aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/compound_type.c
blob: 00fa3890bf08c6e06a622ebadf75a731ff76d064 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/pred_common.h"
#include "av1/encoder/compound_type.h"
#include "av1/encoder/encoder_alloc.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/rdopt_utils.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tx_search.h"

typedef int64_t (*pick_interinter_mask_type)(
    const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
    const uint8_t *const p0, const uint8_t *const p1,
    const int16_t *const residual1, const int16_t *const diff10,
    uint64_t *best_sse);

// Checks if characteristics of search match
static INLINE int is_comp_rd_match(const AV1_COMP *const cpi,
                                   const MACROBLOCK *const x,
                                   const COMP_RD_STATS *st,
                                   const MB_MODE_INFO *const mi,
                                   int32_t *comp_rate, int64_t *comp_dist,
                                   int32_t *comp_model_rate,
                                   int64_t *comp_model_dist, int *comp_rs2) {
  // TODO(ranjit): Ensure that compound type search use regular filter always
  // and check if following check can be removed
  // Check if interp filter matches with previous case
  if (st->filter.as_int != mi->interp_filters.as_int) return 0;

  const MACROBLOCKD *const xd = &x->e_mbd;
  // Match MV and reference indices
  for (int i = 0; i < 2; ++i) {
    if ((st->ref_frames[i] != mi->ref_frame[i]) ||
        (st->mv[i].as_int != mi->mv[i].as_int)) {
      return 0;
    }
    const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[i]];
    if (is_global_mv_block(mi, wm->wmtype) != st->is_global[i]) return 0;
  }

  int reuse_data[COMPOUND_TYPES] = { 1, 1, 0, 0 };
  // For compound wedge, reuse data if newmv search is disabled when NEWMV is
  // present or if NEWMV is not present in either of the directions
  if ((!have_newmv_in_inter_mode(mi->mode) &&
       !have_newmv_in_inter_mode(st->mode)) ||
      (cpi->sf.inter_sf.disable_interinter_wedge_newmv_search))
    reuse_data[COMPOUND_WEDGE] = 1;
  // For compound diffwtd, reuse data if fast search is enabled (no newmv search
  // when NEWMV is present) or if NEWMV is not present in either of the
  // directions
  if (cpi->sf.inter_sf.enable_fast_compound_mode_search ||
      (!have_newmv_in_inter_mode(mi->mode) &&
       !have_newmv_in_inter_mode(st->mode)))
    reuse_data[COMPOUND_DIFFWTD] = 1;

  // Store the stats for the different compound types
  for (int comp_type = COMPOUND_AVERAGE; comp_type < COMPOUND_TYPES;
       comp_type++) {
    if (reuse_data[comp_type]) {
      comp_rate[comp_type] = st->rate[comp_type];
      comp_dist[comp_type] = st->dist[comp_type];
      comp_model_rate[comp_type] = st->model_rate[comp_type];
      comp_model_dist[comp_type] = st->model_dist[comp_type];
      comp_rs2[comp_type] = st->comp_rs2[comp_type];
    }
  }
  return 1;
}

// Checks if similar compound type search case is accounted earlier
// If found, returns relevant rd data
static INLINE int find_comp_rd_in_stats(const AV1_COMP *const cpi,
                                        const MACROBLOCK *x,
                                        const MB_MODE_INFO *const mbmi,
                                        int32_t *comp_rate, int64_t *comp_dist,
                                        int32_t *comp_model_rate,
                                        int64_t *comp_model_dist, int *comp_rs2,
                                        int *match_index) {
  for (int j = 0; j < x->comp_rd_stats_idx; ++j) {
    if (is_comp_rd_match(cpi, x, &x->comp_rd_stats[j], mbmi, comp_rate,
                         comp_dist, comp_model_rate, comp_model_dist,
                         comp_rs2)) {
      *match_index = j;
      return 1;
    }
  }
  return 0;  // no match result found
}

static INLINE bool enable_wedge_search(
    MACROBLOCK *const x, const unsigned int disable_wedge_var_thresh) {
  // Enable wedge search if source variance and edge strength are above
  // the thresholds.
  return x->source_variance > disable_wedge_var_thresh;
}

static INLINE bool enable_wedge_interinter_search(MACROBLOCK *const x,
                                                  const AV1_COMP *const cpi) {
  return enable_wedge_search(
             x, cpi->sf.inter_sf.disable_interinter_wedge_var_thresh) &&
         cpi->oxcf.comp_type_cfg.enable_interinter_wedge;
}

static INLINE bool enable_wedge_interintra_search(MACROBLOCK *const x,
                                                  const AV1_COMP *const cpi) {
  return enable_wedge_search(
             x, cpi->sf.inter_sf.disable_interintra_wedge_var_thresh) &&
         cpi->oxcf.comp_type_cfg.enable_interintra_wedge;
}

static int8_t estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
                                  const BLOCK_SIZE bsize, const uint8_t *pred0,
                                  int stride0, const uint8_t *pred1,
                                  int stride1) {
  static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = {
    //                            4X4
    BLOCK_INVALID,
    // 4X8,        8X4,           8X8
    BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4,
    // 8X16,       16X8,          16X16
    BLOCK_4X8, BLOCK_8X4, BLOCK_8X8,
    // 16X32,      32X16,         32X32
    BLOCK_8X16, BLOCK_16X8, BLOCK_16X16,
    // 32X64,      64X32,         64X64
    BLOCK_16X32, BLOCK_32X16, BLOCK_32X32,
    // 64x128,     128x64,        128x128
    BLOCK_32X64, BLOCK_64X32, BLOCK_64X64,
    // 4X16,       16X4,          8X32
    BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16,
    // 32X8,       16X64,         64X16
    BLOCK_16X4, BLOCK_8X32, BLOCK_32X8
  };
  const struct macroblock_plane *const p = &x->plane[0];
  const uint8_t *src = p->src.buf;
  int src_stride = p->src.stride;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int bw_by2 = bw >> 1;
  const int bh_by2 = bh >> 1;
  uint32_t esq[2][2];
  int64_t tl, br;

  const BLOCK_SIZE f_index = split_qtr[bsize];
  assert(f_index != BLOCK_INVALID);

  if (is_cur_buf_hbd(&x->e_mbd)) {
    pred0 = CONVERT_TO_BYTEPTR(pred0);
    pred1 = CONVERT_TO_BYTEPTR(pred1);
  }

  // Residual variance computation over relevant quandrants in order to
  // find TL + BR, TL = sum(1st,2nd,3rd) quadrants of (pred0 - pred1),
  // BR = sum(2nd,3rd,4th) quadrants of (pred1 - pred0)
  // The 2nd and 3rd quadrants cancel out in TL + BR
  // Hence TL + BR = 1st quadrant of (pred0-pred1) + 4th of (pred1-pred0)
  // TODO(nithya): Sign estimation assumes 45 degrees (1st and 4th quadrants)
  // for all codebooks; experiment with other quadrant combinations for
  // 0, 90 and 135 degrees also.
  cpi->ppi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
  cpi->ppi->fn_ptr[f_index].vf(src + bh_by2 * src_stride + bw_by2, src_stride,
                               pred0 + bh_by2 * stride0 + bw_by2, stride0,
                               &esq[0][1]);
  cpi->ppi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
  cpi->ppi->fn_ptr[f_index].vf(src + bh_by2 * src_stride + bw_by2, src_stride,
                               pred1 + bh_by2 * stride1 + bw_by2, stride0,
                               &esq[1][1]);

  tl = ((int64_t)esq[0][0]) - ((int64_t)esq[1][0]);
  br = ((int64_t)esq[1][1]) - ((int64_t)esq[0][1]);
  return (tl + br > 0);
}

// Choose the best wedge index and sign
static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
                          const BLOCK_SIZE bsize, const uint8_t *const p0,
                          const int16_t *const residual1,
                          const int16_t *const diff10,
                          int8_t *const best_wedge_sign,
                          int8_t *const best_wedge_index, uint64_t *best_sse) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  const struct buf_2d *const src = &x->plane[0].src;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = bw * bh;
  assert(N >= 64);
  int rate;
  int64_t dist;
  int64_t rd, best_rd = INT64_MAX;
  int8_t wedge_index;
  int8_t wedge_sign;
  const int8_t wedge_types = get_wedge_types_lookup(bsize);
  const uint8_t *mask;
  uint64_t sse;
  const int hbd = is_cur_buf_hbd(xd);
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;

  DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]);  // src - pred0
#if CONFIG_AV1_HIGHBITDEPTH
  if (hbd) {
    aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride,
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
  } else {
    aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
  }
#else
  (void)hbd;
  aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
#endif

  int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) -
                        (int64_t)aom_sum_squares_i16(residual1, N)) *
                       (1 << WEDGE_WEIGHT_BITS) / 2;
  int16_t *ds = residual0;

  av1_wedge_compute_delta_squares(ds, residual0, residual1, N);

  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
    mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);

    wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);

    mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
    sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
                                                  &rate, &dist);
    // int rate2;
    // int64_t dist2;
    // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2);
    // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n",
    // sse, rate, dist, rate2, dist2); dist = dist2;
    // rate = rate2;

    rate += x->mode_costs.wedge_idx_cost[bsize][wedge_index];
    rd = RDCOST(x->rdmult, rate, dist);

    if (rd < best_rd) {
      *best_wedge_index = wedge_index;
      *best_wedge_sign = wedge_sign;
      best_rd = rd;
      *best_sse = sse;
    }
  }

  return best_rd -
         RDCOST(x->rdmult,
                x->mode_costs.wedge_idx_cost[bsize][*best_wedge_index], 0);
}

// Choose the best wedge index the specified sign
static int64_t pick_wedge_fixed_sign(
    const AV1_COMP *const cpi, const MACROBLOCK *const x,
    const BLOCK_SIZE bsize, const int16_t *const residual1,
    const int16_t *const diff10, const int8_t wedge_sign,
    int8_t *const best_wedge_index, uint64_t *best_sse) {
  const MACROBLOCKD *const xd = &x->e_mbd;

  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = bw * bh;
  assert(N >= 64);
  int rate;
  int64_t dist;
  int64_t rd, best_rd = INT64_MAX;
  int8_t wedge_index;
  const int8_t wedge_types = get_wedge_types_lookup(bsize);
  const uint8_t *mask;
  uint64_t sse;
  const int hbd = is_cur_buf_hbd(xd);
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
    mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
    sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
                                                  &rate, &dist);
    rate += x->mode_costs.wedge_idx_cost[bsize][wedge_index];
    rd = RDCOST(x->rdmult, rate, dist);

    if (rd < best_rd) {
      *best_wedge_index = wedge_index;
      best_rd = rd;
      *best_sse = sse;
    }
  }
  return best_rd -
         RDCOST(x->rdmult,
                x->mode_costs.wedge_idx_cost[bsize][*best_wedge_index], 0);
}

static int64_t pick_interinter_wedge(
    const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize,
    const uint8_t *const p0, const uint8_t *const p1,
    const int16_t *const residual1, const int16_t *const diff10,
    uint64_t *best_sse) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int bw = block_size_wide[bsize];

  int64_t rd;
  int8_t wedge_index = -1;
  int8_t wedge_sign = 0;

  assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
  assert(cpi->common.seq_params->enable_masked_compound);

  if (cpi->sf.inter_sf.fast_wedge_sign_estimate) {
    wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
    rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign,
                               &wedge_index, best_sse);
  } else {
    rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign,
                    &wedge_index, best_sse);
  }

  mbmi->interinter_comp.wedge_sign = wedge_sign;
  mbmi->interinter_comp.wedge_index = wedge_index;
  return rd;
}

static int64_t pick_interinter_seg(const AV1_COMP *const cpi,
                                   MACROBLOCK *const x, const BLOCK_SIZE bsize,
                                   const uint8_t *const p0,
                                   const uint8_t *const p1,
                                   const int16_t *const residual1,
                                   const int16_t *const diff10,
                                   uint64_t *best_sse) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = 1 << num_pels_log2_lookup[bsize];
  int rate;
  int64_t dist;
  DIFFWTD_MASK_TYPE cur_mask_type;
  int64_t best_rd = INT64_MAX;
  DIFFWTD_MASK_TYPE best_mask_type = 0;
  const int hbd = is_cur_buf_hbd(xd);
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
  DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
  uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask };
  // try each mask type and its inverse
  for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) {
    // build mask and inverse
    if (hbd)
      av1_build_compound_diffwtd_mask_highbd(
          tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw,
          CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd);
    else
      av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type,
                                      p0, bw, p1, bw, bh, bw);

    // compute rd for mask
    uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10,
                                                tmp_mask[cur_mask_type], N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
                                                  &rate, &dist);
    const int64_t rd0 = RDCOST(x->rdmult, rate, dist);

    if (rd0 < best_rd) {
      best_mask_type = cur_mask_type;
      best_rd = rd0;
      *best_sse = sse;
    }
  }
  mbmi->interinter_comp.mask_type = best_mask_type;
  if (best_mask_type == DIFFWTD_38_INV) {
    memcpy(xd->seg_mask, seg_mask, N * 2);
  }
  return best_rd;
}

static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
                                     const MACROBLOCK *const x,
                                     const BLOCK_SIZE bsize,
                                     const uint8_t *const p0,
                                     const uint8_t *const p1) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(av1_is_wedge_used(bsize));
  assert(cpi->common.seq_params->enable_interintra_compound);

  const struct buf_2d *const src = &x->plane[0].src;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]);  // src - pred1
  DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]);     // pred1 - pred0
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
                              CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
    aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw,
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
  } else {
    aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
    aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
  }
#else
  aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
  aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
#endif
  int8_t wedge_index = -1;
  uint64_t sse;
  int64_t rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0,
                                     &wedge_index, &sse);

  mbmi->interintra_wedge_index = wedge_index;
  return rd;
}

static AOM_INLINE void get_inter_predictors_masked_compound(
    MACROBLOCK *x, const BLOCK_SIZE bsize, uint8_t **preds0, uint8_t **preds1,
    int16_t *residual1, int16_t *diff10, int *strides) {
  MACROBLOCKD *xd = &x->e_mbd;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  // get inter predictors to use for masked compound modes
  av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 0, preds0,
                                                   strides);
  av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 1, preds1,
                                                   strides);
  const struct buf_2d *const src = &x->plane[0].src;
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
                              CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd);
    aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1),
                              bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd);
  } else {
    aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1,
                       bw);
    aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw);
  }
#else
  aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1, bw);
  aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw);
#endif
}

// Computes the rd cost for the given interintra mode and updates the best
static INLINE void compute_best_interintra_mode(
    const AV1_COMP *const cpi, MB_MODE_INFO *mbmi, MACROBLOCKD *xd,
    MACROBLOCK *const x, const int *const interintra_mode_cost,
    const BUFFER_SET *orig_dst, uint8_t *intrapred, const uint8_t *tmp_buf,
    INTERINTRA_MODE *best_interintra_mode, int64_t *best_interintra_rd,
    INTERINTRA_MODE interintra_mode, BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  int rate, skip_txfm_sb;
  int64_t dist, skip_sse_sb;
  const int bw = block_size_wide[bsize];
  mbmi->interintra_mode = interintra_mode;
  int rmode = interintra_mode_cost[interintra_mode];
  av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                            intrapred, bw);
  av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
  model_rd_sb_fn[MODELRD_TYPE_INTERINTRA](cpi, bsize, x, xd, 0, 0, &rate, &dist,
                                          &skip_txfm_sb, &skip_sse_sb, NULL,
                                          NULL, NULL);
  int64_t rd = RDCOST(x->rdmult, rate + rmode, dist);
  if (rd < *best_interintra_rd) {
    *best_interintra_rd = rd;
    *best_interintra_mode = mbmi->interintra_mode;
  }
}

static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
                                   MACROBLOCK *x, int64_t ref_best_rd,
                                   RD_STATS *rd_stats) {
  MACROBLOCKD *const xd = &x->e_mbd;
  if (ref_best_rd < 0) return INT64_MAX;
  av1_subtract_plane(x, bs, 0);
  const int64_t rd = av1_estimate_txfm_yrd(cpi, x, rd_stats, ref_best_rd, bs,
                                           max_txsize_rect_lookup[bs]);
  if (rd != INT64_MAX) {
    const int skip_ctx = av1_get_skip_txfm_context(xd);
    if (rd_stats->skip_txfm) {
      const int s1 = x->mode_costs.skip_txfm_cost[skip_ctx][1];
      rd_stats->rate = s1;
    } else {
      const int s0 = x->mode_costs.skip_txfm_cost[skip_ctx][0];
      rd_stats->rate += s0;
    }
  }
  return rd;
}

// Computes the rd_threshold for smooth interintra rd search.
static AOM_INLINE int64_t compute_rd_thresh(MACROBLOCK *const x,
                                            int total_mode_rate,
                                            int64_t ref_best_rd) {
  const int64_t rd_thresh = get_rd_thresh_from_best_rd(
      ref_best_rd, (1 << INTER_INTRA_RD_THRESH_SHIFT),
      INTER_INTRA_RD_THRESH_SCALE);
  const int64_t mode_rd = RDCOST(x->rdmult, total_mode_rate, 0);
  return (rd_thresh - mode_rd);
}

// Computes the best wedge interintra mode
static AOM_INLINE int64_t compute_best_wedge_interintra(
    const AV1_COMP *const cpi, MB_MODE_INFO *mbmi, MACROBLOCKD *xd,
    MACROBLOCK *const x, const int *const interintra_mode_cost,
    const BUFFER_SET *orig_dst, uint8_t *intrapred_, uint8_t *tmp_buf_,
    int *best_mode, int *best_wedge_index, BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const int bw = block_size_wide[bsize];
  int64_t best_interintra_rd_wedge = INT64_MAX;
  int64_t best_total_rd = INT64_MAX;
  uint8_t *intrapred = get_buf_by_bd(xd, intrapred_);
  for (INTERINTRA_MODE mode = 0; mode < INTERINTRA_MODES; ++mode) {
    mbmi->interintra_mode = mode;
    av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                              intrapred, bw);
    int64_t rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
    const int rate_overhead =
        interintra_mode_cost[mode] +
        x->mode_costs.wedge_idx_cost[bsize][mbmi->interintra_wedge_index];
    const int64_t total_rd = rd + RDCOST(x->rdmult, rate_overhead, 0);
    if (total_rd < best_total_rd) {
      best_total_rd = total_rd;
      best_interintra_rd_wedge = rd;
      *best_mode = mbmi->interintra_mode;
      *best_wedge_index = mbmi->interintra_wedge_index;
    }
  }
  return best_interintra_rd_wedge;
}

static int handle_smooth_inter_intra_mode(
    const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
    MB_MODE_INFO *mbmi, int64_t ref_best_rd, int *rate_mv,
    INTERINTRA_MODE *best_interintra_mode, int64_t *best_rd,
    int *best_mode_rate, const BUFFER_SET *orig_dst, uint8_t *tmp_buf,
    uint8_t *intrapred, HandleInterModeArgs *args) {
  MACROBLOCKD *xd = &x->e_mbd;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int *const interintra_mode_cost =
      mode_costs->interintra_mode_cost[size_group_lookup[bsize]];
  const AV1_COMMON *const cm = &cpi->common;
  const int bw = block_size_wide[bsize];

  mbmi->use_wedge_interintra = 0;

  if (cpi->sf.inter_sf.reuse_inter_intra_mode == 0 ||
      *best_interintra_mode == INTERINTRA_MODES) {
    int64_t best_interintra_rd = INT64_MAX;
    for (INTERINTRA_MODE cur_mode = 0; cur_mode < INTERINTRA_MODES;
         ++cur_mode) {
      if ((!cpi->oxcf.intra_mode_cfg.enable_smooth_intra ||
           cpi->sf.intra_sf.disable_smooth_intra) &&
          cur_mode == II_SMOOTH_PRED)
        continue;
      compute_best_interintra_mode(
          cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred, tmp_buf,
          best_interintra_mode, &best_interintra_rd, cur_mode, bsize);
    }
    args->inter_intra_mode[mbmi->ref_frame[0]] = *best_interintra_mode;
  }
  assert(IMPLIES(!cpi->oxcf.comp_type_cfg.enable_smooth_interintra,
                 *best_interintra_mode != II_SMOOTH_PRED));
  // Recompute prediction if required
  bool interintra_mode_reuse = cpi->sf.inter_sf.reuse_inter_intra_mode ||
                               *best_interintra_mode != INTERINTRA_MODES;
  if (interintra_mode_reuse || *best_interintra_mode != INTERINTRA_MODES - 1) {
    mbmi->interintra_mode = *best_interintra_mode;
    av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                              intrapred, bw);
    av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
  }

  // Compute rd cost for best smooth_interintra
  RD_STATS rd_stats;
  const int is_wedge_used = av1_is_wedge_used(bsize);
  const int rmode =
      interintra_mode_cost[*best_interintra_mode] +
      (is_wedge_used ? mode_costs->wedge_interintra_cost[bsize][0] : 0);
  const int total_mode_rate = rmode + *rate_mv;
  const int64_t rd_thresh = compute_rd_thresh(x, total_mode_rate, ref_best_rd);
  int64_t rd = estimate_yrd_for_sb(cpi, bsize, x, rd_thresh, &rd_stats);
  if (rd != INT64_MAX) {
    rd = RDCOST(x->rdmult, total_mode_rate + rd_stats.rate, rd_stats.dist);
  } else {
    return IGNORE_MODE;
  }
  *best_rd = rd;
  *best_mode_rate = rmode;
  // Return early if best rd not good enough
  if (ref_best_rd < INT64_MAX &&
      (*best_rd >> INTER_INTRA_RD_THRESH_SHIFT) * INTER_INTRA_RD_THRESH_SCALE >
          ref_best_rd) {
    return IGNORE_MODE;
  }
  return 0;
}

static int handle_wedge_inter_intra_mode(
    const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
    MB_MODE_INFO *mbmi, int *rate_mv, INTERINTRA_MODE *best_interintra_mode,
    int64_t *best_rd, const BUFFER_SET *orig_dst, uint8_t *tmp_buf_,
    uint8_t *tmp_buf, uint8_t *intrapred_, uint8_t *intrapred,
    HandleInterModeArgs *args, int *tmp_rate_mv, int *rate_overhead,
    int_mv *tmp_mv, int64_t best_rd_no_wedge) {
  MACROBLOCKD *xd = &x->e_mbd;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int *const interintra_mode_cost =
      mode_costs->interintra_mode_cost[size_group_lookup[bsize]];
  const AV1_COMMON *const cm = &cpi->common;
  const int bw = block_size_wide[bsize];
  const int try_smooth_interintra =
      cpi->oxcf.comp_type_cfg.enable_smooth_interintra;

  mbmi->use_wedge_interintra = 1;

  if (!cpi->sf.inter_sf.fast_interintra_wedge_search) {
    // Exhaustive search of all wedge and mode combinations.
    int best_mode = 0;
    int best_wedge_index = 0;
    *best_rd = compute_best_wedge_interintra(
        cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred_, tmp_buf_,
        &best_mode, &best_wedge_index, bsize);
    mbmi->interintra_mode = best_mode;
    mbmi->interintra_wedge_index = best_wedge_index;
    if (best_mode != INTERINTRA_MODES - 1) {
      av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                intrapred, bw);
    }
  } else if (!try_smooth_interintra) {
    if (*best_interintra_mode == INTERINTRA_MODES) {
      mbmi->interintra_mode = INTERINTRA_MODES - 1;
      *best_interintra_mode = INTERINTRA_MODES - 1;
      av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                intrapred, bw);
      // Pick wedge mask based on INTERINTRA_MODES - 1
      *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
      // Find the best interintra mode for the chosen wedge mask
      for (INTERINTRA_MODE cur_mode = 0; cur_mode < INTERINTRA_MODES;
           ++cur_mode) {
        compute_best_interintra_mode(
            cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred,
            tmp_buf, best_interintra_mode, best_rd, cur_mode, bsize);
      }
      args->inter_intra_mode[mbmi->ref_frame[0]] = *best_interintra_mode;
      mbmi->interintra_mode = *best_interintra_mode;

      // Recompute prediction if required
      if (*best_interintra_mode != INTERINTRA_MODES - 1) {
        av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                  intrapred, bw);
      }
    } else {
      // Pick wedge mask for the best interintra mode (reused)
      mbmi->interintra_mode = *best_interintra_mode;
      av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                intrapred, bw);
      *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
    }
  } else {
    // Pick wedge mask for the best interintra mode from smooth_interintra
    *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
  }

  *rate_overhead =
      interintra_mode_cost[mbmi->interintra_mode] +
      mode_costs->wedge_idx_cost[bsize][mbmi->interintra_wedge_index] +
      mode_costs->wedge_interintra_cost[bsize][1];
  *best_rd += RDCOST(x->rdmult, *rate_overhead + *rate_mv, 0);

  int64_t rd = INT64_MAX;
  const int_mv mv0 = mbmi->mv[0];
  // Refine motion vector for NEWMV case.
  if (have_newmv_in_inter_mode(mbmi->mode)) {
    int rate_sum, skip_txfm_sb;
    int64_t dist_sum, skip_sse_sb;
    // get negative of mask
    const uint8_t *mask =
        av1_get_contiguous_soft_mask(mbmi->interintra_wedge_index, 1, bsize);
    av1_compound_single_motion_search(cpi, x, bsize, &tmp_mv->as_mv, intrapred,
                                      mask, bw, tmp_rate_mv, 0);
    if (mbmi->mv[0].as_int != tmp_mv->as_int) {
      mbmi->mv[0].as_int = tmp_mv->as_int;
      // Set ref_frame[1] to NONE_FRAME temporarily so that the intra
      // predictor is not calculated again in av1_enc_build_inter_predictor().
      mbmi->ref_frame[1] = NONE_FRAME;
      const int mi_row = xd->mi_row;
      const int mi_col = xd->mi_col;
      av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                    AOM_PLANE_Y, AOM_PLANE_Y);
      mbmi->ref_frame[1] = INTRA_FRAME;
      av1_combine_interintra(xd, bsize, 0, xd->plane[AOM_PLANE_Y].dst.buf,
                             xd->plane[AOM_PLANE_Y].dst.stride, intrapred, bw);
      model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
          cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &skip_txfm_sb,
          &skip_sse_sb, NULL, NULL, NULL);
      rd =
          RDCOST(x->rdmult, *tmp_rate_mv + *rate_overhead + rate_sum, dist_sum);
    }
  }
  if (rd >= *best_rd) {
    tmp_mv->as_int = mv0.as_int;
    *tmp_rate_mv = *rate_mv;
    av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
  }
  // Evaluate closer to true rd
  RD_STATS rd_stats;
  const int64_t mode_rd = RDCOST(x->rdmult, *rate_overhead + *tmp_rate_mv, 0);
  const int64_t tmp_rd_thresh = best_rd_no_wedge - mode_rd;
  rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats);
  if (rd != INT64_MAX) {
    rd = RDCOST(x->rdmult, *rate_overhead + *tmp_rate_mv + rd_stats.rate,
                rd_stats.dist);
  } else {
    if (*best_rd == INT64_MAX) return IGNORE_MODE;
  }
  *best_rd = rd;
  return 0;
}

int av1_handle_inter_intra_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
                                BLOCK_SIZE bsize, MB_MODE_INFO *mbmi,
                                HandleInterModeArgs *args, int64_t ref_best_rd,
                                int *rate_mv, int *tmp_rate2,
                                const BUFFER_SET *orig_dst) {
  const int try_smooth_interintra =
      cpi->oxcf.comp_type_cfg.enable_smooth_interintra;

  const int is_wedge_used = av1_is_wedge_used(bsize);
  const int try_wedge_interintra =
      is_wedge_used && enable_wedge_interintra_search(x, cpi);

  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  const int bw = block_size_wide[bsize];
  DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]);
  DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]);
  uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_);
  uint8_t *intrapred = get_buf_by_bd(xd, intrapred_);
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;

  // Single reference inter prediction
  mbmi->ref_frame[1] = NONE_FRAME;
  xd->plane[0].dst.buf = tmp_buf;
  xd->plane[0].dst.stride = bw;
  av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
                                AOM_PLANE_Y, AOM_PLANE_Y);
  const int num_planes = av1_num_planes(cm);

  // Restore the buffers for intra prediction
  restore_dst_buf(xd, *orig_dst, num_planes);
  mbmi->ref_frame[1] = INTRA_FRAME;
  INTERINTRA_MODE best_interintra_mode =
      args->inter_intra_mode[mbmi->ref_frame[0]];

  // Compute smooth_interintra
  int64_t best_interintra_rd_nowedge = INT64_MAX;
  int best_mode_rate = INT_MAX;
  if (try_smooth_interintra) {
    int ret = handle_smooth_inter_intra_mode(
        cpi, x, bsize, mbmi, ref_best_rd, rate_mv, &best_interintra_mode,
        &best_interintra_rd_nowedge, &best_mode_rate, orig_dst, tmp_buf,
        intrapred, args);
    if (ret == IGNORE_MODE) {
      return IGNORE_MODE;
    }
  }

  // Compute wedge interintra
  int64_t best_interintra_rd_wedge = INT64_MAX;
  const int_mv mv0 = mbmi->mv[0];
  int_mv tmp_mv = mv0;
  int tmp_rate_mv = 0;
  int rate_overhead = 0;
  if (try_wedge_interintra) {
    int ret = handle_wedge_inter_intra_mode(
        cpi, x, bsize, mbmi, rate_mv, &best_interintra_mode,
        &best_interintra_rd_wedge, orig_dst, tmp_buf_, tmp_buf, intrapred_,
        intrapred, args, &tmp_rate_mv, &rate_overhead, &tmp_mv,
        best_interintra_rd_nowedge);
    if (ret == IGNORE_MODE) {
      return IGNORE_MODE;
    }
  }

  if (best_interintra_rd_nowedge == INT64_MAX &&
      best_interintra_rd_wedge == INT64_MAX) {
    return IGNORE_MODE;
  }
  if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
    mbmi->mv[0].as_int = tmp_mv.as_int;
    *tmp_rate2 += tmp_rate_mv - *rate_mv;
    *rate_mv = tmp_rate_mv;
    best_mode_rate = rate_overhead;
  } else if (try_smooth_interintra && try_wedge_interintra) {
    // If smooth was best, but we over-wrote the values when evaluating the
    // wedge mode, we need to recompute the smooth values.
    mbmi->use_wedge_interintra = 0;
    mbmi->interintra_mode = best_interintra_mode;
    mbmi->mv[0].as_int = mv0.as_int;
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                  AOM_PLANE_Y, AOM_PLANE_Y);
  }
  *tmp_rate2 += best_mode_rate;

  if (num_planes > 1) {
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                  AOM_PLANE_U, num_planes - 1);
  }
  return 0;
}

// Computes the valid compound_types to be evaluated
static INLINE int compute_valid_comp_types(MACROBLOCK *x,
                                           const AV1_COMP *const cpi,
                                           BLOCK_SIZE bsize,
                                           int masked_compound_used,
                                           int mode_search_mask,
                                           COMPOUND_TYPE *valid_comp_types) {
  const AV1_COMMON *cm = &cpi->common;
  int valid_type_count = 0;
  int comp_type, valid_check;
  int8_t enable_masked_type[MASKED_COMPOUND_TYPES] = { 0, 0 };

  const int try_average_comp = (mode_search_mask & (1 << COMPOUND_AVERAGE));
  const int try_distwtd_comp =
      ((mode_search_mask & (1 << COMPOUND_DISTWTD)) &&
       cm->seq_params->order_hint_info.enable_dist_wtd_comp == 1 &&
       cpi->sf.inter_sf.use_dist_wtd_comp_flag != DIST_WTD_COMP_DISABLED);

  // Check if COMPOUND_AVERAGE and COMPOUND_DISTWTD are valid cases
  for (comp_type = COMPOUND_AVERAGE; comp_type <= COMPOUND_DISTWTD;
       comp_type++) {
    valid_check =
        (comp_type == COMPOUND_AVERAGE) ? try_average_comp : try_distwtd_comp;
    if (valid_check && is_interinter_compound_used(comp_type, bsize))
      valid_comp_types[valid_type_count++] = comp_type;
  }
  // Check if COMPOUND_WEDGE and COMPOUND_DIFFWTD are valid cases
  if (masked_compound_used) {
    // enable_masked_type[0] corresponds to COMPOUND_WEDGE
    // enable_masked_type[1] corresponds to COMPOUND_DIFFWTD
    enable_masked_type[0] = enable_wedge_interinter_search(x, cpi);
    enable_masked_type[1] = cpi->oxcf.comp_type_cfg.enable_diff_wtd_comp;
    for (comp_type = COMPOUND_WEDGE; comp_type <= COMPOUND_DIFFWTD;
         comp_type++) {
      if ((mode_search_mask & (1 << comp_type)) &&
          is_interinter_compound_used(comp_type, bsize) &&
          enable_masked_type[comp_type - COMPOUND_WEDGE])
        valid_comp_types[valid_type_count++] = comp_type;
    }
  }
  return valid_type_count;
}

// Calculates the cost for compound type mask
static INLINE void calc_masked_type_cost(
    const ModeCosts *mode_costs, BLOCK_SIZE bsize, int comp_group_idx_ctx,
    int comp_index_ctx, int masked_compound_used, int *masked_type_cost) {
  av1_zero_array(masked_type_cost, COMPOUND_TYPES);
  // Account for group index cost when wedge and/or diffwtd prediction are
  // enabled
  if (masked_compound_used) {
    // Compound group index of average and distwtd is 0
    // Compound group index of wedge and diffwtd is 1
    masked_type_cost[COMPOUND_AVERAGE] +=
        mode_costs->comp_group_idx_cost[comp_group_idx_ctx][0];
    masked_type_cost[COMPOUND_DISTWTD] += masked_type_cost[COMPOUND_AVERAGE];
    masked_type_cost[COMPOUND_WEDGE] +=
        mode_costs->comp_group_idx_cost[comp_group_idx_ctx][1];
    masked_type_cost[COMPOUND_DIFFWTD] += masked_type_cost[COMPOUND_WEDGE];
  }

  // Compute the cost to signal compound index/type
  masked_type_cost[COMPOUND_AVERAGE] +=
      mode_costs->comp_idx_cost[comp_index_ctx][1];
  masked_type_cost[COMPOUND_DISTWTD] +=
      mode_costs->comp_idx_cost[comp_index_ctx][0];
  masked_type_cost[COMPOUND_WEDGE] += mode_costs->compound_type_cost[bsize][0];
  masked_type_cost[COMPOUND_DIFFWTD] +=
      mode_costs->compound_type_cost[bsize][1];
}

// Updates mbmi structure with the relevant compound type info
static INLINE void update_mbmi_for_compound_type(MB_MODE_INFO *mbmi,
                                                 COMPOUND_TYPE cur_type) {
  mbmi->interinter_comp.type = cur_type;
  mbmi->comp_group_idx = (cur_type >= COMPOUND_WEDGE);
  mbmi->compound_idx = (cur_type != COMPOUND_DISTWTD);
}

// When match is found, populate the compound type data
// and calculate the rd cost using the stored stats and
// update the mbmi appropriately.
static INLINE int populate_reuse_comp_type_data(
    const MACROBLOCK *x, MB_MODE_INFO *mbmi,
    BEST_COMP_TYPE_STATS *best_type_stats, int_mv *cur_mv, int32_t *comp_rate,
    int64_t *comp_dist, int *comp_rs2, int *rate_mv, int64_t *rd,
    int match_index) {
  const int winner_comp_type =
      x->comp_rd_stats[match_index].interinter_comp.type;
  if (comp_rate[winner_comp_type] == INT_MAX)
    return best_type_stats->best_compmode_interinter_cost;
  update_mbmi_for_compound_type(mbmi, winner_comp_type);
  mbmi->interinter_comp = x->comp_rd_stats[match_index].interinter_comp;
  *rd = RDCOST(
      x->rdmult,
      comp_rs2[winner_comp_type] + *rate_mv + comp_rate[winner_comp_type],
      comp_dist[winner_comp_type]);
  mbmi->mv[0].as_int = cur_mv[0].as_int;
  mbmi->mv[1].as_int = cur_mv[1].as_int;
  return comp_rs2[winner_comp_type];
}

// Updates rd cost and relevant compound type data for the best compound type
static INLINE void update_best_info(const MB_MODE_INFO *const mbmi, int64_t *rd,
                                    BEST_COMP_TYPE_STATS *best_type_stats,
                                    int64_t best_rd_cur,
                                    int64_t comp_model_rd_cur, int rs2) {
  *rd = best_rd_cur;
  best_type_stats->comp_best_model_rd = comp_model_rd_cur;
  best_type_stats->best_compound_data = mbmi->interinter_comp;
  best_type_stats->best_compmode_interinter_cost = rs2;
}

// Updates best_mv for masked compound types
static INLINE void update_mask_best_mv(const MB_MODE_INFO *const mbmi,
                                       int_mv *best_mv, int *best_tmp_rate_mv,
                                       int tmp_rate_mv) {
  *best_tmp_rate_mv = tmp_rate_mv;
  best_mv[0].as_int = mbmi->mv[0].as_int;
  best_mv[1].as_int = mbmi->mv[1].as_int;
}

static INLINE void save_comp_rd_search_stat(
    MACROBLOCK *x, const MB_MODE_INFO *const mbmi, const int32_t *comp_rate,
    const int64_t *comp_dist, const int32_t *comp_model_rate,
    const int64_t *comp_model_dist, const int_mv *cur_mv, const int *comp_rs2) {
  const int offset = x->comp_rd_stats_idx;
  if (offset < MAX_COMP_RD_STATS) {
    COMP_RD_STATS *const rd_stats = x->comp_rd_stats + offset;
    memcpy(rd_stats->rate, comp_rate, sizeof(rd_stats->rate));
    memcpy(rd_stats->dist, comp_dist, sizeof(rd_stats->dist));
    memcpy(rd_stats->model_rate, comp_model_rate, sizeof(rd_stats->model_rate));
    memcpy(rd_stats->model_dist, comp_model_dist, sizeof(rd_stats->model_dist));
    memcpy(rd_stats->comp_rs2, comp_rs2, sizeof(rd_stats->comp_rs2));
    memcpy(rd_stats->mv, cur_mv, sizeof(rd_stats->mv));
    memcpy(rd_stats->ref_frames, mbmi->ref_frame, sizeof(rd_stats->ref_frames));
    rd_stats->mode = mbmi->mode;
    rd_stats->filter = mbmi->interp_filters;
    rd_stats->ref_mv_idx = mbmi->ref_mv_idx;
    const MACROBLOCKD *const xd = &x->e_mbd;
    for (int i = 0; i < 2; ++i) {
      const WarpedMotionParams *const wm =
          &xd->global_motion[mbmi->ref_frame[i]];
      rd_stats->is_global[i] = is_global_mv_block(mbmi, wm->wmtype);
    }
    memcpy(&rd_stats->interinter_comp, &mbmi->interinter_comp,
           sizeof(rd_stats->interinter_comp));
    ++x->comp_rd_stats_idx;
  }
}

static INLINE int get_interinter_compound_mask_rate(
    const ModeCosts *const mode_costs, const MB_MODE_INFO *const mbmi) {
  const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;
  // This function will be called only for COMPOUND_WEDGE and COMPOUND_DIFFWTD
  if (compound_type == COMPOUND_WEDGE) {
    return av1_is_wedge_used(mbmi->bsize)
               ? av1_cost_literal(1) +
                     mode_costs
                         ->wedge_idx_cost[mbmi->bsize]
                                         [mbmi->interinter_comp.wedge_index]
               : 0;
  } else {
    assert(compound_type == COMPOUND_DIFFWTD);
    return av1_cost_literal(1);
  }
}

// Takes a backup of rate, distortion and model_rd for future reuse
static INLINE void backup_stats(COMPOUND_TYPE cur_type, int32_t *comp_rate,
                                int64_t *comp_dist, int32_t *comp_model_rate,
                                int64_t *comp_model_dist, int rate_sum,
                                int64_t dist_sum, RD_STATS *rd_stats,
                                int *comp_rs2, int rs2) {
  comp_rate[cur_type] = rd_stats->rate;
  comp_dist[cur_type] = rd_stats->dist;
  comp_model_rate[cur_type] = rate_sum;
  comp_model_dist[cur_type] = dist_sum;
  comp_rs2[cur_type] = rs2;
}

static INLINE int save_mask_search_results(const PREDICTION_MODE this_mode,
                                           const int reuse_level) {
  if (reuse_level || (this_mode == NEW_NEWMV))
    return 1;
  else
    return 0;
}

static INLINE int prune_mode_by_skip_rd(const AV1_COMP *const cpi,
                                        MACROBLOCK *x, MACROBLOCKD *xd,
                                        const BLOCK_SIZE bsize,
                                        int64_t ref_skip_rd, int mode_rate) {
  int eval_txfm = 1;
  // Check if the mode is good enough based on skip rd
  if (cpi->sf.inter_sf.txfm_rd_gate_level) {
    int64_t sse_y = compute_sse_plane(x, xd, PLANE_TYPE_Y, bsize);
    int64_t skip_rd = RDCOST(x->rdmult, mode_rate, (sse_y << 4));
    eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd, skip_rd,
                                cpi->sf.inter_sf.txfm_rd_gate_level, 1);
  }
  return eval_txfm;
}

static int64_t masked_compound_type_rd(
    const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
    const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2,
    int rate_mv, const BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0,
    uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides,
    int mode_rate, int64_t rd_thresh, int *calc_pred_masked_compound,
    int32_t *comp_rate, int64_t *comp_dist, int32_t *comp_model_rate,
    int64_t *comp_model_dist, const int64_t comp_best_model_rd,
    int64_t *const comp_model_rd_cur, int *comp_rs2, int64_t ref_skip_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int64_t best_rd_cur = INT64_MAX;
  int64_t rd = INT64_MAX;
  const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;
  // This function will be called only for COMPOUND_WEDGE and COMPOUND_DIFFWTD
  assert(compound_type == COMPOUND_WEDGE || compound_type == COMPOUND_DIFFWTD);
  int rate_sum, tmp_skip_txfm_sb;
  int64_t dist_sum, tmp_skip_sse_sb;
  pick_interinter_mask_type pick_interinter_mask[2] = { pick_interinter_wedge,
                                                        pick_interinter_seg };

  // TODO(any): Save pred and mask calculation as well into records. However
  // this may increase memory requirements as compound segment mask needs to be
  // stored in each record.
  if (*calc_pred_masked_compound) {
    get_inter_predictors_masked_compound(x, bsize, preds0, preds1, residual1,
                                         diff10, strides);
    *calc_pred_masked_compound = 0;
  }
  if (compound_type == COMPOUND_WEDGE) {
    unsigned int sse;
    if (is_cur_buf_hbd(xd))
      (void)cpi->ppi->fn_ptr[bsize].vf(CONVERT_TO_BYTEPTR(*preds0), *strides,
                                       CONVERT_TO_BYTEPTR(*preds1), *strides,
                                       &sse);
    else
      (void)cpi->ppi->fn_ptr[bsize].vf(*preds0, *strides, *preds1, *strides,
                                       &sse);
    const unsigned int mse =
        ROUND_POWER_OF_TWO(sse, num_pels_log2_lookup[bsize]);
    // If two predictors are very similar, skip wedge compound mode search
    if (mse < 8 || (!have_newmv_in_inter_mode(this_mode) && mse < 64)) {
      *comp_model_rd_cur = INT64_MAX;
      return INT64_MAX;
    }
  }
  // Function pointer to pick the appropriate mask
  // compound_type == COMPOUND_WEDGE, calls pick_interinter_wedge()
  // compound_type == COMPOUND_DIFFWTD, calls pick_interinter_seg()
  uint64_t cur_sse = UINT64_MAX;
  best_rd_cur = pick_interinter_mask[compound_type - COMPOUND_WEDGE](
      cpi, x, bsize, *preds0, *preds1, residual1, diff10, &cur_sse);
  *rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
  best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0);
  assert(cur_sse != UINT64_MAX);
  int64_t skip_rd_cur = RDCOST(x->rdmult, *rs2 + rate_mv, (cur_sse << 4));

  // Although the true rate_mv might be different after motion search, but it
  // is unlikely to be the best mode considering the transform rd cost and other
  // mode overhead cost
  int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0);
  if (mode_rd > rd_thresh) {
    *comp_model_rd_cur = INT64_MAX;
    return INT64_MAX;
  }

  // Check if the mode is good enough based on skip rd
  // TODO(nithya): Handle wedge_newmv_search if extending for lower speed
  // setting
  if (cpi->sf.inter_sf.txfm_rd_gate_level) {
    int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd, skip_rd_cur,
                                    cpi->sf.inter_sf.txfm_rd_gate_level, 1);
    if (!eval_txfm) {
      *comp_model_rd_cur = INT64_MAX;
      return INT64_MAX;
    }
  }

  // Compute cost if matching record not found, else, reuse data
  if (comp_rate[compound_type] == INT_MAX) {
    // Check whether new MV search for wedge is to be done
    int wedge_newmv_search =
        have_newmv_in_inter_mode(this_mode) &&
        (compound_type == COMPOUND_WEDGE) &&
        (!cpi->sf.inter_sf.disable_interinter_wedge_newmv_search);

    // Search for new MV if needed and build predictor
    if (wedge_newmv_search) {
      *out_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
                                                           bsize, this_mode);
      const int mi_row = xd->mi_row;
      const int mi_col = xd->mi_col;
      av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, ctx, bsize,
                                    AOM_PLANE_Y, AOM_PLANE_Y);
    } else {
      *out_rate_mv = rate_mv;
      av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
                                               preds1, strides);
    }
    // Get the RD cost from model RD
    model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
        cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &tmp_skip_txfm_sb,
        &tmp_skip_sse_sb, NULL, NULL, NULL);
    rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
    *comp_model_rd_cur = rd;
    // Override with best if current is worse than best for new MV
    if (wedge_newmv_search) {
      if (rd >= best_rd_cur) {
        mbmi->mv[0].as_int = cur_mv[0].as_int;
        mbmi->mv[1].as_int = cur_mv[1].as_int;
        *out_rate_mv = rate_mv;
        av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
                                                 strides, preds1, strides);
        *comp_model_rd_cur = best_rd_cur;
      }
    }
    if (cpi->sf.inter_sf.prune_comp_type_by_model_rd &&
        (*comp_model_rd_cur > comp_best_model_rd) &&
        comp_best_model_rd != INT64_MAX) {
      *comp_model_rd_cur = INT64_MAX;
      return INT64_MAX;
    }
    // Compute RD cost for the current type
    RD_STATS rd_stats;
    const int64_t tmp_mode_rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv, 0);
    const int64_t tmp_rd_thresh = rd_thresh - tmp_mode_rd;
    rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats);
    if (rd != INT64_MAX) {
      rd =
          RDCOST(x->rdmult, *rs2 + *out_rate_mv + rd_stats.rate, rd_stats.dist);
      // Backup rate and distortion for future reuse
      backup_stats(compound_type, comp_rate, comp_dist, comp_model_rate,
                   comp_model_dist, rate_sum, dist_sum, &rd_stats, comp_rs2,
                   *rs2);
    }
  } else {
    // Reuse data as matching record is found
    assert(comp_dist[compound_type] != INT64_MAX);
    // When disable_interinter_wedge_newmv_search is set, motion refinement is
    // disabled. Hence rate and distortion can be reused in this case as well
    assert(IMPLIES((have_newmv_in_inter_mode(this_mode) &&
                    (compound_type == COMPOUND_WEDGE)),
                   cpi->sf.inter_sf.disable_interinter_wedge_newmv_search));
    assert(mbmi->mv[0].as_int == cur_mv[0].as_int);
    assert(mbmi->mv[1].as_int == cur_mv[1].as_int);
    *out_rate_mv = rate_mv;
    // Calculate RD cost based on stored stats
    rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + comp_rate[compound_type],
                comp_dist[compound_type]);
    // Recalculate model rdcost with the updated rate
    *comp_model_rd_cur =
        RDCOST(x->rdmult, *rs2 + *out_rate_mv + comp_model_rate[compound_type],
               comp_model_dist[compound_type]);
  }
  return rd;
}

// scaling values to be used for gating wedge/compound segment based on best
// approximate rd
static int comp_type_rd_threshold_mul[3] = { 1, 11, 12 };
static int comp_type_rd_threshold_div[3] = { 3, 16, 16 };

int av1_compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
                         HandleInterModeArgs *args, BLOCK_SIZE bsize,
                         int_mv *cur_mv, int mode_search_mask,
                         int masked_compound_used, const BUFFER_SET *orig_dst,
                         const BUFFER_SET *tmp_dst,
                         const CompoundTypeRdBuffers *buffers, int *rate_mv,
                         int64_t *rd, RD_STATS *rd_stats, int64_t ref_best_rd,
                         int64_t ref_skip_rd, int *is_luma_interp_done,
                         int64_t rd_thresh) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const PREDICTION_MODE this_mode = mbmi->mode;
  int ref_frame = av1_ref_frame_type(mbmi->ref_frame);
  const int bw = block_size_wide[bsize];
  int rs2;
  int_mv best_mv[2];
  int best_tmp_rate_mv = *rate_mv;
  BEST_COMP_TYPE_STATS best_type_stats;
  // Initializing BEST_COMP_TYPE_STATS
  best_type_stats.best_compound_data.type = COMPOUND_AVERAGE;
  best_type_stats.best_compmode_interinter_cost = 0;
  best_type_stats.comp_best_model_rd = INT64_MAX;

  uint8_t *preds0[1] = { buffers->pred0 };
  uint8_t *preds1[1] = { buffers->pred1 };
  int strides[1] = { bw };
  int tmp_rate_mv;
  COMPOUND_TYPE cur_type;
  // Local array to store the mask cost for different compound types
  int masked_type_cost[COMPOUND_TYPES];

  int calc_pred_masked_compound = 1;
  int64_t comp_dist[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX,
                                        INT64_MAX };
  int32_t comp_rate[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
  int comp_rs2[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
  int32_t comp_model_rate[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX,
                                              INT_MAX };
  int64_t comp_model_dist[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX,
                                              INT64_MAX };
  int match_index = 0;
  const int match_found =
      find_comp_rd_in_stats(cpi, x, mbmi, comp_rate, comp_dist, comp_model_rate,
                            comp_model_dist, comp_rs2, &match_index);
  best_mv[0].as_int = cur_mv[0].as_int;
  best_mv[1].as_int = cur_mv[1].as_int;
  *rd = INT64_MAX;

  // Local array to store the valid compound types to be evaluated in the core
  // loop
  COMPOUND_TYPE valid_comp_types[COMPOUND_TYPES] = {
    COMPOUND_AVERAGE, COMPOUND_DISTWTD, COMPOUND_WEDGE, COMPOUND_DIFFWTD
  };
  int valid_type_count = 0;
  // compute_valid_comp_types() returns the number of valid compound types to be
  // evaluated and populates the same in the local array valid_comp_types[].
  // It also sets the flag 'try_average_and_distwtd_comp'
  valid_type_count = compute_valid_comp_types(
      x, cpi, bsize, masked_compound_used, mode_search_mask, valid_comp_types);

  // The following context indices are independent of compound type
  const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
  const int comp_index_ctx = get_comp_index_context(cm, xd);

  // Populates masked_type_cost local array for the 4 compound types
  calc_masked_type_cost(&x->mode_costs, bsize, comp_group_idx_ctx,
                        comp_index_ctx, masked_compound_used, masked_type_cost);

  int64_t comp_model_rd_cur = INT64_MAX;
  int64_t best_rd_cur = ref_best_rd;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;

  // If the match is found, calculate the rd cost using the
  // stored stats and update the mbmi appropriately.
  if (match_found && cpi->sf.inter_sf.reuse_compound_type_decision) {
    return populate_reuse_comp_type_data(x, mbmi, &best_type_stats, cur_mv,
                                         comp_rate, comp_dist, comp_rs2,
                                         rate_mv, rd, match_index);
  }

  // If COMPOUND_AVERAGE is not valid, use the spare buffer
  if (valid_comp_types[0] != COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1);

  // Loop over valid compound types
  for (int i = 0; i < valid_type_count; i++) {
    cur_type = valid_comp_types[i];

    if (args->cmp_mode[ref_frame] == COMPOUND_AVERAGE) {
      if (cur_type == COMPOUND_WEDGE) continue;
    }

    comp_model_rd_cur = INT64_MAX;
    tmp_rate_mv = *rate_mv;
    best_rd_cur = INT64_MAX;
    ref_best_rd = AOMMIN(ref_best_rd, *rd);
    update_mbmi_for_compound_type(mbmi, cur_type);
    rs2 = masked_type_cost[cur_type];

    int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0);
    if (mode_rd >= ref_best_rd) continue;

    // Case COMPOUND_AVERAGE and COMPOUND_DISTWTD
    if (cur_type < COMPOUND_WEDGE) {
      if (cpi->sf.inter_sf.enable_fast_compound_mode_search == 2) {
        int rate_sum, tmp_skip_txfm_sb;
        int64_t dist_sum, tmp_skip_sse_sb;

        // Reuse data if matching record is found
        if (comp_rate[cur_type] == INT_MAX) {
          av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                        AOM_PLANE_Y, AOM_PLANE_Y);
          if (cur_type == COMPOUND_AVERAGE) *is_luma_interp_done = 1;
          // Compute RD cost for the current type
          RD_STATS est_rd_stats;
          const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh) - mode_rd;
          int64_t est_rd = INT64_MAX;
          int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                                rs2 + *rate_mv);
          // Evaluate further if skip rd is low enough
          if (eval_txfm) {
            est_rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh,
                                         &est_rd_stats);
          }
          if (est_rd != INT64_MAX) {
            best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + est_rd_stats.rate,
                                 est_rd_stats.dist);
            model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
                cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
                &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
            comp_model_rd_cur =
                RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum);
            // Backup rate and distortion for future reuse
            backup_stats(cur_type, comp_rate, comp_dist, comp_model_rate,
                         comp_model_dist, rate_sum, dist_sum, &est_rd_stats,
                         comp_rs2, rs2);
          }
        } else {
          // Calculate RD cost based on stored stats
          assert(comp_dist[cur_type] != INT64_MAX);
          best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + comp_rate[cur_type],
                               comp_dist[cur_type]);
          // Recalculate model rdcost with the updated rate
          comp_model_rd_cur =
              RDCOST(x->rdmult, rs2 + *rate_mv + comp_model_rate[cur_type],
                     comp_model_dist[cur_type]);
        }
      } else {
        tmp_rate_mv = *rate_mv;
        if (have_newmv_in_inter_mode(this_mode)) {
          InterPredParams inter_pred_params;
          av1_dist_wtd_comp_weight_assign(
              &cpi->common, mbmi, &inter_pred_params.conv_params.fwd_offset,
              &inter_pred_params.conv_params.bck_offset,
              &inter_pred_params.conv_params.use_dist_wtd_comp_avg, 1);
          int mask_value = inter_pred_params.conv_params.fwd_offset * 4;
          memset(xd->seg_mask, mask_value,
                 sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);
          tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
                                                              bsize, this_mode);
        }
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                      AOM_PLANE_Y, AOM_PLANE_Y);
        if (cur_type == COMPOUND_AVERAGE) *is_luma_interp_done = 1;

        int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                              rs2 + *rate_mv);
        if (eval_txfm) {
          RD_STATS est_rd_stats;
          estimate_yrd_for_sb(cpi, bsize, x, INT64_MAX, &est_rd_stats);

          best_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
                               est_rd_stats.dist);
        }
      }

      // use spare buffer for following compound type try
      if (cur_type == COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1);
    } else if (cur_type == COMPOUND_WEDGE) {
      int best_mask_index = 0;
      int best_wedge_sign = 0;
      int_mv tmp_mv[2] = { mbmi->mv[0], mbmi->mv[1] };
      int best_rs2 = 0;
      int best_rate_mv = *rate_mv;
      int wedge_mask_size = get_wedge_types_lookup(bsize);
      int need_mask_search = args->wedge_index == -1;

      if (need_mask_search && !have_newmv_in_inter_mode(this_mode)) {
        // short cut repeated single reference block build
        av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 0,
                                                         preds0, strides);
        av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 1,
                                                         preds1, strides);
      }

      for (int wedge_mask = 0; wedge_mask < wedge_mask_size && need_mask_search;
           ++wedge_mask) {
        for (int wedge_sign = 0; wedge_sign < 2; ++wedge_sign) {
          tmp_rate_mv = *rate_mv;
          mbmi->interinter_comp.wedge_index = wedge_mask;
          mbmi->interinter_comp.wedge_sign = wedge_sign;
          rs2 = masked_type_cost[cur_type];
          rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);

          mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0);
          if (mode_rd >= ref_best_rd / 2) continue;

          if (have_newmv_in_inter_mode(this_mode) &&
              !cpi->sf.inter_sf.disable_interinter_wedge_newmv_search) {
            tmp_rate_mv = av1_interinter_compound_motion_search(
                cpi, x, cur_mv, bsize, this_mode);
            av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst,
                                          bsize, AOM_PLANE_Y, AOM_PLANE_Y);
          } else {
            av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
                                                     strides, preds1, strides);
          }

          RD_STATS est_rd_stats;
          int64_t this_rd_cur = INT64_MAX;
          int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                                rs2 + *rate_mv);
          if (eval_txfm) {
            this_rd_cur = estimate_yrd_for_sb(
                cpi, bsize, x, AOMMIN(best_rd_cur, ref_best_rd), &est_rd_stats);
          }
          if (this_rd_cur < INT64_MAX) {
            this_rd_cur =
                RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
                       est_rd_stats.dist);
          }
          if (this_rd_cur < best_rd_cur) {
            best_mask_index = wedge_mask;
            best_wedge_sign = wedge_sign;
            best_rd_cur = this_rd_cur;
            tmp_mv[0] = mbmi->mv[0];
            tmp_mv[1] = mbmi->mv[1];
            best_rate_mv = tmp_rate_mv;
            best_rs2 = rs2;
          }
        }
        // Consider the asymmetric partitions for oblique angle only if the
        // corresponding symmetric partition is the best so far.
        // Note: For horizontal and vertical types, both symmetric and
        // asymmetric partitions are always considered.
        if (cpi->sf.inter_sf.enable_fast_wedge_mask_search) {
          // The first 4 entries in wedge_codebook_16_heqw/hltw/hgtw[16]
          // correspond to symmetric partitions of the 4 oblique angles, the
          // next 4 entries correspond to the vertical/horizontal
          // symmetric/asymmetric partitions and the last 8 entries correspond
          // to the asymmetric partitions of oblique types.
          const int idx_before_asym_oblique = 7;
          const int last_oblique_sym_idx = 3;
          if (wedge_mask == idx_before_asym_oblique) {
            if (best_mask_index > last_oblique_sym_idx) {
              break;
            } else {
              // Asymmetric (Index-1) map for the corresponding oblique masks.
              // WEDGE_OBLIQUE27: sym - 0, asym - 8, 9
              // WEDGE_OBLIQUE63: sym - 1, asym - 12, 13
              // WEDGE_OBLIQUE117: sym - 2, asym - 14, 15
              // WEDGE_OBLIQUE153: sym - 3, asym - 10, 11
              const int asym_mask_idx[4] = { 7, 11, 13, 9 };
              wedge_mask = asym_mask_idx[best_mask_index];
              wedge_mask_size = wedge_mask + 3;
            }
          }
        }
      }

      if (need_mask_search) {
        if (save_mask_search_results(
                this_mode, cpi->sf.inter_sf.reuse_mask_search_results)) {
          args->wedge_index = best_mask_index;
          args->wedge_sign = best_wedge_sign;
        }
      } else {
        mbmi->interinter_comp.wedge_index = args->wedge_index;
        mbmi->interinter_comp.wedge_sign = args->wedge_sign;
        rs2 = masked_type_cost[cur_type];
        rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);

        if (have_newmv_in_inter_mode(this_mode) &&
            !cpi->sf.inter_sf.disable_interinter_wedge_newmv_search) {
          tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
                                                              bsize, this_mode);
        }

        best_mask_index = args->wedge_index;
        best_wedge_sign = args->wedge_sign;
        tmp_mv[0] = mbmi->mv[0];
        tmp_mv[1] = mbmi->mv[1];
        best_rate_mv = tmp_rate_mv;
        best_rs2 = masked_type_cost[cur_type];
        best_rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                      AOM_PLANE_Y, AOM_PLANE_Y);
        int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                              best_rs2 + *rate_mv);
        if (eval_txfm) {
          RD_STATS est_rd_stats;
          estimate_yrd_for_sb(cpi, bsize, x, INT64_MAX, &est_rd_stats);
          best_rd_cur =
              RDCOST(x->rdmult, best_rs2 + tmp_rate_mv + est_rd_stats.rate,
                     est_rd_stats.dist);
        }
      }

      mbmi->interinter_comp.wedge_index = best_mask_index;
      mbmi->interinter_comp.wedge_sign = best_wedge_sign;
      mbmi->mv[0] = tmp_mv[0];
      mbmi->mv[1] = tmp_mv[1];
      tmp_rate_mv = best_rate_mv;
      rs2 = best_rs2;
    } else if (!cpi->sf.inter_sf.enable_fast_compound_mode_search &&
               cur_type == COMPOUND_DIFFWTD) {
      int_mv tmp_mv[2];
      int best_mask_index = 0;
      rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);

      int need_mask_search = args->diffwtd_index == -1;

      for (int mask_index = 0; mask_index < 2 && need_mask_search;
           ++mask_index) {
        tmp_rate_mv = *rate_mv;
        mbmi->interinter_comp.mask_type = mask_index;
        if (have_newmv_in_inter_mode(this_mode)) {
          // hard coded number for diff wtd
          int mask_value = mask_index == 0 ? 38 : 26;
          memset(xd->seg_mask, mask_value,
                 sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);
          tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
                                                              bsize, this_mode);
        }
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                      AOM_PLANE_Y, AOM_PLANE_Y);
        RD_STATS est_rd_stats;
        int64_t this_rd_cur = INT64_MAX;
        int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                              rs2 + *rate_mv);
        if (eval_txfm) {
          this_rd_cur =
              estimate_yrd_for_sb(cpi, bsize, x, ref_best_rd, &est_rd_stats);
        }
        if (this_rd_cur < INT64_MAX) {
          this_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
                               est_rd_stats.dist);
        }

        if (this_rd_cur < best_rd_cur) {
          best_rd_cur = this_rd_cur;
          best_mask_index = mbmi->interinter_comp.mask_type;
          tmp_mv[0] = mbmi->mv[0];
          tmp_mv[1] = mbmi->mv[1];
        }
      }

      if (need_mask_search) {
        if (save_mask_search_results(
                this_mode, cpi->sf.inter_sf.reuse_mask_search_results))
          args->diffwtd_index = best_mask_index;
      } else {
        mbmi->interinter_comp.mask_type = args->diffwtd_index;
        rs2 = masked_type_cost[cur_type];
        rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);

        int mask_value = mbmi->interinter_comp.mask_type == 0 ? 38 : 26;
        memset(xd->seg_mask, mask_value,
               sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);

        if (have_newmv_in_inter_mode(this_mode)) {
          tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
                                                              bsize, this_mode);
        }
        best_mask_index = mbmi->interinter_comp.mask_type;
        tmp_mv[0] = mbmi->mv[0];
        tmp_mv[1] = mbmi->mv[1];
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                      AOM_PLANE_Y, AOM_PLANE_Y);
        RD_STATS est_rd_stats;
        int64_t this_rd_cur = INT64_MAX;
        int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
                                              rs2 + *rate_mv);
        if (eval_txfm) {
          this_rd_cur =
              estimate_yrd_for_sb(cpi, bsize, x, ref_best_rd, &est_rd_stats);
        }
        if (this_rd_cur < INT64_MAX) {
          best_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
                               est_rd_stats.dist);
        }
      }

      mbmi->interinter_comp.mask_type = best_mask_index;
      mbmi->mv[0] = tmp_mv[0];
      mbmi->mv[1] = tmp_mv[1];
    } else {
      // Handle masked compound types
      // Factors to control gating of compound type selection based on best
      // approximate rd so far
      const int max_comp_type_rd_threshold_mul =
          comp_type_rd_threshold_mul[cpi->sf.inter_sf
                                         .prune_comp_type_by_comp_avg];
      const int max_comp_type_rd_threshold_div =
          comp_type_rd_threshold_div[cpi->sf.inter_sf
                                         .prune_comp_type_by_comp_avg];
      // Evaluate COMPOUND_WEDGE / COMPOUND_DIFFWTD if approximated cost is
      // within threshold
      int64_t approx_rd = ((*rd / max_comp_type_rd_threshold_div) *
                           max_comp_type_rd_threshold_mul);

      if (approx_rd < ref_best_rd) {
        const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh);
        best_rd_cur = masked_compound_type_rd(
            cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst,
            &tmp_rate_mv, preds0, preds1, buffers->residual1, buffers->diff10,
            strides, rd_stats->rate, tmp_rd_thresh, &calc_pred_masked_compound,
            comp_rate, comp_dist, comp_model_rate, comp_model_dist,
            best_type_stats.comp_best_model_rd, &comp_model_rd_cur, comp_rs2,
            ref_skip_rd);
      }
    }

    // Update stats for best compound type
    if (best_rd_cur < *rd) {
      update_best_info(mbmi, rd, &best_type_stats, best_rd_cur,
                       comp_model_rd_cur, rs2);
      if (have_newmv_in_inter_mode(this_mode))
        update_mask_best_mv(mbmi, best_mv, &best_tmp_rate_mv, tmp_rate_mv);
    }
    // reset to original mvs for next iteration
    mbmi->mv[0].as_int = cur_mv[0].as_int;
    mbmi->mv[1].as_int = cur_mv[1].as_int;
  }

  mbmi->comp_group_idx =
      (best_type_stats.best_compound_data.type < COMPOUND_WEDGE) ? 0 : 1;
  mbmi->compound_idx =
      !(best_type_stats.best_compound_data.type == COMPOUND_DISTWTD);
  mbmi->interinter_comp = best_type_stats.best_compound_data;

  if (have_newmv_in_inter_mode(this_mode)) {
    mbmi->mv[0].as_int = best_mv[0].as_int;
    mbmi->mv[1].as_int = best_mv[1].as_int;
    rd_stats->rate += best_tmp_rate_mv - *rate_mv;
    *rate_mv = best_tmp_rate_mv;
  }

  if (this_mode == NEW_NEWMV)
    args->cmp_mode[ref_frame] = mbmi->interinter_comp.type;

  restore_dst_buf(xd, *orig_dst, 1);
  if (!match_found)
    save_comp_rd_search_stat(x, mbmi, comp_rate, comp_dist, comp_model_rate,
                             comp_model_dist, cur_mv, comp_rs2);
  return best_type_stats.best_compmode_interinter_cost;
}