbmi->mode == DC_PRED) {
    const int n = pmi->palette_size[0];
    const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
    aom_write_symbol(
        w, n > 0,
        xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
    if (n > 0) {
      aom_write_symbol(w, n - PALETTE_MIN_SIZE,
                       xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
                       PALETTE_SIZES);
      write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
    }
  }

  const int uv_dc_pred =
      num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
  if (uv_dc_pred) {
    const int n = pmi->palette_size[1];
    const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
    aom_write_symbol(w, n > 0,
                     xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
    if (n > 0) {
      aom_write_symbol(w, n - PALETTE_MIN_SIZE,
                       xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
                       PALETTE_SIZES);
      write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
    }
  }
}

void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
                       TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  const FeatureFlags *const features = &cm->features;
  const int is_inter = is_inter_block(mbmi);
  if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
      ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
       (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
      !mbmi->skip_txfm &&
      !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
    FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
    const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
    const TxSetType tx_set_type = av1_get_ext_tx_set_type(
        tx_size, is_inter, features->reduced_tx_set_used);
    const int eset =
        get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
    // eset == 0 should correspond to a set with only DCT_DCT and there
    // is no need to send the tx_type
    assert(eset > 0);
    assert(av1_ext_tx_used[tx_set_type][tx_type]);
    if (is_inter) {
      aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
                       ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
                       av1_num_ext_tx_set[tx_set_type]);
    } else {
      PREDICTION_MODE intra_dir;
      if (mbmi->filter_intra_mode_info.use_filter_intra)
        intra_dir =
            fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
      else
        intra_dir = mbmi->mode;
      aom_write_symbol(
          w, av1_ext_tx_ind[tx_set_type][tx_type],
          ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
          av1_num_ext_tx_set[tx_set_type]);
    }
  }
}

static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
                                                BLOCK_SIZE bsize,
                                                PREDICTION_MODE mode,
                                                aom_writer *w) {
  aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
                   INTRA_MODES);
}

static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
                                           UV_PREDICTION_MODE uv_mode,
                                           PREDICTION_MODE y_mode,
                                           CFL_ALLOWED_TYPE cfl_allowed,
                                           aom_writer *w) {
  aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
                   UV_INTRA_MODES - !cfl_allowed);
}

static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
                                        uint8_t idx, int8_t joint_sign,
                                        aom_writer *w) {
  aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
  // Magnitudes are only signaled for nonzero codes.
  if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
    aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
    aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
  }
  if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
    aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
    aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
  }
}

static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
                                  aom_writer *w, int skip) {
  if (cm->features.coded_lossless || cm->features.allow_intrabc) return;

  // At the start of a superblock, mark that we haven't yet written CDEF
  // strengths for any of the CDEF units contained in this superblock.
  const int sb_mask = (cm->seq_params->mib_size - 1);
  const int mi_row_in_sb = (xd->mi_row & sb_mask);
  const int mi_col_in_sb = (xd->mi_col & sb_mask);
  if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
    xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
        xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
  }

  // CDEF unit size is 64x64 irrespective of the superblock size.
  const int cdef_size = 1 << (6 - MI_SIZE_LOG2);

  // Find index of this CDEF unit in this superblock.
  const int index_mask = cdef_size;
  const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
  const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
  const int index = (cm->seq_params->sb_size == BLOCK_128X128)
                        ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
                        : 0;

  // Write CDEF strength to the first non-skip coding block in this CDEF unit.
  if (!xd->cdef_transmitted[index] && !skip) {
    // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
    // of the 1st block in this CDEF unit.
    const int first_block_mask = ~(cdef_size - 1);
    const CommonModeInfoParams *const mi_params = &cm->mi_params;
    const int grid_idx =
        get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
                        xd->mi_col & first_block_mask);
    const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
    aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
    xd->cdef_transmitted[index] = true;
  }
}

static AOM_INLINE void write_inter_segment_id(
    AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
    const struct segmentation *const seg, struct segmentation_probs *const segp,
    int skip, int preskip) {
  MB_MODE_INFO *const mbmi = xd->mi[0];
  AV1_COMMON *const cm = &cpi->common;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;

  if (seg->update_map) {
    if (preskip) {
      if (!seg->segid_preskip) return;
    } else {
      if (seg->segid_preskip) return;
      if (skip) {
        write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
        if (seg->temporal_update) mbmi->seg_id_predicted = 0;
        return;
      }
    }
    if (seg->temporal_update) {
      const int pred_flag = mbmi->seg_id_predicted;
      aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
      aom_write_symbol(w, pred_flag, pred_cdf, 2);
      if (!pred_flag) {
        write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
      }
      if (pred_flag) {
        set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
                               mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
      }
    } else {
      write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
    }
  }
}

// If delta q is present, writes delta_q index.
// Also writes delta_q loop filter levels, if present.
static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
                                            MACROBLOCKD *const xd, int skip,
                                            aom_writer *w) {
  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;

  if (delta_q_info->delta_q_present_flag) {
    const MB_MODE_INFO *const mbmi = xd->mi[0];
    const BLOCK_SIZE bsize = mbmi->bsize;
    const int super_block_upper_left =
        ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
        ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);

    if ((bsize != cm->seq_params->sb_size || skip == 0) &&
        super_block_upper_left) {
      assert(mbmi->current_qindex > 0);
      const int reduced_delta_qindex =
          (mbmi->current_qindex - xd->current_base_qindex) /
          delta_q_info->delta_q_res;
      write_delta_qindex(xd, reduced_delta_qindex, w);
      xd->current_base_qindex = mbmi->current_qindex;
      if (delta_q_info->delta_lf_present_flag) {
        if (delta_q_info->delta_lf_multi) {
          const int frame_lf_count =
              av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
          for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
            int reduced_delta_lflevel =
                (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
                delta_q_info->delta_lf_res;
            write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
            xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
          }
        } else {
          int reduced_delta_lflevel =
              (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
              delta_q_info->delta_lf_res;
          write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
          xd->delta_lf_from_base = mbmi->delta_lf_from_base;
        }
      }
    }
  }
}

static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
                                                    MACROBLOCKD *const xd,
                                                    int is_keyframe,
                                                    aom_writer *w) {
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const PREDICTION_MODE mode = mbmi->mode;
  const BLOCK_SIZE bsize = mbmi->bsize;

  // Y mode.
  if (is_keyframe) {
    const MB_MODE_INFO *const above_mi = xd->above_mbmi;
    const MB_MODE_INFO *const left_mi = xd->left_mbmi;
    write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
  } else {
    write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
  }

  // Y angle delta.
  const int use_angle_delta = av1_use_angle_delta(bsize);
  if (use_angle_delta && av1_is_directional_mode(mode)) {
    write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
                      ec_ctx->angle_delta_cdf[mode - V_PRED]);
  }

  // UV mode and UV angle delta.
  if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
    const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
    write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
    if (uv_mode == UV_CFL_PRED)
      write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
    if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
      write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
                        ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
    }
  }

  // Palette.
  if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
    write_palette_mode_info(cm, xd, mbmi, w);
  }

  // Filter intra.
  write_filter_intra_mode_info(cm, xd, mbmi, w);
}

static INLINE int16_t mode_context_analyzer(
    const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
  if (rf[1] <= INTRA_FRAME) return mode_context;

  const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
  const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;

  const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
      newmv_ctx, COMP_NEWMV_CTXS - 1)];
  return comp_ctx;
}

static INLINE int_mv get_ref_mv_from_stack(
    int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
    const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
  const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
  const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;

  if (ref_frame[1] > INTRA_FRAME) {
    assert(ref_idx == 0 || ref_idx == 1);
    return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
                   : curr_ref_mv_stack[ref_mv_idx].this_mv;
  }

  assert(ref_idx == 0);
  return ref_mv_idx < mbmi_ext_frame->ref_mv_count
             ? curr_ref_mv_stack[ref_mv_idx].this_mv
             : mbmi_ext_frame->global_mvs[ref_frame_type];
}

static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  int ref_mv_idx = mbmi->ref_mv_idx;
  if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
    assert(has_second_ref(mbmi));
    ref_mv_idx += 1;
  }
  return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
                               x->mbmi_ext_frame);
}

static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
                                           aom_writer *w) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const struct segmentation *const seg = &cm->seg;
  struct segmentation_probs *const segp = &ec_ctx->seg;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
  const PREDICTION_MODE mode = mbmi->mode;
  const int segment_id = mbmi->segment_id;
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int allow_hp = cm->features.allow_high_precision_mv;
  const int is_inter = is_inter_block(mbmi);
  const int is_compound = has_second_ref(mbmi);
  int ref;

  write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);

  write_skip_mode(cm, xd, segment_id, mbmi, w);

  assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
  const int skip =
      mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);

  write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);

  write_cdef(cm, xd, w, skip);

  write_delta_q_params(cm, xd, skip, w);

  if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);

  if (mbmi->skip_mode) return;

  if (!is_inter) {
    write_intra_prediction_modes(cm, xd, 0, w);
  } else {
    int16_t mode_ctx;

    av1_collect_neighbors_ref_counts(xd);

    write_ref_frames(cm, xd, w);

    mode_ctx =
        mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);

    // If segment skip is not enabled code the mode.
    if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
      if (is_inter_compound_mode(mode))
        write_inter_compound_mode(xd, w, mode, mode_ctx);
      else if (is_inter_singleref_mode(mode))
        write_inter_mode(w, mode, ec_ctx, mode_ctx);

      if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
        write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
      else
        assert(mbmi->ref_mv_idx == 0);
    }

    if (mode == NEWMV || mode == NEW_NEWMV) {
      for (ref = 0; ref < 1 + is_compound; ++ref) {
        nmv_context *nmvc = &ec_ctx->nmvc;
        const int_mv ref_mv = get_ref_mv(x, ref);
        av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
                      allow_hp);
      }
    } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
      nmv_context *nmvc = &ec_ctx->nmvc;
      const int_mv ref_mv = get_ref_mv(x, 1);
      av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
                    allow_hp);
    } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
      nmv_context *nmvc = &ec_ctx->nmvc;
      const int_mv ref_mv = get_ref_mv(x, 0);
      av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
                    allow_hp);
    }

    if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
        cpi->common.seq_params->enable_interintra_compound &&
        is_interintra_allowed(mbmi)) {
      const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
      const int bsize_group = size_group_lookup[bsize];
      aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
      if (interintra) {
        aom_write_symbol(w, mbmi->interintra_mode,
                         ec_ctx->interintra_mode_cdf[bsize_group],
                         INTERINTRA_MODES);
        if (av1_is_wedge_used(bsize)) {
          aom_write_symbol(w, mbmi->use_wedge_interintra,
                           ec_ctx->wedge_interintra_cdf[bsize], 2);
          if (mbmi->use_wedge_interintra) {
            aom_write_symbol(w, mbmi->interintra_wedge_index,
                             ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
          }
        }
      }
    }

    if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);

    // First write idx to indicate current compound inter prediction mode group
    // Group A (0): dist_wtd_comp, compound_average
    // Group B (1): interintra, compound_diffwtd, wedge
    if (has_second_ref(mbmi)) {
      const int masked_compound_used = is_any_masked_compound_used(bsize) &&
                                       cm->seq_params->enable_masked_compound;

      if (masked_compound_used) {
        const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
        aom_write_symbol(w, mbmi->comp_group_idx,
                         ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
      } else {
        assert(mbmi->comp_group_idx == 0);
      }

      if (mbmi->comp_group_idx == 0) {
        if (mbmi->compound_idx)
          assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);

        if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
          const int comp_index_ctx = get_comp_index_context(cm, xd);
          aom_write_symbol(w, mbmi->compound_idx,
                           ec_ctx->compound_index_cdf[comp_index_ctx], 2);
        } else {
          assert(mbmi->compound_idx == 1);
        }
      } else {
        assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
               is_inter_compound_mode(mbmi->mode) &&
               mbmi->motion_mode == SIMPLE_TRANSLATION);
        assert(masked_compound_used);
        // compound_diffwtd, wedge
        assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
               mbmi->interinter_comp.type == COMPOUND_DIFFWTD);

        if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
          aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
                           ec_ctx->compound_type_cdf[bsize],
                           MASKED_COMPOUND_TYPES);

        if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
          assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
          aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
                           ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
          aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
        } else {
          assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
          aom_write_literal(w, mbmi->interinter_comp.mask_type,
                            MAX_DIFFWTD_MASK_BITS);
        }
      }
    }
    write_mb_interp_filter(cm, td, w);
  }
}

static AOM_INLINE void write_intrabc_info(
    MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
    aom_writer *w) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  int use_intrabc = is_intrabc_block(mbmi);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
  if (use_intrabc) {
    assert(mbmi->mode == DC_PRED);
    assert(mbmi->uv_mode == UV_DC_PRED);
    assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
    int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
    av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
  }
}

static AOM_INLINE void write_mb_modes_kf(
    AV1_COMP *cpi, MACROBLOCKD *xd,
    const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
  AV1_COMMON *const cm = &cpi->common;
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
  const struct segmentation *const seg = &cm->seg;
  struct segmentation_probs *const segp = &ec_ctx->seg;
  const MB_MODE_INFO *const mbmi = xd->mi[0];

  if (seg->segid_preskip && seg->update_map)
    write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);

  const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);

  if (!seg->segid_preskip && seg->update_map)
    write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);

  write_cdef(cm, xd, w, skip);

  write_delta_q_params(cm, xd, skip, w);

  if (av1_allow_intrabc(cm)) {
    write_intrabc_info(xd, mbmi_ext_frame, w);
    if (is_intrabc_block(mbmi)) return;
  }

  write_intra_prediction_modes(cm, xd, 1, w);
}

#if CONFIG_RD_DEBUG
static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
  printf("\nmi->mi_row == %d\n", mi->mi_row);
  printf("&& mi->mi_col == %d\n", mi->mi_col);
  printf("&& mi->bsize == %d\n", mi->bsize);
  printf("&& mi->tx_size == %d\n", mi->tx_size);
  printf("&& mi->mode == %d\n", mi->mode);
}

static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
                                   int plane) {
  if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
    printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
           plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
    return 1;
  }
  return 0;
}
#endif

#if ENC_MISMATCH_DEBUG
static AOM_INLINE void enc_dump_logs(
    const AV1_COMMON *const cm,
    const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
  const MB_MODE_INFO *const mbmi = *(
      cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
  const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
      mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
                                                 cm->mi_params.mi_alloc_bsize,
                                                 mbmi_ext_info->stride);
  if (is_inter_block(mbmi)) {
#define FRAME_TO_CHECK 11
    if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
        cm->show_frame == 1) {
      const BLOCK_SIZE bsize = mbmi->bsize;

      int_mv mv[2] = { 0 };
      const int is_comp_ref = has_second_ref(mbmi);

      for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
        mv[ref].as_mv = mbmi->mv[ref].as_mv;

      if (!is_comp_ref) {
        mv[1].as_int = 0;
      }

      const int16_t mode_ctx =
          is_comp_ref ? 0
                      : mode_context_analyzer(mbmi_ext_frame->mode_context,
                                              mbmi->ref_frame);

      const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
      int16_t zeromv_ctx = -1;
      int16_t refmv_ctx = -1;

      if (mbmi->mode != NEWMV) {
        zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
        if (mbmi->mode != GLOBALMV)
          refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
      }

      printf(
          "=== ENCODER ===: "
          "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
          "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
          "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
          "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
          cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
          mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
          mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
          mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
          zeromv_ctx, refmv_ctx, mbmi->tx_size);
    }
  }
}
#endif  // ENC_MISMATCH_DEBUG

static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
                                    aom_writer *w) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &td->mb.e_mbd;
  MB_MODE_INFO *m = xd->mi[0];

  if (frame_is_intra_only(cm)) {
    write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
  } else {
    // has_subpel_mv_component needs the ref frame buffers set up to look
    // up if they are scaled. has_subpel_mv_component is in turn needed by
    // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
    set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);

#if ENC_MISMATCH_DEBUG
    enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
#endif  // ENC_MISMATCH_DEBUG

    pack_inter_mode_mvs(cpi, td, w);
  }
}

static AOM_INLINE void write_inter_txb_coeff(
    AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
    aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
    TOKEN_STATS *token_stats, const int row, const int col, int *block,
    const int plane) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const BLOCK_SIZE bsize = mbmi->bsize;
  assert(bsize < BLOCK_SIZES_ALL);
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
  assert(plane_bsize < BLOCK_SIZES_ALL);
  const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
  const int step =
      tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
  const int bkw = tx_size_wide_unit[max_tx_size];
  const int bkh = tx_size_high_unit[max_tx_size];
  const BLOCK_SIZE max_unit_bsize =
      get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
  const int num_4x4_w = mi_size_wide[plane_bsize];
  const int num_4x4_h = mi_size_high[plane_bsize];
  const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
  const int mu_blocks_high = mi_size_high[max_unit_bsize];
  const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
  const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
  for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
    for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
      pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
                      cm->seq_params->bit_depth, *block, blk_row, blk_col,
                      max_tx_size, token_stats);
      *block += step;
    }
  }
}

static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
                                      aom_writer *w, const TokenExtra **tok,
                                      const TokenExtra *const tok_end) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;

  assert(!mbmi->skip_txfm);

  const int is_inter = is_inter_block(mbmi);
  if (!is_inter) {
    av1_write_intra_coeffs_mb(cm, x, w, bsize);
  } else {
    int block[MAX_MB_PLANE] = { 0 };
    assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
                                         xd->plane[0].subsampling_y));
    const int num_4x4_w = mi_size_wide[bsize];
    const int num_4x4_h = mi_size_high[bsize];
    TOKEN_STATS token_stats;
    init_token_stats(&token_stats);

    const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
    assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
                                                  xd->plane[0].subsampling_x,
                                                  xd->plane[0].subsampling_y));
    int mu_blocks_wide = mi_size_wide[max_unit_bsize];
    int mu_blocks_high = mi_size_high[max_unit_bsize];
    mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
    mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);

    const int num_planes = av1_num_planes(cm);
    for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
      for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
        for (int plane = 0; plane < num_planes; ++plane) {
          if (plane && !xd->is_chroma_ref) break;
          write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
                                col, &block[plane], plane);
        }
      }
    }
#if CONFIG_RD_DEBUG
    for (int plane = 0; plane < num_planes; ++plane) {
      if (mbmi->bsize >= BLOCK_8X8 &&
          rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
        dump_mode_info(mbmi);
        assert(0);
      }
    }
#endif  // CONFIG_RD_DEBUG
  }
}

static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
                                     const TileInfo *const tile, aom_writer *w,
                                     const TokenExtra **tok,
                                     const TokenExtra *const tok_end,
                                     int mi_row, int mi_col) {
  const AV1_COMMON *cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MACROBLOCKD *xd = &td->mb.e_mbd;
  FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
  const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
  xd->mi = mi_params->mi_grid_base + grid_idx;
  td->mb.mbmi_ext_frame =
      cpi->mbmi_ext_info.frame_base +
      get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
                     cpi->mbmi_ext_info.stride);
  xd->tx_type_map = mi_params->tx_type_map + grid_idx;
  xd->tx_type_map_stride = mi_params->mi_stride;

  const MB_MODE_INFO *mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;
  assert(bsize <= cm->seq_params->sb_size ||
         (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));

  const int bh = mi_size_high[bsize];
  const int bw = mi_size_wide[bsize];
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
                 mi_params->mi_cols);

  xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);

  write_mbmi_b(cpi, td, w);

  for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
    const uint8_t palette_size_plane =
        mbmi->palette_mode_info.palette_size[plane];
    assert(!mbmi->skip_mode || !palette_size_plane);
    if (palette_size_plane > 0) {
      assert(mbmi->use_intrabc == 0);
      assert(av1_allow_palette(cm->features.allow_screen_content_tools,
                               mbmi->bsize));
      assert(!plane || xd->is_chroma_ref);
      int rows, cols;
      av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
                               &cols);
      assert(*tok < tok_end);
      MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
                                : tile_ctx->palette_y_color_index_cdf;
      pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
    }
  }

  const int is_inter_tx = is_inter_block(mbmi);
  const int skip_txfm = mbmi->skip_txfm;
  const int segment_id = mbmi->segment_id;
  if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
      !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
    if (is_inter_tx) {  // This implies skip flag is 0.
      const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
      const int txbh = tx_size_high_unit[max_tx_size];
      const int txbw = tx_size_wide_unit[max_tx_size];
      const int width = mi_size_wide[bsize];
      const int height = mi_size_high[bsize];
      for (int idy = 0; idy < height; idy += txbh) {
        for (int idx = 0; idx < width; idx += txbw) {
          write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
        }
      }
    } else {
      write_selected_tx_size(xd, w);
      set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
    }
  } else {
    set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
                  skip_txfm && is_inter_tx, xd);
  }

  if (!mbmi->skip_txfm) {
    int start = aom_tell_size(w);

    write_tokens_b(cpi, &td->mb, w, tok, tok_end);

    const int end = aom_tell_size(w);
    td->coefficient_size += end - start;
  }
}

static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
                                       const MACROBLOCKD *const xd, int hbs,
                                       int mi_row, int mi_col, PARTITION_TYPE p,
                                       BLOCK_SIZE bsize, aom_writer *w) {
  const int is_partition_point = bsize >= BLOCK_8X8;

  if (!is_partition_point) return;

  const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
  const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
  const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
  FRAME_CONTEXT *ec_ctx = xd->tile_ctx;

  if (!has_rows && !has_cols) {
    assert(p == PARTITION_SPLIT);
    return;
  }

  if (has_rows && has_cols) {
    aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
                     partition_cdf_length(bsize));
  } else if (!has_rows && has_cols) {
    assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
    assert(bsize > BLOCK_8X8);
    aom_cdf_prob cdf[2];
    partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
    aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
  } else {
    assert(has_rows && !has_cols);
    assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
    assert(bsize > BLOCK_8X8);
    aom_cdf_prob cdf[2];
    partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
    aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
  }
}

static AOM_INLINE void write_modes_sb(
    AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
    aom_writer *const w, const TokenExtra **tok,
    const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MACROBLOCKD *const xd = &td->mb.e_mbd;
  assert(bsize < BLOCK_SIZES_ALL);
  const int hbs = mi_size_wide[bsize] / 2;
  const int quarter_step = mi_size_wide[bsize] / 4;
  int i;
  const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);

  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;

#if !CONFIG_REALTIME_ONLY
  const int num_planes = av1_num_planes(cm);
  for (int plane = 0; plane < num_planes; ++plane) {
    int rcol0, rcol1, rrow0, rrow1;
    if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
                                           &rcol0, &rcol1, &rrow0, &rrow1)) {
      const int rstride = cm->rst_info[plane].horz_units_per_tile;
      for (int rrow = rrow0; rrow < rrow1; ++rrow) {
        for (int rcol = rcol0; rcol < rcol1; ++rcol) {
          const int runit_idx = rcol + rrow * rstride;
          const RestorationUnitInfo *rui =
              &cm->rst_info[plane].unit_info[runit_idx];
          loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, td->counts);
        }
      }
    }
  }
#endif

  write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
  switch (partition) {
    case PARTITION_NONE:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      break;
    case PARTITION_HORZ:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      if (mi_row + hbs < mi_params->mi_rows)
        write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
      break;
    case PARTITION_VERT:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      if (mi_col + hbs < mi_params->mi_cols)
        write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
      break;
    case PARTITION_SPLIT:
      write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
      write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
                     subsize);
      write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
                     subsize);
      write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
                     subsize);
      break;
    case PARTITION_HORZ_A:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
      break;
    case PARTITION_HORZ_B:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
      break;
    case PARTITION_VERT_A:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
      break;
    case PARTITION_VERT_B:
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
      write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
      break;
    case PARTITION_HORZ_4:
      for (i = 0; i < 4; ++i) {
        int this_mi_row = mi_row + i * quarter_step;
        if (i > 0 && this_mi_row >= mi_params->mi_rows) break;

        write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
      }
      break;
    case PARTITION_VERT_4:
      for (i = 0; i < 4; ++i) {
        int this_mi_col = mi_col + i * quarter_step;
        if (i > 0 && this_mi_col >= mi_params->mi_cols) break;

        write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
      }
      break;
    default: assert(0);
  }

  // update partition context
  update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}

static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
                                   const TileInfo *const tile,
                                   aom_writer *const w, int tile_row,
                                   int tile_col) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &td->mb.e_mbd;
  const int mi_row_start = tile->mi_row_start;
  const int mi_row_end = tile->mi_row_end;
  const int mi_col_start = tile->mi_col_start;
  const int mi_col_end = tile->mi_col_end;
  const int num_planes = av1_num_planes(cm);

  av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
  av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);

  if (cpi->common.delta_q_info.delta_q_present_flag) {
    xd->current_base_qindex = cpi->common.quant_params.base_qindex;
    if (cpi->common.delta_q_info.delta_lf_present_flag) {
      av1_reset_loop_filter_delta(xd, num_planes);
    }
  }

  for (int mi_row = mi_row_start; mi_row < mi_row_end;
       mi_row += cm->seq_params->mib_size) {
    const int sb_row_in_tile =
        (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
    const TokenExtra *tok =
        cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start;
    const TokenExtra *tok_end =
        tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count;

    av1_zero_left_context(xd);

    for (int mi_col = mi_col_start; mi_col < mi_col_end;
         mi_col += cm->seq_params->mib_size) {
      td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
      write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
                     cm->seq_params->sb_size);
    }
    assert(tok == tok_end);
  }
}

static AOM_INLINE void encode_restoration_mode(
    AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
  assert(!cm->features.all_lossless);
  if (!cm->seq_params->enable_restoration) return;
  if (cm->features.allow_intrabc) return;
  const int num_planes = av1_num_planes(cm);
  int all_none = 1, chroma_none = 1;
  for (int p = 0; p < num_planes; ++p) {
    RestorationInfo *rsi = &cm->rst_info[p];
    if (rsi->frame_restoration_type != RESTORE_NONE) {
      all_none = 0;
      chroma_none &= p == 0;
    }
    switch (rsi->frame_restoration_type) {
      case RESTORE_NONE:
        aom_wb_write_bit(wb, 0);
        aom_wb_write_bit(wb, 0);
        break;
      case RESTORE_WIENER:
        aom_wb_write_bit(wb, 1);
        aom_wb_write_bit(wb, 0);
        break;
      case RESTORE_SGRPROJ:
        aom_wb_write_bit(wb, 1);
        aom_wb_write_bit(wb, 1);
        break;
      case RESTORE_SWITCHABLE:
        aom_wb_write_bit(wb, 0);
        aom_wb_write_bit(wb, 1);
        break;
      default: assert(0);
    }
  }
  if (!all_none) {
    assert(cm->seq_params->sb_size == BLOCK_64X64 ||
           cm->seq_params->sb_size == BLOCK_128X128);
    const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;

    RestorationInfo *rsi = &cm->rst_info[0];

    assert(rsi->restoration_unit_size >= sb_size);
    assert(RESTORATION_UNITSIZE_MAX == 256);

    if (sb_size == 64) {
      aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
    }
    if (rsi->restoration_unit_size > 64) {
      aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
    }
  }

  if (num_planes > 1) {
    int s =
        AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
    if (s && !chroma_none) {
      aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
                               cm->rst_info[0].restoration_unit_size);
      assert(cm->rst_info[1].restoration_unit_size ==
                 cm->rst_info[0].restoration_unit_size ||
             cm->rst_info[1].restoration_unit_size ==
                 (cm->rst_info[0].restoration_unit_size >> s));
      assert(cm->rst_info[2].restoration_unit_size ==
             cm->rst_info[1].restoration_unit_size);
    } else if (!s) {
      assert(cm->rst_info[1].restoration_unit_size ==
             cm->rst_info[0].restoration_unit_size);
      assert(cm->rst_info[2].restoration_unit_size ==
             cm->rst_info[1].restoration_unit_size);
    }
  }
}

#if !CONFIG_REALTIME_ONLY
static AOM_INLINE void write_wiener_filter(int wiener_win,
                                           const WienerInfo *wiener_info,
                                           WienerInfo *ref_wiener_info,
                                           aom_writer *wb) {
  if (wiener_win == WIENER_WIN)
    aom_write_primitive_refsubexpfin(
        wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
  else
    assert(wiener_info->vfilter[0] == 0 &&
           wiener_info->vfilter[WIENER_WIN - 1] == 0);
  aom_write_primitive_refsubexpfin(
      wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
  aom_write_primitive_refsubexpfin(
      wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
  if (wiener_win == WIENER_WIN)
    aom_write_primitive_refsubexpfin(
        wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
        WIENER_FILT_TAP0_SUBEXP_K,
        ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
        wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
  else
    assert(wiener_info->hfilter[0] == 0 &&
           wiener_info->hfilter[WIENER_WIN - 1] == 0);
  aom_write_primitive_refsubexpfin(
      wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
      WIENER_FILT_TAP1_SUBEXP_K,
      ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
      wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
  aom_write_primitive_refsubexpfin(
      wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
      WIENER_FILT_TAP2_SUBEXP_K,
      ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
      wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
  memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}

static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
                                            SgrprojInfo *ref_sgrproj_info,
                                            aom_writer *wb) {
  aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
  const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];

  if (params->r[0] == 0) {
    assert(sgrproj_info->xqd[0] == 0);
    aom_write_primitive_refsubexpfin(
        wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
        sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
  } else if (params->r[1] == 0) {
    aom_write_primitive_refsubexpfin(
        wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
        sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
  } else {
    aom_write_primitive_refsubexpfin(
        wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
        sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
    aom_write_primitive_refsubexpfin(
        wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
        ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
        sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
  }

  memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}

static AOM_INLINE void loop_restoration_write_sb_coeffs(
    const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
    aom_writer *const w, int plane, FRAME_COUNTS *counts) {
  const RestorationInfo *rsi = cm->rst_info + plane;
  RestorationType frame_rtype = rsi->frame_restoration_type;
  assert(frame_rtype != RESTORE_NONE);

  (void)counts;
  assert(!cm->features.all_lossless);

  const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
  WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
  SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
  RestorationType unit_rtype = rui->restoration_type;

  if (frame_rtype == RESTORE_SWITCHABLE) {
    aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
                     RESTORE_SWITCHABLE_TYPES);
#if CONFIG_ENTROPY_STATS
    ++counts->switchable_restore[unit_rtype];
#endif
    switch (unit_rtype) {
      case RESTORE_WIENER:
        write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
        break;
      case RESTORE_SGRPROJ:
        write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
        break;
      default: assert(unit_rtype == RESTORE_NONE); break;
    }
  } else if (frame_rtype == RESTORE_WIENER) {
    aom_write_symbol(w, unit_rtype != RESTORE_NONE,
                     xd->tile_ctx->wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
    ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
#endif
    if (unit_rtype != RESTORE_NONE) {
      write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
    }
  } else if (frame_rtype == RESTORE_SGRPROJ) {
    aom_write_symbol(w, unit_rtype != RESTORE_NONE,
                     xd->tile_ctx->sgrproj_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
    ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
#endif
    if (unit_rtype != RESTORE_NONE) {
      write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
    }
  }
}
#endif  // !CONFIG_REALTIME_ONLY

// Only write out the ref delta section if any of the elements
// will signal a delta.
static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
  struct loopfilter *lf = &cm->lf;
  if (!lf->mode_ref_delta_update) {
    return 0;
  }
  const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
  int8_t last_ref_deltas[REF_FRAMES];
  int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
  if (buf == NULL) {
    av1_set_default_ref_deltas(last_ref_deltas);
    av1_set_default_mode_deltas(last_mode_deltas);
  } else {
    memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
    memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
  }
  for (int i = 0; i < REF_FRAMES; i++) {
    if (lf->ref_deltas[i] != last_ref_deltas[i]) {
      return true;
    }
  }
  for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
    if (lf->mode_deltas[i] != last_mode_deltas[i]) {
      return true;
    }
  }
  return false;
}

static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
                                         struct aom_write_bit_buffer *wb) {
  assert(!cm->features.coded_lossless);
  if (cm->features.allow_intrabc) return;
  const int num_planes = av1_num_planes(cm);
  struct loopfilter *lf = &cm->lf;

  // Encode the loop filter level and type
  aom_wb_write_literal(wb, lf->filter_level[0], 6);
  aom_wb_write_literal(wb, lf->filter_level[1], 6);
  if (num_planes > 1) {
    if (lf->filter_level[0] || lf->filter_level[1]) {
      aom_wb_write_literal(wb, lf->filter_level_u, 6);
      aom_wb_write_literal(wb, lf->filter_level_v, 6);
    }
  }
  aom_wb_write_literal(wb, lf->sharpness_level, 3);

  aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);

  // Write out loop filter deltas applied at the MB level based on mode or
  // ref frame (if they are enabled), only if there is information to write.
  int meaningful = is_mode_ref_delta_meaningful(cm);
  aom_wb_write_bit(wb, meaningful);
  if (!meaningful) {
    return;
  }

  const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
  int8_t last_ref_deltas[REF_FRAMES];
  int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
  if (buf == NULL) {
    av1_set_default_ref_deltas(last_ref_deltas);
    av1_set_default_mode_deltas(last_mode_deltas);
  } else {
    memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
    memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
  }
  for (int i = 0; i < REF_FRAMES; i++) {
    const int delta = lf->ref_deltas[i];
    const int changed = delta != last_ref_deltas[i];
    aom_wb_write_bit(wb, changed);
    if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
  }
  for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
    const int delta = lf->mode_deltas[i];
    const int changed = delta != last_mode_deltas[i];
    aom_wb_write_bit(wb, changed);
    if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
  }
}

static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
                                   struct aom_write_bit_buffer *wb) {
  assert(!cm->features.coded_lossless);
  if (!cm->seq_params->enable_cdef) return;
  if (cm->features.allow_intrabc) return;
  const int num_planes = av1_num_planes(cm);
  int i;
  aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
  aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
  for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
    aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
                         CDEF_STRENGTH_BITS);
    if (num_planes > 1)
      aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
                           CDEF_STRENGTH_BITS);
  }
}

static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
                                     int delta_q) {
  if (delta_q != 0) {
    aom_wb_write_bit(wb, 1);
    aom_wb_write_inv_signed_literal(wb, delta_q, 6);
  } else {
    aom_wb_write_bit(wb, 0);
  }
}

static AOM_INLINE void encode_quantization(
    const CommonQuantParams *const quant_params, int num_planes,
    bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
  aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
  write_delta_q(wb, quant_params->y_dc_delta_q);
  if (num_planes > 1) {
    int diff_uv_delta =
        (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
        (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
    if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
    write_delta_q(wb, quant_params->u_dc_delta_q);
    write_delta_q(wb, quant_params->u_ac_delta_q);
    if (diff_uv_delta) {
      write_delta_q(wb, quant_params->v_dc_delta_q);
      write_delta_q(wb, quant_params->v_ac_delta_q);
    }
  }
  aom_wb_write_bit(wb, quant_params->using_qmatrix);
  if (quant_params->using_qmatrix) {
    aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
    aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
    if (!separate_uv_delta_q)
      assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
    else
      aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
  }
}

static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
                                           struct aom_write_bit_buffer *wb) {
  int i, j;
  struct segmentation *seg = &cm->seg;

  aom_wb_write_bit(wb, seg->enabled);
  if (!seg->enabled) return;

  // Write update flags
  if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
    aom_wb_write_bit(wb, seg->update_map);
    if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
    aom_wb_write_bit(wb, seg->update_data);
  }

  // Segmentation data
  if (seg->update_data) {
    for (i = 0; i < MAX_SEGMENTS; i++) {
      for (j = 0; j < SEG_LVL_MAX; j++) {
        const int active = segfeature_active(seg, i, j);
        aom_wb_write_bit(wb, active);
        if (active) {
          const int data_max = av1_seg_feature_data_max(j);
          const int data_min = -data_max;
          const int ubits = get_unsigned_bits(data_max);
          const int data = clamp(get_segdata(seg, i, j), data_min, data_max);

          if (av1_is_segfeature_signed(j)) {
            aom_wb_write_inv_signed_literal(wb, data, ubits);
          } else {
            aom_wb_write_literal(wb, data, ubits);
          }
        }
      }
    }
  }
}

static AOM_INLINE void write_frame_interp_filter(
    InterpFilter filter, struct aom_write_bit_buffer *wb) {
  aom_wb_write_bit(wb, filter == SWITCHABLE);
  if (filter != SWITCHABLE)
    aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}

// Same function as write_uniform but writing to uncompresses header wb
static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
                                        int v) {
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
  if (l == 0) return;
  if (v < m) {
    aom_wb_write_literal(wb, v, l - 1);
  } else {
    aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
    aom_wb_write_literal(wb, (v - m) & 1, 1);
  }
}

static AOM_INLINE void write_tile_info_max_tile(
    const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
  int width_mi =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
  int height_mi =
      ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
  int width_sb = width_mi >> cm->seq_params->mib_size_log2;
  int height_sb = height_mi >> cm->seq_params->mib_size_log2;
  int size_sb, i;
  const CommonTileParams *const tiles = &cm->tiles;

  aom_wb_write_bit(wb, tiles->uniform_spacing);

  if (tiles->uniform_spacing) {
    int ones = tiles->log2_cols - tiles->min_log2_cols;
    while (ones--) {
      aom_wb_write_bit(wb, 1);
    }
    if (tiles->log2_cols < tiles->max_log2_cols) {
      aom_wb_write_bit(wb, 0);
    }

    // rows
    ones = tiles->log2_rows - tiles->min_log2_rows;
    while (ones--) {
      aom_wb_write_bit(wb, 1);
    }
    if (tiles->log2_rows < tiles->max_log2_rows) {
      aom_wb_write_bit(wb, 0);
    }
  } else {
    // Explicit tiles with configurable tile widths and heights
    // columns
    for (i = 0; i < tiles->cols; i++) {
      size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
      wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
      width_sb -= size_sb;
    }
    assert(width_sb == 0);

    // rows
    for (i = 0; i < tiles->rows; i++) {
      size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
      wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
                       size_sb - 1);
      height_sb -= size_sb;
    }
    assert(height_sb == 0);
  }
}

static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
                                       struct aom_write_bit_buffer *saved_wb,
                                       struct aom_write_bit_buffer *wb) {
  write_tile_info_max_tile(cm, wb);

  *saved_wb = *wb;
  if (cm->tiles.rows * cm->tiles.cols > 1) {
    // tile id used for cdf update
    aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
    // Number of bytes in tile size - 1
    aom_wb_write_literal(wb, 3, 2);
  }
}

static AOM_INLINE void write_ext_tile_info(
    const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
    struct aom_write_bit_buffer *wb) {
  // This information is stored as a separate byte.
  int mod = wb->bit_offset % CHAR_BIT;
  if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
  assert(aom_wb_is_byte_aligned(wb));

  *saved_wb = *wb;
  if (cm->tiles.rows * cm->tiles.cols > 1) {
    // Note that the last item in the uncompressed header is the data
    // describing tile configuration.
    // Number of bytes in tile column size - 1
    aom_wb_write_literal(wb, 0, 2);
    // Number of bytes in tile size - 1
    aom_wb_write_literal(wb, 0, 2);
  }
}

static INLINE int find_identical_tile(
    const int tile_row, const int tile_col,
    TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
  const MV32 candidate_offset[1] = { { 1, 0 } };
  const uint8_t *const cur_tile_data =
      tile_buffers[tile_row][tile_col].data + 4;
  const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;

  int i;

  if (tile_row == 0) return 0;

  // (TODO: yunqingwang) For now, only above tile is checked and used.
  // More candidates such as left tile can be added later.
  for (i = 0; i < 1; i++) {
    int row_offset = candidate_offset[0].row;
    int col_offset = candidate_offset[0].col;
    int row = tile_row - row_offset;
    int col = tile_col - col_offset;
    const uint8_t *tile_data;
    TileBufferEnc *candidate;

    if (row < 0 || col < 0) continue;

    const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);

    // Read out tile-copy-mode bit:
    if ((tile_hdr >> 31) == 1) {
      // The candidate is a copy tile itself: the offset is stored in bits
      // 30 through 24 inclusive.
      row_offset += (tile_hdr >> 24) & 0x7f;
      row = tile_row - row_offset;
    }

    candidate = &tile_buffers[row][col];

    if (row_offset >= 128 || candidate->size != cur_tile_size) continue;

    tile_data = candidate->data + 4;

    if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;

    // Identical tile found
    assert(row_offset > 0);
    return row_offset;
  }

  // No identical tile found
  return 0;
}

static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
                                         struct aom_write_bit_buffer *wb) {
  const int scaling_active = av1_resize_scaled(cm);
  aom_wb_write_bit(wb, scaling_active);
  if (scaling_active) {
    aom_wb_write_literal(wb, cm->render_width - 1, 16);
    aom_wb_write_literal(wb, cm->render_height - 1, 16);
  }
}

static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
                                            struct aom_write_bit_buffer *wb) {
  const SequenceHeader *const seq_params = cm->seq_params;
  if (!seq_params->enable_superres) {
    assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
    return;
  }

  // First bit is whether to to scale or not
  if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
    aom_wb_write_bit(wb, 0);  // no scaling
  } else {
    aom_wb_write_bit(wb, 1);  // scaling, write scale factor
    assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
    assert(cm->superres_scale_denominator <
           SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
    aom_wb_write_literal(
        wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
        SUPERRES_SCALE_BITS);
  }
}

static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
                                        int frame_size_override,
                                        struct aom_write_bit_buffer *wb) {
  const int coded_width = cm->superres_upscaled_width - 1;
  const int coded_height = cm->superres_upscaled_height - 1;

  if (frame_size_override) {
    const SequenceHeader *seq_params = cm->seq_params;
    int num_bits_width = seq_params->num_bits_width;
    int num_bits_height = seq_params->num_bits_height;
    aom_wb_write_literal(wb, coded_width, num_bits_width);
    aom_wb_write_literal(wb, coded_height, num_bits_height);
  }

  write_superres_scale(cm, wb);
  write_render_size(cm, wb);
}

static AOM_INLINE void write_frame_size_with_refs(
    const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
  int found = 0;

  MV_REFERENCE_FRAME ref_frame;
  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);

    if (cfg != NULL) {
      found = cm->superres_upscaled_width == cfg->y_crop_width &&
              cm->superres_upscaled_height == cfg->y_crop_height;
      found &= cm->render_width == cfg->render_width &&
               cm->render_height == cfg->render_height;
    }
    aom_wb_write_bit(wb, found);
    if (found) {
      write_superres_scale(cm, wb);
      break;
    }
  }

  if (!found) {
    int frame_size_override = 1;  // Always equal to 1 in this function
    write_frame_size(cm, frame_size_override, wb);
  }
}

static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
                                     struct aom_write_bit_buffer *wb) {
  assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
  aom_wb_write_literal(wb, profile, PROFILE_BITS);
}

static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
                                      struct aom_write_bit_buffer *wb) {
  // Profile 0/1: [0] for 8 bit, [1]  10-bit
  // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
  aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
  if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
    aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
  }
}

static AOM_INLINE void write_color_config(
    const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
  write_bitdepth(seq_params, wb);
  const int is_monochrome = seq_params->monochrome;
  // monochrome bit
  if (seq_params->profile != PROFILE_1)
    aom_wb_write_bit(wb, is_monochrome);
  else
    assert(!is_monochrome);
  if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
      seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
      seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
    aom_wb_write_bit(wb, 0);  // No color description present
  } else {
    aom_wb_write_bit(wb, 1);  // Color description present
    aom_wb_write_literal(wb, seq_params->color_primaries, 8);
    aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
    aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
  }
  if (is_monochrome) {
    // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
    aom_wb_write_bit(wb, seq_params->color_range);
    return;
  }
  if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
      seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
      seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
    assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
    assert(seq_params->profile == PROFILE_1 ||
           (seq_params->profile == PROFILE_2 &&
            seq_params->bit_depth == AOM_BITS_12));
  } else {
    // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
    aom_wb_write_bit(wb, seq_params->color_range);
    if (seq_params->profile == PROFILE_0) {
      // 420 only
      assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
    } else if (seq_params->profile == PROFILE_1) {
      // 444 only
      assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
    } else if (seq_params->profile == PROFILE_2) {
      if (seq_params->bit_depth == AOM_BITS_12) {
        // 420, 444 or 422
        aom_wb_write_bit(wb, seq_params->subsampling_x);
        if (seq_params->subsampling_x == 0) {
          assert(seq_params->subsampling_y == 0 &&
                 "4:4:0 subsampling not allowed in AV1");
        } else {
          aom_wb_write_bit(wb, seq_params->subsampling_y);
        }
      } else {
        // 422 only
        assert(seq_params->subsampling_x == 1 &&
               seq_params->subsampling_y == 0);
      }
    }
    if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
      assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
    }
    if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
      aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
    }
  }
  aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
}

static AOM_INLINE void write_timing_info_header(
    const aom_timing_info_t *const timing_info,
    struct aom_write_bit_buffer *wb) {
  aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
  aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
  aom_wb_write_bit(wb, timing_info->equal_picture_interval);
  if (timing_info->equal_picture_interval) {
    aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
  }
}

static AOM_INLINE void write_decoder_model_info(
    const aom_dec_model_info_t *const decoder_model_info,
    struct aom_write_bit_buffer *wb) {
  aom_wb_write_literal(
      wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
  aom_wb_write_unsigned_literal(
      wb, decoder_model_info->num_units_in_decoding_tick, 32);
  aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
                       5);
  aom_wb_write_literal(
      wb, decoder_model_info->frame_presentation_time_length - 1, 5);
}

static AOM_INLINE void write_dec_model_op_parameters(
    const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
    struct aom_write_bit_buffer *wb) {
  aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
                                buffer_delay_length);
  aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
                                buffer_delay_length);
  aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
}

static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
                                         struct aom_write_bit_buffer *wb) {
  aom_wb_write_unsigned_literal(
      wb, cm->frame_presentation_time,
      cm->seq_params->decoder_model_info.frame_presentation_time_length);
}

static AOM_INLINE void write_film_grain_params(
    const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
  const AV1_COMMON *const cm = &cpi->common;
  const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
  aom_wb_write_bit(wb, pars->apply_grain);
  if (!pars->apply_grain) return;

  aom_wb_write_literal(wb, pars->random_seed, 16);

  if (cm->current_frame.frame_type == INTER_FRAME)
    aom_wb_write_bit(wb, pars->update_parameters);

  if (!pars->update_parameters) {
    int ref_frame, ref_idx;
    for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
      ref_idx = get_ref_frame_map_idx(cm, ref_frame);
      assert(ref_idx != INVALID_IDX);
      const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
      if (buf->film_grain_params_present &&
          av1_check_grain_params_equiv(pars, &buf->film_grain_params)) {
        break;
      }
    }
    assert(ref_frame < REF_FRAMES);
    aom_wb_write_literal(wb, ref_idx, 3);
    return;
  }

  // Scaling functions parameters
  aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14
  for (int i = 0; i < pars->num_y_points; i++) {
    aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
    aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
  }

  if (!cm->seq_params->monochrome) {
    aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
  } else {
    assert(!pars->chroma_scaling_from_luma);
  }

  if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
      ((cm->seq_params->subsampling_x == 1) &&
       (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
    assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
  } else {
    aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10
    for (int i = 0; i < pars->num_cb_points; i++) {
      aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
      aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
    }

    aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10
    for (int i = 0; i < pars->num_cr_points; i++) {
      aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
      aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
    }
  }

  aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value

  // AR coefficients
  // Only sent if the corresponsing scaling function has
  // more than 0 points

  aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);

  int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
  int num_pos_chroma = num_pos_luma;
  if (pars->num_y_points > 0) ++num_pos_chroma;

  if (pars->num_y_points)
    for (int i = 0; i < num_pos_luma; i++)
      aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);

  if (pars->num_cb_points || pars->chroma_scaling_from_luma)
    for (int i = 0; i < num_pos_chroma; i++)
      aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);

  if (pars->num_cr_points || pars->chroma_scaling_from_luma)
    for (int i = 0; i < num_pos_chroma; i++)
      aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);

  aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value

  aom_wb_write_literal(wb, pars->grain_scale_shift, 2);

  if (pars->num_cb_points) {
    aom_wb_write_literal(wb, pars->cb_mult, 8);
    aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
    aom_wb_write_literal(wb, pars->cb_offset, 9);
  }

  if (pars->num_cr_points) {
    aom_wb_write_literal(wb, pars->cr_mult, 8);
    aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
    aom_wb_write_literal(wb, pars->cr_offset, 9);
  }

  aom_wb_write_bit(wb, pars->overlap_flag);

  aom_wb_write_bit(wb, pars->clip_to_restricted_range);
}

static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
                                     struct aom_write_bit_buffer *wb) {
  (void)seq_params;
  (void)wb;
  assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
  assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
  assert(seq_params->sb_size == BLOCK_128X128 ||
         seq_params->sb_size == BLOCK_64X64);
  aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
}

static AOM_INLINE void write_sequence_header(
    const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
  aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
  aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
  aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
                       seq_params->num_bits_width);
  aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
                       seq_params->num_bits_height);

  if (!seq_params->reduced_still_picture_hdr) {
    aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
    if (seq_params->frame_id_numbers_present_flag) {
      // We must always have delta_frame_id_length < frame_id_length,
      // in order for a frame to be referenced with a unique delta.
      // Avoid wasting bits by using a coding that enforces this restriction.
      aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
      aom_wb_write_literal(
          wb,
          seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
          3);
    }
  }

  write_sb_size(seq_params, wb);

  aom_wb_write_bit(wb, seq_params->enable_filter_intra);
  aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);

  if (!seq_params->reduced_still_picture_hdr) {
    aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
    aom_wb_write_bit(wb, seq_params->enable_masked_compound);
    aom_wb_write_bit(wb, seq_params->enable_warped_motion);
    aom_wb_write_bit(wb, seq_params->enable_dual_filter);

    aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);

    if (seq_params->order_hint_info.enable_order_hint) {
      aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
      aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
    }
    if (seq_params->force_screen_content_tools == 2) {
      aom_wb_write_bit(wb, 1);
    } else {
      aom_wb_write_bit(wb, 0);
      aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
    }
    if (seq_params->force_screen_content_tools > 0) {
      if (seq_params->force_integer_mv == 2) {
        aom_wb_write_bit(wb, 1);
      } else {
        aom_wb_write_bit(wb, 0);
        aom_wb_write_bit(wb, seq_params->force_integer_mv);
      }
    } else {
      assert(seq_params->force_integer_mv == 2);
    }
    if (seq_params->order_hint_info.enable_order_hint)
      aom_wb_write_literal(
          wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
  }

  aom_wb_write_bit(wb, seq_params->enable_superres);
  aom_wb_write_bit(wb, seq_params->enable_cdef);
  aom_wb_write_bit(wb, seq_params->enable_restoration);
}

static AOM_INLINE void write_global_motion_params(
    const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
    struct aom_write_bit_buffer *wb, int allow_hp) {
  const TransformationType type = params->wmtype;

  aom_wb_write_bit(wb, type != IDENTITY);
  if (type != IDENTITY) {
    aom_wb_write_bit(wb, type == ROTZOOM);
    if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
  }

  if (type >= ROTZOOM) {
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
        (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
            (1 << GM_ALPHA_PREC_BITS),
        (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
        (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
        (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
  }

  if (type >= AFFINE) {
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
        (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
        (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
        (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
            (1 << GM_ALPHA_PREC_BITS),
        (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
  }

  if (type >= TRANSLATION) {
    const int trans_bits = (type == TRANSLATION)
                               ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
                               : GM_ABS_TRANS_BITS;
    const int trans_prec_diff = (type == TRANSLATION)
                                    ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
                                    : GM_TRANS_PREC_DIFF;
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
        (ref_params->wmmat[0] >> trans_prec_diff),
        (params->wmmat[0] >> trans_prec_diff));
    aom_wb_write_signed_primitive_refsubexpfin(
        wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
        (ref_params->wmmat[1] >> trans_prec_diff),
        (params->wmmat[1] >> trans_prec_diff));
  }
}

static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
                                           struct aom_write_bit_buffer *wb) {
  AV1_COMMON *const cm = &cpi->common;
  int frame;
  for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
    const WarpedMotionParams *ref_params =
        cm->prev_frame ? &cm->prev_frame->global_motion[frame]
                       : &default_warp_params;
    write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
                               cm->features.allow_high_precision_mv);
    // TODO(sarahparker, debargha): The logic in the commented out code below
    // does not work currently and causes mismatches when resize is on.
    // Fix it before turning the optimization back on.
    /*
    YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
    if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
        cpi->source->y_crop_height == ref_buf->y_crop_height) {
      write_global_motion_params(&cm->global_motion[frame],
                                 &cm->prev_frame->global_motion[frame], wb,
                                 cm->features.allow_high_precision_mv);
    } else {
      assert(cm->global_motion[frame].wmtype == IDENTITY &&
             "Invalid warp type for frames of different resolutions");
    }
    */
    /*
    printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
           cm->current_frame.frame_number, cm->show_frame, frame,
           cm->global_motion[frame].wmmat[0],
           cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
           cm->global_motion[frame].wmmat[3]);
           */
  }
}

static int check_frame_refs_short_signaling(AV1_COMMON *const cm) {
  // Check whether all references are distinct frames.
  const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
  int num_refs = 0;
  for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
    if (buf != NULL) {
      int seen = 0;
      for (int i = 0; i < num_refs; i++) {
        if (seen_bufs[i] == buf) {
          seen = 1;
          break;
        }
      }
      if (!seen) seen_bufs[num_refs++] = buf;
    }
  }

  // We only turn on frame_refs_short_signaling when all references are
  // distinct.
  if (num_refs < INTER_REFS_PER_FRAME) {
    // It indicates that there exist more than one reference frame pointing to
    // the same reference buffer, i.e. two or more references are duplicate.
    return 0;
  }

  // Check whether the encoder side ref frame choices are aligned with that to
  // be derived at the decoder side.
  int remapped_ref_idx_decoder[REF_FRAMES];

  const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
  const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);

  // Set up the frame refs mapping indexes according to the
  // frame_refs_short_signaling policy.
  av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);

  // We only turn on frame_refs_short_signaling when the encoder side decision
  // on ref frames is identical to that at the decoder side.
  int frame_refs_short_signaling = 1;
  for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
    // Compare the buffer index between two reference frames indexed
    // respectively by the encoder and the decoder side decisions.
    RefCntBuffer *ref_frame_buf_new = NULL;
    if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
      ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
    }
    if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
      frame_refs_short_signaling = 0;
      break;
    }
  }

#if 0   // For debug
  printf("\nFrame=%d: \n", cm->current_frame.frame_number);
  printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
  for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    printf("enc_ref(map_idx=%d)=%d, vs. "
        "dec_ref(map_idx=%d)=%d\n",
        get_ref_frame_map_idx(cm, ref_frame), ref_frame,
        cm->remapped_ref_idx[ref_frame - LAST_FRAME],
        ref_frame);
  }
#endif  // 0

  return frame_refs_short_signaling;
}

// New function based on HLS R18
static AOM_INLINE void write_uncompressed_header_obu(
    AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
    struct aom_write_bit_buffer *wb) {
  AV1_COMMON *const cm = &cpi->common;
  const SequenceHeader *const seq_params = cm->seq_params;
  const CommonQuantParams *quant_params = &cm->quant_params;
  CurrentFrame *const current_frame = &cm->current_frame;
  FeatureFlags *const features = &cm->features;

  current_frame->frame_refs_short_signaling = 0;

  if (seq_params->still_picture) {
    assert(cm->show_existing_frame == 0);
    assert(cm->show_frame == 1);
    assert(current_frame->frame_type == KEY_FRAME);
  }
  if (!seq_params->reduced_still_picture_hdr) {
    if (encode_show_existing_frame(cm)) {
      aom_wb_write_bit(wb, 1);  // show_existing_frame
      aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);

      if (seq_params->decoder_model_info_present_flag &&
          seq_params->timing_info.equal_picture_interval == 0) {
        write_tu_pts_info(cm, wb);
      }
      if (seq_params->frame_id_numbers_present_flag) {
        int frame_id_len = seq_params->frame_id_length;
        int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
        aom_wb_write_literal(wb, display_frame_id, frame_id_len);
      }
      return;
    } else {
      aom_wb_write_bit(wb, 0);  // show_existing_frame
    }

    aom_wb_write_literal(wb, current_frame->frame_type, 2);

    aom_wb_write_bit(wb, cm->show_frame);
    if (cm->show_frame) {
      if (seq_params->decoder_model_info_present_flag &&
          seq_params->timing_info.equal_picture_interval == 0)
        write_tu_pts_info(cm, wb);
    } else {
      aom_wb_write_bit(wb, cm->showable_frame);
    }
    if (frame_is_sframe(cm)) {
      assert(features->error_resilient_mode);
    } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
      aom_wb_write_bit(wb, features->error_resilient_mode);
    }
  }
  aom_wb_write_bit(wb, features->disable_cdf_update);

  if (seq_params->force_screen_content_tools == 2) {
    aom_wb_write_bit(wb, features->allow_screen_content_tools);
  } else {
    assert(features->allow_screen_content_tools ==
           seq_params->force_screen_content_tools);
  }

  if (features->allow_screen_content_tools) {
    if (seq_params->force_integer_mv == 2) {
      aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
    } else {
      assert(features->cur_frame_force_integer_mv ==
             seq_params->force_integer_mv);
    }
  } else {
    assert(features->cur_frame_force_integer_mv == 0);
  }

  int frame_size_override_flag = 0;

  if (seq_params->reduced_still_picture_hdr) {
    assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
           cm->superres_upscaled_height == seq_params->max_frame_height);
  } else {
    if (seq_params->frame_id_numbers_present_flag) {
      int frame_id_len = seq_params->frame_id_length;
      aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
    }

    if (cm->superres_upscaled_width > seq_params->max_frame_width ||
        cm->superres_upscaled_height > seq_params->max_frame_height) {
      aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                         "Frame dimensions are larger than the maximum values");
    }

    frame_size_override_flag =
        frame_is_sframe(cm)
            ? 1
            : (cm->superres_upscaled_width != seq_params->max_frame_width ||
               cm->superres_upscaled_height != seq_params->max_frame_height);
    if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);

    if (seq_params->order_hint_info.enable_order_hint)
      aom_wb_write_literal(
          wb, current_frame->order_hint,
          seq_params->order_hint_info.order_hint_bits_minus_1 + 1);

    if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
      aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
    }
  }

  if (seq_params->decoder_model_info_present_flag) {
    aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
    if (cpi->ppi->buffer_removal_time_present) {
      for (int op_num = 0;
           op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
        if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
          if (seq_params->operating_point_idc[op_num] == 0 ||
              ((seq_params->operating_point_idc[op_num] >>
                cm->temporal_layer_id) &
                   0x1 &&
               (seq_params->operating_point_idc[op_num] >>
                (cm->spatial_layer_id + 8)) &
                   0x1)) {
            aom_wb_write_unsigned_literal(
                wb, cm->buffer_removal_times[op_num],
                seq_params->decoder_model_info.buffer_removal_time_length);
            cm->buffer_removal_times[op_num]++;
            if (cm->buffer_removal_times[op_num] == 0) {
              aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
                                 "buffer_removal_time overflowed");
            }
          }
        }
      }
    }
  }

  // Shown keyframes and switch-frames automatically refreshes all reference
  // frames.  For all other frame types, we need to write refresh_frame_flags.
  if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
      current_frame->frame_type == INTER_FRAME ||
      current_frame->frame_type == INTRA_ONLY_FRAME)
    aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);

  if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
    // Write all ref frame order hints if error_resilient_mode == 1
    if (features->error_resilient_mode &&
        seq_params->order_hint_info.enable_order_hint) {
      for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
        aom_wb_write_literal(
            wb, cm->ref_frame_map[ref_idx]->order_hint,
            seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
      }
    }
  }

  if (current_frame->frame_type == KEY_FRAME) {
    write_frame_size(cm, frame_size_override_flag, wb);
    assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
    if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
      aom_wb_write_bit(wb, features->allow_intrabc);
  } else {
    if (current_frame->frame_type == INTRA_ONLY_FRAME) {
      write_frame_size(cm, frame_size_override_flag, wb);
      assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
      if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
        aom_wb_write_bit(wb, features->allow_intrabc);
    } else if (current_frame->frame_type == INTER_FRAME ||
               frame_is_sframe(cm)) {
      MV_REFERENCE_FRAME ref_frame;

      // NOTE: Error resilient mode turns off frame_refs_short_signaling
      //       automatically.
#define FRAME_REFS_SHORT_SIGNALING 0
#if FRAME_REFS_SHORT_SIGNALING
      current_frame->frame_refs_short_signaling =
          seq_params->order_hint_info.enable_order_hint;
#endif  // FRAME_REFS_SHORT_SIGNALING

      if (current_frame->frame_refs_short_signaling) {
        // NOTE(zoeliu@google.com):
        //   An example solution for encoder-side implementation on frame refs
        //   short signaling, which is only turned on when the encoder side
        //   decision on ref frames is identical to that at the decoder side.
        current_frame->frame_refs_short_signaling =
            check_frame_refs_short_signaling(cm);
      }

      if (seq_params->order_hint_info.enable_order_hint)
        aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);

      if (current_frame->frame_refs_short_signaling) {
        const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
        aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);

        const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
        aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
      }

      for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
        assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
        if (!current_frame->frame_refs_short_signaling)
          aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
                               REF_FRAMES_LOG2);
        if (seq_params->frame_id_numbers_present_flag) {
          int i = get_ref_frame_map_idx(cm, ref_frame);
          int frame_id_len = seq_params->frame_id_length;
          int diff_len = seq_params->delta_frame_id_length;
          int delta_frame_id_minus_1 =
              ((cm->current_frame_id - cm->ref_frame_id[i] +
                (1 << frame_id_len)) %
               (1 << frame_id_len)) -
              1;
          if (delta_frame_id_minus_1 < 0 ||
              delta_frame_id_minus_1 >= (1 << diff_len)) {
            aom_internal_error(cm->error, AOM_CODEC_ERROR,
                               "Invalid delta_frame_id_minus_1");
          }
          aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
        }
      }

      if (!features->error_resilient_mode && frame_size_override_flag) {
        write_frame_size_with_refs(cm, wb);
      } else {
        write_frame_size(cm, frame_size_override_flag, wb);
      }

      if (!features->cur_frame_force_integer_mv)
        aom_wb_write_bit(wb, features->allow_high_precision_mv);
      write_frame_interp_filter(features->interp_filter, wb);
      aom_wb_write_bit(wb, features->switchable_motion_mode);
      if (frame_might_allow_ref_frame_mvs(cm)) {
        aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
      } else {
        assert(features->allow_ref_frame_mvs == 0);
      }
    }
  }

  const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
                              !(features->disable_cdf_update);
  if (cm->tiles.large_scale)
    assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);

  if (might_bwd_adapt) {
    aom_wb_write_bit(
        wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
  }

  write_tile_info(cm, saved_wb, wb);
  encode_quantization(quant_params, av1_num_planes(cm),
                      cm->seq_params->separate_uv_delta_q, wb);
  encode_segmentation(cm, wb);

  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
  if (quant_params->base_qindex > 0) {
    aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
    if (delta_q_info->delta_q_present_flag) {
      aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
      xd->current_base_qindex = quant_params->base_qindex;
      if (features->allow_intrabc)
        assert(delta_q_info->delta_lf_present_flag == 0);
      else
        aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
      if (delta_q_info->delta_lf_present_flag) {
        aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
        aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
        av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
      }
    }
  }

  if (features->all_lossless) {
    assert(!av1_superres_scaled(cm));
  } else {
    if (!features->coded_lossless) {
      encode_loopfilter(cm, wb);
      encode_cdef(cm, wb);
    }
    encode_restoration_mode(cm, wb);
  }

  // Write TX mode
  if (features->coded_lossless)
    assert(features->tx_mode == ONLY_4X4);
  else
    aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);

  if (!frame_is_intra_only(cm)) {
    const int use_hybrid_pred =
        current_frame->reference_mode == REFERENCE_MODE_SELECT;

    aom_wb_write_bit(wb, use_hybrid_pred);
  }

  if (current_frame->skip_mode_info.skip_mode_allowed)
    aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);

  if (frame_might_allow_warped_motion(cm))
    aom_wb_write_bit(wb, features->allow_warped_motion);
  else
    assert(!features->allow_warped_motion);

  aom_wb_write_bit(wb, features->reduced_tx_set_used);

  if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);

  if (seq_params->film_grain_params_present &&
      (cm->show_frame || cm->showable_frame))
    write_film_grain_params(cpi, wb);

  if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
}

static int choose_size_bytes(uint32_t size, int spare_msbs) {
  // Choose the number of bytes required to represent size, without
  // using the 'spare_msbs' number of most significant bits.

  // Make sure we will fit in 4 bytes to start with..
  if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;

  // Normalise to 32 bits
  size <<= spare_msbs;

  if (size >> 24 != 0)
    return 4;
  else if (size >> 16 != 0)
    return 3;
  else if (size >> 8 != 0)
    return 2;
  else
    return 1;
}

static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
                                       const int val) {
  switch (sz) {
    case 1: dst[0] = (uint8_t)(val & 0xff); break;
    case 2: mem_put_le16(dst, val); break;
    case 3: mem_put_le24(dst, val); break;
    case 4: mem_put_le32(dst, val); break;
    default: assert(0 && "Invalid size"); break;
  }
}

static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
                       const uint32_t data_size, const uint32_t max_tile_size,
                       const uint32_t max_tile_col_size,
                       int *const tile_size_bytes,
                       int *const tile_col_size_bytes) {
  // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
  int tsb;
  int tcsb;

  if (tiles->large_scale) {
    // The top bit in the tile size field indicates tile copy mode, so we
    // have 1 less bit to code the tile size
    tsb = choose_size_bytes(max_tile_size, 1);
    tcsb = choose_size_bytes(max_tile_col_size, 0);
  } else {
    tsb = choose_size_bytes(max_tile_size, 0);
    tcsb = 4;  // This is ignored
    (void)max_tile_col_size;
  }

  assert(tsb > 0);
  assert(tcsb > 0);

  *tile_size_bytes = tsb;
  *tile_col_size_bytes = tcsb;
  if (tsb == 4 && tcsb == 4) return data_size;

  uint32_t wpos = 0;
  uint32_t rpos = 0;

  if (tiles->large_scale) {
    int tile_row;
    int tile_col;

    for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
      // All but the last column has a column header
      if (tile_col < tiles->cols - 1) {
        uint32_t tile_col_size = mem_get_le32(dst + rpos);
        rpos += 4;

        // Adjust the tile column size by the number of bytes removed
        // from the tile size fields.
        tile_col_size -= (4 - tsb) * tiles->rows;

        mem_put_varsize(dst + wpos, tcsb, tile_col_size);
        wpos += tcsb;
      }

      for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
        // All, including the last row has a header
        uint32_t tile_header = mem_get_le32(dst + rpos);
        rpos += 4;

        // If this is a copy tile, we need to shift the MSB to the
        // top bit of the new width, and there is no data to copy.
        if (tile_header >> 31 != 0) {
          if (tsb < 4) tile_header >>= 32 - 8 * tsb;
          mem_put_varsize(dst + wpos, tsb, tile_header);
          wpos += tsb;
        } else {
          mem_put_varsize(dst + wpos, tsb, tile_header);
          wpos += tsb;

          tile_header += AV1_MIN_TILE_SIZE_BYTES;
          memmove(dst + wpos, dst + rpos, tile_header);
          rpos += tile_header;
          wpos += tile_header;
        }
      }
    }

    assert(rpos > wpos);
    assert(rpos == data_size);

    return wpos;
  }
  const int n_tiles = tiles->cols * tiles->rows;
  int n;

  for (n = 0; n < n_tiles; n++) {
    int tile_size;

    if (n == n_tiles - 1) {
      tile_size = data_size - rpos;
    } else {
      tile_size = mem_get_le32(dst + rpos);
      rpos += 4;
      mem_put_varsize(dst + wpos, tsb, tile_size);
      tile_size += AV1_MIN_TILE_SIZE_BYTES;
      wpos += tsb;
    }

    memmove(dst + wpos, dst + rpos, tile_size);

    rpos += tile_size;
    wpos += tile_size;
  }

  assert(rpos > wpos);
  assert(rpos == data_size);

  return wpos;
}

uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
                              int *frame_header_count, OBU_TYPE obu_type,
                              int obu_extension, uint8_t *const dst) {
  if (level_params->keep_level_stats &&
      (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
    ++(*frame_header_count);

  struct aom_write_bit_buffer wb = { dst, 0 };
  uint32_t size = 0;

  aom_wb_write_literal(&wb, 0, 1);  // forbidden bit.
  aom_wb_write_literal(&wb, (int)obu_type, 4);
  aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
  aom_wb_write_literal(&wb, 1, 1);  // obu_has_payload_length_field
  aom_wb_write_literal(&wb, 0, 1);  // reserved

  if (obu_extension) {
    aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
  }

  size = aom_wb_bytes_written(&wb);
  return size;
}

int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
                            uint8_t *dest) {
  const size_t offset = obu_header_size;
  size_t coded_obu_size = 0;
  const uint32_t obu_size = (uint32_t)obu_payload_size;
  assert(obu_size == obu_payload_size);

  if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
                      &coded_obu_size) != 0) {
    return AOM_CODEC_ERROR;
  }

  return AOM_CODEC_OK;
}

size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
                       uint8_t *data) {
  const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
  const size_t move_dst_offset = length_field_size + obu_header_size;
  const size_t move_src_offset = obu_header_size;
  const size_t move_size = obu_payload_size;
  memmove(data + move_dst_offset, data + move_src_offset, move_size);
  return length_field_size;
}

static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
  if (aom_wb_is_byte_aligned(wb)) {
    aom_wb_write_literal(wb, 0x80, 8);
  } else {
    // assumes that the other bits are already 0s
    aom_wb_write_bit(wb, 1);
  }
}

static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
                                             struct aom_write_bit_buffer *wb) {
  assert(is_valid_seq_level_idx(seq_level_idx));
  aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
}

uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
                                       uint8_t *const dst) {
  struct aom_write_bit_buffer wb = { dst, 0 };
  uint32_t size = 0;

  write_profile(seq_params->profile, &wb);

  // Still picture or not
  aom_wb_write_bit(&wb, seq_params->still_picture);
  assert(IMPLIES(!seq_params->still_picture,
                 !seq_params->reduced_still_picture_hdr));
  // whether to use reduced still picture header
  aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);

  if (seq_params->reduced_still_picture_hdr) {
    assert(seq_params->timing_info_present == 0);
    assert(seq_params->decoder_model_info_present_flag == 0);
    assert(seq_params->display_model_info_present_flag == 0);
    write_bitstream_level(seq_params->seq_level_idx[0], &wb);
  } else {
    aom_wb_write_bit(
        &wb, seq_params->timing_info_present);  // timing info present flag

    if (seq_params->timing_info_present) {
      // timing_info
      write_timing_info_header(&seq_params->timing_info, &wb);
      aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
      if (seq_params->decoder_model_info_present_flag) {
        write_decoder_model_info(&seq_params->decoder_model_info, &wb);
      }
    }
    aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
    aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
                         OP_POINTS_CNT_MINUS_1_BITS);
    int i;
    for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
      aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
                           OP_POINTS_IDC_BITS);
      write_bitstream_level(seq_params->seq_level_idx[i], &wb);
      if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
        aom_wb_write_bit(&wb, seq_params->tier[i]);
      if (seq_params->decoder_model_info_present_flag) {
        aom_wb_write_bit(
            &wb, seq_params->op_params[i].decoder_model_param_present_flag);
        if (seq_params->op_params[i].decoder_model_param_present_flag) {
          write_dec_model_op_parameters(
              &seq_params->op_params[i],
              seq_params->decoder_model_info
                  .encoder_decoder_buffer_delay_length,
              &wb);
        }
      }
      if (seq_params->display_model_info_present_flag) {
        aom_wb_write_bit(
            &wb, seq_params->op_params[i].display_model_param_present_flag);
        if (seq_params->op_params[i].display_model_param_present_flag) {
          assert(seq_params->op_params[i].initial_display_delay <= 10);
          aom_wb_write_literal(
              &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
        }
      }
    }
  }
  write_sequence_header(seq_params, &wb);

  write_color_config(seq_params, &wb);

  aom_wb_write_bit(&wb, seq_params->film_grain_params_present);

  add_trailing_bits(&wb);

  size = aom_wb_bytes_written(&wb);
  return size;
}

static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
                                       struct aom_write_bit_buffer *saved_wb,
                                       uint8_t *const dst,
                                       int append_trailing_bits) {
  struct aom_write_bit_buffer wb = { dst, 0 };
  write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
  if (append_trailing_bits) add_trailing_bits(&wb);
  return aom_wb_bytes_written(&wb);
}

static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
                                        int end_tile, int tiles_log2,
                                        int tile_start_and_end_present_flag) {
  struct aom_write_bit_buffer wb = { dst, 0 };
  uint32_t size = 0;

  if (!tiles_log2) return size;

  aom_wb_write_bit(&wb, tile_start_and_end_present_flag);

  if (tile_start_and_end_present_flag) {
    aom_wb_write_literal(&wb, start_tile, tiles_log2);
    aom_wb_write_literal(&wb, end_tile, tiles_log2);
  }

  size = aom_wb_bytes_written(&wb);
  return size;
}

extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
                                                const char *filename);

typedef struct {
  uint32_t tg_hdr_size;
  uint32_t frame_header_size;
} LargeTileFrameOBU;

// Initialize OBU header for large scale tile case.
static uint32_t init_large_scale_tile_obu_header(
    AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
    LargeTileFrameOBU *lst_obu) {
  AV1LevelParams *const level_params = &cpi->ppi->level_params;
  CurrentFrame *const current_frame = &cpi->common.current_frame;
  // For large_scale_tile case, we always have only one tile group, so it can
  // be written as an OBU_FRAME.
  const OBU_TYPE obu_type = OBU_FRAME;
  lst_obu->tg_hdr_size = av1_write_obu_header(
      level_params, &cpi->frame_header_count, obu_type, 0, *data);
  *data += lst_obu->tg_hdr_size;

  const uint32_t frame_header_size =
      write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
  *data += frame_header_size;
  lst_obu->frame_header_size = frame_header_size;
  // (yunqing) This test ensures the correctness of large scale tile coding.
  if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
    char fn[20] = "./fh";
    fn[4] = current_frame->frame_number / 100 + '0';
    fn[5] = (current_frame->frame_number % 100) / 10 + '0';
    fn[6] = (current_frame->frame_number % 10) + '0';
    fn[7] = '\0';
    av1_print_uncompressed_frame_header(*data - frame_header_size,
                                        frame_header_size, fn);
  }
  return frame_header_size;
}

// Write total buffer size and related information into the OBU header for large
// scale tile case.
static void write_large_scale_tile_obu_size(
    const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
    struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
    int have_tiles, uint32_t *total_size, int max_tile_size,
    int max_tile_col_size) {
  int tile_size_bytes = 0;
  int tile_col_size_bytes = 0;
  if (have_tiles) {
    *total_size = remux_tiles(
        tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
        max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
    *total_size += lst_obu->frame_header_size;
  }

  // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
  // current tile group size before tile data(include tile column header).
  // Tile group size doesn't include the bytes storing tg size.
  *total_size += lst_obu->tg_hdr_size;
  const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
  const size_t length_field_size =
      av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
  if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
      AOM_CODEC_OK)
    assert(0);

  *total_size += (uint32_t)length_field_size;
  saved_wb->bit_buffer += length_field_size;

  // Now fill in the gaps in the uncompressed header.
  if (have_tiles) {
    assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
    aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);

    assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
    aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
  }
}

// Store information on each large scale tile in the OBU header.
static void write_large_scale_tile_obu(
    AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
    int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
    unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;

  TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  unsigned int tile_size = 0;

  av1_reset_pack_bs_thread_data(&cpi->td);
  for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
    TileInfo tile_info;
    const int is_last_col = (tile_col == tile_cols - 1);
    const uint32_t col_offset = *total_size;

    av1_tile_set_col(&tile_info, cm, tile_col);

    // The last column does not have a column header
    if (!is_last_col) *total_size += 4;

    for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
      TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
      const int data_offset = have_tiles ? 4 : 0;
      const int tile_idx = tile_row * tile_cols + tile_col;
      TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
      av1_tile_set_row(&tile_info, cm, tile_row);
      aom_writer mode_bc;

      buf->data = dst + *total_size + lst_obu->tg_hdr_size;

      // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
      // even for the last one, unless no tiling is used at all.
      *total_size += data_offset;
      cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
      mode_bc.allow_update_cdf = !tiles->large_scale;
      mode_bc.allow_update_cdf =
          mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
      aom_start_encode(&mode_bc, buf->data + data_offset);
      write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
      aom_stop_encode(&mode_bc);
      tile_size = mode_bc.pos;
      buf->size = tile_size;

      // Record the maximum tile size we see, so we can compact headers later.
      if (tile_size > *max_tile_size) {
        *max_tile_size = tile_size;
        *largest_tile_id = tile_cols * tile_row + tile_col;
      }

      if (have_tiles) {
        // tile header: size of this tile, or copy offset
        uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
        const int tile_copy_mode =
            ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
                                                                           : 0;

        // If tile_copy_mode = 1, check if this tile is a copy tile.
        // Very low chances to have copy tiles on the key frames, so don't
        // search on key frames to reduce unnecessary search.
        if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
          const int identical_tile_offset =
              find_identical_tile(tile_row, tile_col, tile_buffers);

          // Indicate a copy-tile by setting the most significant bit.
          // The row-offset to copy from is stored in the highest byte.
          // remux_tiles will move these around later
          if (identical_tile_offset > 0) {
            tile_size = 0;
            tile_header = identical_tile_offset | 0x80;
            tile_header <<= 24;
          }
        }

        mem_put_le32(buf->data, tile_header);
      }

      *total_size += tile_size;
    }
    if (!is_last_col) {
      uint32_t col_size = *total_size - col_offset - 4;
      mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);

      // Record the maximum tile column size we see.
      *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
    }
  }
  av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
}

// Packs information in the obu header for large scale tiles.
static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
    AV1_COMP *const cpi, uint8_t *const dst,
    struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;
  uint32_t total_size = 0;
  unsigned int max_tile_size = 0;
  unsigned int max_tile_col_size = 0;
  const int have_tiles = tiles->cols * tiles->rows > 1;
  uint8_t *data = dst;

  LargeTileFrameOBU lst_obu;

  total_size +=
      init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);

  write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
                             have_tiles, &max_tile_size, &max_tile_col_size);

  write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
                                  have_tiles, &total_size, max_tile_size,
                                  max_tile_col_size);

  return total_size;
}

// Writes obu, tile group and uncompressed headers to bitstream.
void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
                                   PackBSParams *const pack_bs_params,
                                   const int tile_idx) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;
  int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
  const int tg_size =
      (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;

  // Write Tile group, frame and OBU header
  // A new tile group begins at this tile.  Write the obu header and
  // tile group header
  const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
  *curr_tg_hdr_size = av1_write_obu_header(
      &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
      pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
  pack_bs_params->obu_header_size = *curr_tg_hdr_size;

  if (cpi->num_tg == 1)
    *curr_tg_hdr_size += write_frame_header_obu(
        cpi, xd, pack_bs_params->saved_wb,
        pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
  *curr_tg_hdr_size += write_tile_group_header(
      pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
      AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
      (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
  *pack_bs_params->total_size += *curr_tg_hdr_size;
}

// Pack tile data in the bitstream with tile_group, frame
// and OBU header.
void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
                        PackBSParams *const pack_bs_params) {
  aom_writer mode_bc;
  AV1_COMMON *const cm = &cpi->common;
  int tile_row = pack_bs_params->tile_row;
  int tile_col = pack_bs_params->tile_col;
  uint32_t *const total_size = pack_bs_params->total_size;
  TileInfo tile_info;
  av1_tile_set_col(&tile_info, cm, tile_col);
  av1_tile_set_row(&tile_info, cm, tile_row);
  mode_bc.allow_update_cdf = 1;
  mode_bc.allow_update_cdf =
      mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;

  unsigned int tile_size;

  const int num_planes = av1_num_planes(cm);
  av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);

  pack_bs_params->buf.data = pack_bs_params->dst + *total_size;

  // The last tile of the tile group does not have a header.
  if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;

  // Pack tile data
  aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
  write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
  aom_stop_encode(&mode_bc);
  tile_size = mode_bc.pos;
  assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);

  pack_bs_params->buf.size = tile_size;

  // Write tile size
  if (!pack_bs_params->is_last_tile_in_tg) {
    // size of this tile
    mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
  }
}

void av1_write_last_tile_info(
    AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
    struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
    uint8_t *curr_tg_start, uint32_t *const total_size,
    uint8_t **tile_data_start, int *const largest_tile_id,
    int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
  // write current tile group size
  const uint32_t obu_payload_size =
      (uint32_t)(*curr_tg_data_size) - obu_header_size;
  const size_t length_field_size =
      av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
  if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
                              curr_tg_start) != AOM_CODEC_OK) {
    assert(0);
  }
  *curr_tg_data_size += (int)length_field_size;
  *total_size += (uint32_t)length_field_size;
  *tile_data_start += length_field_size;
  if (cpi->num_tg == 1) {
    // if this tg is combined with the frame header then update saved
    // frame header base offset according to length field size
    saved_wb->bit_buffer += length_field_size;
  }

  if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
    // Make room for a duplicate Frame Header OBU.
    memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
            *curr_tg_data_size);

    // Insert a copy of the Frame Header OBU.
    memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);

    // Force context update tile to be the first tile in error
    // resilient mode as the duplicate frame headers will have
    // context_update_tile_id set to 0
    *largest_tile_id = 0;

    // Rewrite the OBU header to change the OBU type to Redundant Frame
    // Header.
    av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
                         OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
                         &curr_tg_start[fh_info->obu_header_byte_offset]);

    *curr_tg_data_size += (int)(fh_info->total_length);
    *total_size += (uint32_t)(fh_info->total_length);
  }
  *is_first_tg = 0;
}

void av1_reset_pack_bs_thread_data(ThreadData *const td) {
  td->coefficient_size = 0;
  td->max_mv_magnitude = 0;
  av1_zero(td->interp_filter_selected);
}

void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
                                        ThreadData const *td) {
  int do_max_mv_magnitude_update = 1;
  cpi->rc.coefficient_size += td->coefficient_size;

#if CONFIG_FRAME_PARALLEL_ENCODE
  // Disable max_mv_magnitude update for parallel frames based on update flag.
  if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
#endif

  if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
    cpi->mv_search_params.max_mv_magnitude =
        AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);

  for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
    cpi->common.cur_frame->interp_filter_selected[filter] +=
        td->interp_filter_selected[filter];
}

// Store information related to each default tile in the OBU header.
static void write_tile_obu(
    AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
    struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
    const FrameHeaderInfo *fh_info, int *const largest_tile_id,
    unsigned int *max_tile_size, uint32_t *const obu_header_size,
    uint8_t **tile_data_start) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
  const CommonTileParams *const tiles = &cm->tiles;
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  // Fixed size tile groups for the moment
  const int num_tg_hdrs = cpi->num_tg;
  const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
  int tile_count = 0;
  size_t curr_tg_data_size = 0;
  uint8_t *tile_data_curr = dst;
  int new_tg = 1;
  int is_first_tg = 1;

  av1_reset_pack_bs_thread_data(&cpi->td);
  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
      const int tile_idx = tile_row * tile_cols + tile_col;
      TileDataEnc *this_tile = &cpi->tile_data[tile_idx];

      int is_last_tile_in_tg = 0;
      if (new_tg) {
        tile_data_curr = dst + *total_size;
        tile_count = 0;
      }
      tile_count++;

      if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
        is_last_tile_in_tg = 1;

      xd->tile_ctx = &this_tile->tctx;

      // PackBSParams stores all parameters required to pack tile and header
      // info.
      PackBSParams pack_bs_params;
      pack_bs_params.dst = dst;
      pack_bs_params.curr_tg_hdr_size = 0;
      pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
      pack_bs_params.new_tg = new_tg;
      pack_bs_params.obu_extn_header = obu_extn_header;
      pack_bs_params.obu_header_size = 0;
      pack_bs_params.saved_wb = saved_wb;
      pack_bs_params.tile_col = tile_col;
      pack_bs_params.tile_row = tile_row;
      pack_bs_params.tile_data_curr = tile_data_curr;
      pack_bs_params.total_size = total_size;

      if (new_tg)
        av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);

      av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);

      if (new_tg) {
        curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
        *tile_data_start += pack_bs_params.curr_tg_hdr_size;
        *obu_header_size = pack_bs_params.obu_header_size;
        new_tg = 0;
      }
      if (is_last_tile_in_tg) new_tg = 1;

      curr_tg_data_size +=
          (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));

      if (pack_bs_params.buf.size > *max_tile_size) {
        *largest_tile_id = tile_idx;
        *max_tile_size = (unsigned int)pack_bs_params.buf.size;
      }

      if (is_last_tile_in_tg)
        av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
                                 tile_data_curr, total_size, tile_data_start,
                                 largest_tile_id, &is_first_tg,
                                 *obu_header_size, obu_extn_header);
      *total_size += (uint32_t)pack_bs_params.buf.size;
    }
  }
  av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
}

// Write total buffer size and related information into the OBU header for
// default tile case.
static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
                                struct aom_write_bit_buffer *saved_wb,
                                int largest_tile_id, uint32_t *const total_size,
                                unsigned int max_tile_size,
                                uint32_t obu_header_size,
                                uint8_t *tile_data_start) {
  const CommonTileParams *const tiles = &cpi->common.tiles;

  // Fill in context_update_tile_id indicating the tile to use for the
  // cdf update. The encoder currently sets it to the largest tile
  // (but is up to the encoder)
  aom_wb_overwrite_literal(saved_wb, largest_tile_id,
                           (tiles->log2_cols + tiles->log2_rows));
  // If more than one tile group. tile_size_bytes takes the default value 4
  // and does not need to be set. For a single tile group it is set in the
  // section below.
  if (cpi->num_tg != 1) return;
  int tile_size_bytes = 4, unused;
  const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
  const uint32_t tile_data_size = *total_size - tile_data_offset;

  *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
                            max_tile_size, 0, &tile_size_bytes, &unused);
  *total_size += tile_data_offset;
  assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);

  aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);

  // Update the OBU length if remux_tiles() reduced the size.
  uint64_t payload_size;
  size_t length_field_size;
  int res =
      aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
                      &payload_size, &length_field_size);
  assert(res == 0);
  (void)res;

  const uint64_t new_payload_size =
      *total_size - obu_header_size - length_field_size;
  if (new_payload_size != payload_size) {
    size_t new_length_field_size;
    res = aom_uleb_encode(new_payload_size, length_field_size,
                          dst + obu_header_size, &new_length_field_size);
    assert(res == 0);
    if (new_length_field_size < length_field_size) {
      const size_t src_offset = obu_header_size + length_field_size;
      const size_t dst_offset = obu_header_size + new_length_field_size;
      memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
      *total_size -= (int)(length_field_size - new_length_field_size);
    }
  }
}

// As per the experiments, single-thread bitstream packing is better for
// frames with a smaller bitstream size. This behavior is due to setup time
// overhead of multithread function would be more than that of time required
// to pack the smaller bitstream of such frames. We set a threshold on the
// total absolute sum of transform coeffs to detect such frames and disable
// Multithreading.
int enable_pack_bitstream_mt(const TileDataEnc *tile_data, int num_tiles,
                             int num_workers) {
  if (AOMMIN(num_workers, num_tiles) <= 1) return 0;

  const int num_work_sqr = num_workers * num_workers;
  const uint64_t thresh = 50;
  uint64_t frame_abs_sum_level = 0;
  for (int idx = 0; idx < num_tiles; idx++)
    frame_abs_sum_level += tile_data[idx].abs_sum_level;
  return ((frame_abs_sum_level > (num_work_sqr * thresh) / (num_workers - 1)));
}

static INLINE uint32_t pack_tiles_in_tg_obus(
    AV1_COMP *const cpi, uint8_t *const dst,
    struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
    const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
  const CommonTileParams *const tiles = &cpi->common.tiles;
  uint32_t total_size = 0;
  unsigned int max_tile_size = 0;
  uint32_t obu_header_size = 0;
  uint8_t *tile_data_start = dst;
  const int num_workers = cpi->mt_info.num_mod_workers[MOD_PACK_BS];
  const int tile_cols = tiles->cols;
  const int tile_rows = tiles->rows;
  const int num_tiles = tile_rows * tile_cols;

  const int enable_mt =
      enable_pack_bitstream_mt(cpi->tile_data, num_tiles, num_workers);

  if (enable_mt) {
    av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
                          fh_info, largest_tile_id, &max_tile_size,
                          &obu_header_size, &tile_data_start);
  } else {
    write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
                   fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
                   &tile_data_start);
  }

  if (num_tiles > 1)
    write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
                        max_tile_size, obu_header_size, tile_data_start);
  return total_size;
}

static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
                                       struct aom_write_bit_buffer *saved_wb,
                                       uint8_t obu_extension_header,
                                       const FrameHeaderInfo *fh_info,
                                       int *const largest_tile_id) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;
  *largest_tile_id = 0;

  // Select the coding strategy (temporal or spatial)
  if (cm->seg.enabled) av1_choose_segmap_coding_method(cm, &cpi->td.mb.e_mbd);

  if (tiles->large_scale)
    return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
                                             largest_tile_id);

  return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
                               fh_info, largest_tile_id);
}

static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
                                     uint8_t *const dst) {
  size_t coded_metadata_size = 0;
  const uint64_t metadata_type = (uint64_t)metadata->type;
  if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
                      &coded_metadata_size) != 0) {
    return 0;
  }
  memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
  // Add trailing bits.
  dst[coded_metadata_size + metadata->sz] = 0x80;
  return (uint32_t)(coded_metadata_size + metadata->sz + 1);
}

static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
  if (!cpi->source) return 0;
  AV1_COMMON *const cm = &cpi->common;
  aom_metadata_array_t *arr = cpi->source->metadata;
  if (!arr) return 0;
  size_t obu_header_size = 0;
  size_t obu_payload_size = 0;
  size_t total_bytes_written = 0;
  size_t length_field_size = 0;
  for (size_t i = 0; i < arr->sz; i++) {
    aom_metadata_t *current_metadata = arr->metadata_array[i];
    if (current_metadata && current_metadata->payload) {
      if ((cm->current_frame.frame_type == KEY_FRAME &&
           current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
          (cm->current_frame.frame_type != KEY_FRAME &&
           current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
          current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
        obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
                                               &cpi->frame_header_count,
                                               OBU_METADATA, 0, dst);
        obu_payload_size =
            av1_write_metadata_obu(current_metadata, dst + obu_header_size);
        length_field_size =
            av1_obu_memmove(obu_header_size, obu_payload_size, dst);
        if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
            AOM_CODEC_OK) {
          const size_t obu_size = obu_header_size + obu_payload_size;
          dst += obu_size + length_field_size;
          total_bytes_written += obu_size + length_field_size;
        } else {
          aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
                             "Error writing metadata OBU size");
        }
      }
    }
  }
  return total_bytes_written;
}

int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
                       int *const largest_tile_id) {
  uint8_t *data = dst;
  uint32_t data_size;
  AV1_COMMON *const cm = &cpi->common;
  AV1LevelParams *const level_params = &cpi->ppi->level_params;
  uint32_t obu_header_size = 0;
  uint32_t obu_payload_size = 0;
  FrameHeaderInfo fh_info = { NULL, 0, 0 };
  const uint8_t obu_extension_header =
      cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;

  // If no non-zero delta_q has been used, reset delta_q_present_flag
  if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
    cm->delta_q_info.delta_q_present_flag = 0;
  }

#if CONFIG_BITSTREAM_DEBUG
  bitstream_queue_reset_write();
#endif

  cpi->frame_header_count = 0;

  // The TD is now written outside the frame encode loop

  // write sequence header obu if KEY_FRAME, preceded by 4-byte size
  if (cm->current_frame.frame_type == KEY_FRAME && !cpi->no_show_fwd_kf) {
    obu_header_size = av1_write_obu_header(
        level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);

    obu_payload_size =
        av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
    const size_t length_field_size =
        av1_obu_memmove(obu_header_size, obu_payload_size, data);
    if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
        AOM_CODEC_OK) {
      return AOM_CODEC_ERROR;
    }

    data += obu_header_size + obu_payload_size + length_field_size;
  }

  // write metadata obus before the frame obu that has the show_frame flag set
  if (cm->show_frame) data += av1_write_metadata_array(cpi, data);

  const int write_frame_header =
      (cpi->num_tg > 1 || encode_show_existing_frame(cm));
  struct aom_write_bit_buffer saved_wb = { NULL, 0 };
  size_t length_field = 0;
  if (write_frame_header) {
    // Write Frame Header OBU.
    fh_info.frame_header = data;
    obu_header_size =
        av1_write_obu_header(level_params, &cpi->frame_header_count,
                             OBU_FRAME_HEADER, obu_extension_header, data);
    obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
                                              data + obu_header_size, 1);

    length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
    if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
        AOM_CODEC_OK) {
      return AOM_CODEC_ERROR;
    }

    fh_info.obu_header_byte_offset = 0;
    fh_info.total_length = obu_header_size + obu_payload_size + length_field;
    data += fh_info.total_length;
  }

  if (encode_show_existing_frame(cm)) {
    data_size = 0;
  } else {
    // Since length_field is determined adaptively after frame header
    // encoding, saved_wb must be adjusted accordingly.
    saved_wb.bit_buffer += length_field;

    //  Each tile group obu will be preceded by 4-byte size of the tile group
    //  obu
    data_size = write_tiles_in_tg_obus(
        cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
  }
  data += data_size;
  *size = data - dst;
  return AOM_CODEC_OK;
}