aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/encodeframe_utils.c
blob: d3fa50292bc0b38cd1c474f7883e78326c8312ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "aom_ports/system_state.h"

#include "av1/common/reconintra.h"

#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/rdopt.h"

static AOM_INLINE int set_deltaq_rdmult(const AV1_COMP *const cpi,
                                        const MACROBLOCK *const x) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonQuantParams *quant_params = &cm->quant_params;
  return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
                                      quant_params->y_dc_delta_q);
}

void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
                         const BLOCK_SIZE bsize, const int mi_row,
                         const int mi_col, int *const rdmult) {
  const AV1_COMMON *const cm = &cpi->common;

  const int bsize_base = BLOCK_16X16;
  const int num_mi_w = mi_size_wide[bsize_base];
  const int num_mi_h = mi_size_high[bsize_base];
  const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
  const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
  const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
  int row, col;
  double num_of_mi = 0.0;
  double geom_mean_of_scale = 0.0;

  assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);

  for (row = mi_row / num_mi_w;
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
    for (col = mi_col / num_mi_h;
         col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
      const int index = row * num_cols + col;
      geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
      num_of_mi += 1.0;
    }
  }
  geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);

  *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
  *rdmult = AOMMAX(*rdmult, 0);
  av1_set_error_per_bit(errorperbit, *rdmult);
}

// Return the end column for the current superblock, in unit of TPL blocks.
static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col,
                                         int num_mi_w) {
  // Find the start column of this superblock.
  const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2)
                              << cm->seq_params->mib_size_log2;
  // Same but in superres upscaled dimension.
  const int sb_mi_col_start_sr =
      coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator);
  // Width of this superblock in mi units.
  const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size];
  // Same but in superres upscaled dimension.
  const int sb_mi_width_sr =
      coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator);
  // Superblock end in mi units.
  const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr;
  // Superblock end in TPL units.
  return (sb_mi_end + num_mi_w - 1) / num_mi_w;
}

int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
                            const BLOCK_SIZE bsize, const int mi_row,
                            const int mi_col, int orig_rdmult) {
  const AV1_COMMON *const cm = &cpi->common;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  const int deltaq_rdmult = set_deltaq_rdmult(cpi, x);
  if (tpl_idx >= MAX_TPL_FRAME_IDX) return deltaq_rdmult;
  const TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
  if (!tpl_frame->is_valid) return deltaq_rdmult;
  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index))
    return deltaq_rdmult;
  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;

  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int block_mi_width_sr =
      coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator);

  const int bsize_base = BLOCK_16X16;
  const int num_mi_w = mi_size_wide[bsize_base];
  const int num_mi_h = mi_size_high[bsize_base];
  const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
  const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w;
  const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
  // This is required because the end col of superblock may be off by 1 in case
  // of superres.
  const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w);
  int row, col;
  double base_block_count = 0.0;
  double geom_mean_of_scale = 0.0;
  for (row = mi_row / num_mi_w;
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
    for (col = mi_col_sr / num_mi_h;
         col < num_cols && col < mi_col_sr / num_mi_h + num_bcols &&
         col < sb_bcol_end;
         ++col) {
      const int index = row * num_cols + col;
      geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]);
      base_block_count += 1.0;
    }
  }
  geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
  int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
  rdmult = AOMMAX(rdmult, 0);
  av1_set_error_per_bit(&x->errorperbit, rdmult);
  if (bsize == cm->seq_params->sb_size) {
    const int rdmult_sb = set_deltaq_rdmult(cpi, x);
    assert(rdmult_sb == rdmult);
    (void)rdmult_sb;
  }
  return rdmult;
}

static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
                                                const MACROBLOCKD *xd,
                                                const MB_MODE_INFO *mbmi) {
  int dir;
  for (dir = 0; dir < 2; ++dir) {
    const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
    InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
    ++counts->switchable_interp[ctx][filter];
  }
}

static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
                          const TX_MODE tx_mode) {
  MACROBLOCKD *const xd = &x->e_mbd;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  if (xd->lossless[mbmi->segment_id]) {
    mbmi->tx_size = TX_4X4;
  } else if (tx_mode != TX_MODE_SELECT) {
    mbmi->tx_size = tx_size_from_tx_mode(mbmi->bsize, tx_mode);
  } else {
    BLOCK_SIZE bsize = mbmi->bsize;
    TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
    mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
  }
  if (is_inter_block(mbmi)) {
    memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
  }
  const int stride = xd->tx_type_map_stride;
  const int bw = mi_size_wide[mbmi->bsize];
  for (int row = 0; row < mi_size_high[mbmi->bsize]; ++row) {
    memset(xd->tx_type_map + row * stride, DCT_DCT,
           bw * sizeof(xd->tx_type_map[0]));
  }
  av1_zero(txfm_info->blk_skip);
  txfm_info->skip_txfm = 0;
}

// This function will copy the best reference mode information from
// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
    MB_MODE_INFO_EXT *mbmi_ext,
    const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
  memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
         sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
  memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
         sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
  mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
  mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
  memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
         sizeof(mbmi_ext->global_mvs));
}

void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
                      const PICK_MODE_CONTEXT *const ctx, int mi_row,
                      int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
  int i, x_idx, y;
  const AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int num_planes = av1_num_planes(cm);
  RD_COUNTS *const rdc = &td->rd_counts;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  struct macroblock_plane *const p = x->plane;
  struct macroblockd_plane *const pd = xd->plane;
  const MB_MODE_INFO *const mi = &ctx->mic;
  MB_MODE_INFO *const mi_addr = xd->mi[0];
  const struct segmentation *const seg = &cm->seg;
  assert(bsize < BLOCK_SIZES_ALL);
  const int bw = mi_size_wide[mi->bsize];
  const int bh = mi_size_high[mi->bsize];
  const int mis = mi_params->mi_stride;
  const int mi_width = mi_size_wide[bsize];
  const int mi_height = mi_size_high[bsize];
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;

  assert(mi->bsize == bsize);

  *mi_addr = *mi;
  copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
                                  av1_ref_frame_type(ctx->mic.ref_frame));

  memcpy(txfm_info->blk_skip, ctx->blk_skip,
         sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);

  txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;

  xd->tx_type_map = ctx->tx_type_map;
  xd->tx_type_map_stride = mi_size_wide[bsize];
  // If not dry_run, copy the transform type data into the frame level buffer.
  // Encoder will fetch tx types when writing bitstream.
  if (!dry_run) {
    const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
    uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
    const int mi_stride = mi_params->mi_stride;
    for (int blk_row = 0; blk_row < bh; ++blk_row) {
      av1_copy_array(tx_type_map + blk_row * mi_stride,
                     xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
    }
    xd->tx_type_map = tx_type_map;
    xd->tx_type_map_stride = mi_stride;
  }

  // If segmentation in use
  if (seg->enabled) {
    // For in frame complexity AQ copy the segment id from the segment map.
    if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
      const uint8_t *const map =
          seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
      mi_addr->segment_id =
          map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
      reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type);
    }
    // Else for cyclic refresh mode update the segment map, set the segment id
    // and then update the quantizer.
    if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
      av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
                                        ctx->rd_stats.rate, ctx->rd_stats.dist,
                                        txfm_info->skip_txfm, dry_run);
    }
    if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
      mi_addr->uv_mode = UV_DC_PRED;
  }

  // Count zero motion vector.
  if (!dry_run && cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
      !frame_is_intra_only(cm)) {
    const MV mv = mi->mv[0].as_mv;
    if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
        abs(mv.row) < 8 && abs(mv.col) < 8) {
      const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
      // Accumulate low_content_frame.
      for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
    }
  }

  for (i = 0; i < num_planes; ++i) {
    p[i].coeff = ctx->coeff[i];
    p[i].qcoeff = ctx->qcoeff[i];
    p[i].dqcoeff = ctx->dqcoeff[i];
    p[i].eobs = ctx->eobs[i];
    p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
  }
  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
  // Restore the coding context of the MB to that that was in place
  // when the mode was picked for it
  for (y = 0; y < mi_height; y++) {
    for (x_idx = 0; x_idx < mi_width; x_idx++) {
      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
        xd->mi[x_idx + y * mis] = mi_addr;
      }
    }
  }

  if (cpi->oxcf.q_cfg.aq_mode)
    av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);

  if (dry_run) return;

#if CONFIG_INTERNAL_STATS
  {
    unsigned int *const mode_chosen_counts =
        (unsigned int *)cpi->mode_chosen_counts;  // Cast const away.
    if (frame_is_intra_only(cm)) {
      static const int kf_mode_index[] = {
        THR_DC /*DC_PRED*/,
        THR_V_PRED /*V_PRED*/,
        THR_H_PRED /*H_PRED*/,
        THR_D45_PRED /*D45_PRED*/,
        THR_D135_PRED /*D135_PRED*/,
        THR_D113_PRED /*D113_PRED*/,
        THR_D157_PRED /*D157_PRED*/,
        THR_D203_PRED /*D203_PRED*/,
        THR_D67_PRED /*D67_PRED*/,
        THR_SMOOTH,   /*SMOOTH_PRED*/
        THR_SMOOTH_V, /*SMOOTH_V_PRED*/
        THR_SMOOTH_H, /*SMOOTH_H_PRED*/
        THR_PAETH /*PAETH_PRED*/,
      };
      ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
    } else {
      // Note how often each mode chosen as best
      ++mode_chosen_counts[ctx->best_mode_index];
    }
  }
#endif
  if (!frame_is_intra_only(cm)) {
    if (cm->features.interp_filter == SWITCHABLE &&
        mi_addr->motion_mode != WARPED_CAUSAL &&
        !is_nontrans_global_motion(xd, xd->mi[0])) {
      update_filter_type_count(td->counts, xd, mi_addr);
    }

    rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
    rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
    rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
  }

  const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
  const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
  if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
    av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
}

void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
                                 PREDICTION_MODE mode, int16_t mode_context) {
  (void)counts;

  int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
  if (mode == NEWMV) {
#if CONFIG_ENTROPY_STATS
    ++counts->newmv_mode[mode_ctx][0];
#endif
    update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
    return;
  }

#if CONFIG_ENTROPY_STATS
  ++counts->newmv_mode[mode_ctx][1];
#endif
  update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);

  mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
  if (mode == GLOBALMV) {
#if CONFIG_ENTROPY_STATS
    ++counts->zeromv_mode[mode_ctx][0];
#endif
    update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
    return;
  }

#if CONFIG_ENTROPY_STATS
  ++counts->zeromv_mode[mode_ctx][1];
#endif
  update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);

  mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
#if CONFIG_ENTROPY_STATS
  ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
#endif
  update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
}

static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
                               FRAME_COUNTS *counts) {
  FRAME_CONTEXT *fc = xd->tile_ctx;
  const BLOCK_SIZE bsize = mbmi->bsize;
  const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);

  (void)counts;

  if (mbmi->mode == DC_PRED) {
    const int n = pmi->palette_size[0];
    const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);

#if CONFIG_ENTROPY_STATS
    ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
#endif
    update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
               n > 0, 2);
    if (n > 0) {
#if CONFIG_ENTROPY_STATS
      ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
      update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
                 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
    }
  }

  if (mbmi->uv_mode == UV_DC_PRED) {
    const int n = pmi->palette_size[1];
    const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);

#if CONFIG_ENTROPY_STATS
    ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
#endif
    update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);

    if (n > 0) {
#if CONFIG_ENTROPY_STATS
      ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
      update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
                 n - PALETTE_MIN_SIZE, PALETTE_SIZES);
    }
  }
}

void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
                         MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
                         const MB_MODE_INFO *above_mi,
                         const MB_MODE_INFO *left_mi, const int intraonly) {
  FRAME_CONTEXT *fc = xd->tile_ctx;
  const PREDICTION_MODE y_mode = mbmi->mode;
  (void)counts;
  const BLOCK_SIZE bsize = mbmi->bsize;

  if (intraonly) {
#if CONFIG_ENTROPY_STATS
    const PREDICTION_MODE above = av1_above_block_mode(above_mi);
    const PREDICTION_MODE left = av1_left_block_mode(left_mi);
    const int above_ctx = intra_mode_context[above];
    const int left_ctx = intra_mode_context[left];
    ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
#endif  // CONFIG_ENTROPY_STATS
    update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
  } else {
#if CONFIG_ENTROPY_STATS
    ++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif  // CONFIG_ENTROPY_STATS
    update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
  }

  if (av1_filter_intra_allowed(cm, mbmi)) {
    const int use_filter_intra_mode =
        mbmi->filter_intra_mode_info.use_filter_intra;
#if CONFIG_ENTROPY_STATS
    ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
    if (use_filter_intra_mode) {
      ++counts
            ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
    }
#endif  // CONFIG_ENTROPY_STATS
    update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
    if (use_filter_intra_mode) {
      update_cdf(fc->filter_intra_mode_cdf,
                 mbmi->filter_intra_mode_info.filter_intra_mode,
                 FILTER_INTRA_MODES);
    }
  }
  if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
    ++counts->angle_delta[mbmi->mode - V_PRED]
                         [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
#endif
    update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
               mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
               2 * MAX_ANGLE_DELTA + 1);
  }

  if (!xd->is_chroma_ref) return;

  const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
  const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
#if CONFIG_ENTROPY_STATS
  ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
#endif  // CONFIG_ENTROPY_STATS
  update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
             UV_INTRA_MODES - !cfl_allowed);
  if (uv_mode == UV_CFL_PRED) {
    const int8_t joint_sign = mbmi->cfl_alpha_signs;
    const uint8_t idx = mbmi->cfl_alpha_idx;

#if CONFIG_ENTROPY_STATS
    ++counts->cfl_sign[joint_sign];
#endif
    update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
    if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
      aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];

#if CONFIG_ENTROPY_STATS
      ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
#endif
      update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
    }
    if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
      aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];

#if CONFIG_ENTROPY_STATS
      ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
#endif
      update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
    }
  }
  if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
      av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
    ++counts->angle_delta[uv_mode - UV_V_PRED]
                         [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
#endif
    update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
               mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
               2 * MAX_ANGLE_DELTA + 1);
  }
  if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
    update_palette_cdf(xd, mbmi, counts);
  }
}

void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
                         int mi_row, int mi_col, BLOCK_SIZE bsize,
                         const int num_planes) {
  MACROBLOCKD *xd = &x->e_mbd;
  int p;
  const int num_4x4_blocks_wide = mi_size_wide[bsize];
  const int num_4x4_blocks_high = mi_size_high[bsize];
  int mi_width = mi_size_wide[bsize];
  int mi_height = mi_size_high[bsize];
  for (p = 0; p < num_planes; p++) {
    int tx_col = mi_col;
    int tx_row = mi_row & MAX_MIB_MASK;
    memcpy(
        xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
        ctx->a + num_4x4_blocks_wide * p,
        (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
            xd->plane[p].subsampling_x);
    memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
           ctx->l + num_4x4_blocks_high * p,
           (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
               xd->plane[p].subsampling_y);
  }
  memcpy(xd->above_partition_context + mi_col, ctx->sa,
         sizeof(*xd->above_partition_context) * mi_width);
  memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
         sizeof(xd->left_partition_context[0]) * mi_height);
  xd->above_txfm_context = ctx->p_ta;
  xd->left_txfm_context = ctx->p_tl;
  memcpy(xd->above_txfm_context, ctx->ta,
         sizeof(*xd->above_txfm_context) * mi_width);
  memcpy(xd->left_txfm_context, ctx->tl,
         sizeof(*xd->left_txfm_context) * mi_height);
}

void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
                      int mi_row, int mi_col, BLOCK_SIZE bsize,
                      const int num_planes) {
  const MACROBLOCKD *xd = &x->e_mbd;
  int p;
  int mi_width = mi_size_wide[bsize];
  int mi_height = mi_size_high[bsize];

  // buffer the above/left context information of the block in search.
  for (p = 0; p < num_planes; ++p) {
    int tx_col = mi_col;
    int tx_row = mi_row & MAX_MIB_MASK;
    memcpy(
        ctx->a + mi_width * p,
        xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
        (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
    memcpy(ctx->l + mi_height * p,
           xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
           (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
  }
  memcpy(ctx->sa, xd->above_partition_context + mi_col,
         sizeof(*xd->above_partition_context) * mi_width);
  memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
         sizeof(xd->left_partition_context[0]) * mi_height);
  memcpy(ctx->ta, xd->above_txfm_context,
         sizeof(*xd->above_txfm_context) * mi_width);
  memcpy(ctx->tl, xd->left_txfm_context,
         sizeof(*xd->left_txfm_context) * mi_height);
  ctx->p_ta = xd->above_txfm_context;
  ctx->p_tl = xd->left_txfm_context;
}

static void set_partial_sb_partition(const AV1_COMMON *const cm,
                                     MB_MODE_INFO *mi, int bh_in, int bw_in,
                                     int mi_rows_remaining,
                                     int mi_cols_remaining, BLOCK_SIZE bsize,
                                     MB_MODE_INFO **mib) {
  int bh = bh_in;
  int r, c;
  for (r = 0; r < cm->seq_params->mib_size; r += bh) {
    int bw = bw_in;
    for (c = 0; c < cm->seq_params->mib_size; c += bw) {
      const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
      const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
      mib[grid_index] = mi + mi_index;
      mib[grid_index]->bsize = find_partition_size(
          bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
    }
  }
}

// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
                                MB_MODE_INFO **mib, int mi_row, int mi_col,
                                BLOCK_SIZE bsize) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mi_rows_remaining = tile->mi_row_end - mi_row;
  const int mi_cols_remaining = tile->mi_col_end - mi_col;
  MB_MODE_INFO *const mi_upper_left =
      mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
  int bh = mi_size_high[bsize];
  int bw = mi_size_wide[bsize];

  assert(bsize >= mi_params->mi_alloc_bsize &&
         "Attempted to use bsize < mi_params->mi_alloc_bsize");
  assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));

  // Apply the requested partition size to the SB if it is all "in image"
  if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
      (mi_rows_remaining >= cm->seq_params->mib_size)) {
    for (int block_row = 0; block_row < cm->seq_params->mib_size;
         block_row += bh) {
      for (int block_col = 0; block_col < cm->seq_params->mib_size;
           block_col += bw) {
        const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
        const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
        mib[grid_index] = mi_upper_left + mi_index;
        mib[grid_index]->bsize = bsize;
      }
    }
  } else {
    // Else this is a partial SB.
    set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
                             mi_cols_remaining, bsize, mib);
  }
}

int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
                                BLOCK_SIZE bsize) {
  const int bs = mi_size_wide[bsize];
  const int hbs = bs / 2;
  assert(bsize >= BLOCK_8X8);
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);

  for (int i = 0; i < 4; i++) {
    int x_idx = (i & 1) * hbs;
    int y_idx = (i >> 1) * hbs;
    if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
        (mi_col + x_idx >= cm->mi_params.mi_cols))
      return 0;
    if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
            PARTITION_NONE &&
        subsize != BLOCK_8X8)
      return 0;
  }
  return 1;
}

#if !CONFIG_REALTIME_ONLY
int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
                         int mi_col, int orig_rdmult) {
  AV1_COMMON *const cm = &cpi->common;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  int64_t intra_cost = 0;
  int64_t mc_dep_cost = 0;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];

  if (tpl_idx >= MAX_TPL_FRAME_IDX) return orig_rdmult;

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;
  if (!tpl_frame->is_valid) return orig_rdmult;

  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return orig_rdmult;

  int mi_count = 0;
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int step = 1 << block_mis_log2;
  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
      TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
      int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      intra_cost += this_stats->recrf_dist << RDDIV_BITS;
      mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
      mi_count++;
    }
  }
  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);

  double beta = 1.0;
  if (mc_dep_cost > 0 && intra_cost > 0) {
    const double r0 = cpi->rd.r0;
    const double rk = (double)intra_cost / mc_dep_cost;
    beta = (r0 / rk);
  }

  int rdmult = av1_get_adaptive_rdmult(cpi, beta);

  rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
  rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);

  rdmult = AOMMAX(1, rdmult);

  return rdmult;
}

// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
  int top_edge = 0;
  int bottom_edge = cpi->common.mi_params.mi_rows;
  int is_active_h_edge = 0;

  // For two pass account for any formatting bars detected.
  if (is_stat_consumption_stage_twopass(cpi)) {
    const AV1_COMMON *const cm = &cpi->common;
    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
        &cpi->ppi->twopass, cm->current_frame.display_order_hint);
    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;

    // The inactive region is specified in MBs not mi units.
    // The image edge is in the following MB row.
    top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);

    bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
    bottom_edge = AOMMAX(top_edge, bottom_edge);
  }

  if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
      ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
    is_active_h_edge = 1;
  }
  return is_active_h_edge;
}

// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
  int left_edge = 0;
  int right_edge = cpi->common.mi_params.mi_cols;
  int is_active_v_edge = 0;

  // For two pass account for any formatting bars detected.
  if (is_stat_consumption_stage_twopass(cpi)) {
    const AV1_COMMON *const cm = &cpi->common;
    const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
        &cpi->ppi->twopass, cm->current_frame.display_order_hint);
    if (this_frame_stats == NULL) return AOM_CODEC_ERROR;

    // The inactive region is specified in MBs not mi units.
    // The image edge is in the following MB row.
    left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);

    right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
    right_edge = AOMMAX(left_edge, right_edge);
  }

  if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
      ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
    is_active_v_edge = 1;
  }
  return is_active_v_edge;
}

void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
                          int mi_col, SuperBlockEnc *sb_enc) {
  sb_enc->tpl_data_count = 0;

  if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
  if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
  const FRAME_UPDATE_TYPE update_type =
      get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
  if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
    return;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));

  AV1_COMMON *const cm = &cpi->common;
  const int gf_group_index = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];

  if (gf_group_index >= MAX_TPL_FRAME_IDX) return;

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;
  if (!tpl_frame->is_valid) return;

  int mi_count = 0;
  int count = 0;
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  // mi_cols_sr is mi_cols at superres case.
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);

  // TPL store unit size is not the same as the motion estimation unit size.
  // Here always use motion estimation size to avoid getting repetitive inter/
  // intra cost.
  const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
  assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
  const int row_step = mi_size_high[tpl_bsize];
  const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
                                               cm->superres_scale_denominator);

  // Stride is only based on SB size, and we fill in values for every 16x16
  // block in a SB.
  sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;

  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
      // Handle partial SB, so that no invalid values are used later.
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
        sb_enc->tpl_inter_cost[count] = INT64_MAX;
        sb_enc->tpl_intra_cost[count] = INT64_MAX;
        for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
          sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
        }
        count++;
        continue;
      }

      TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
      sb_enc->tpl_inter_cost[count] = this_stats->inter_cost;
      sb_enc->tpl_intra_cost[count] = this_stats->intra_cost;
      memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
      mi_count++;
      count++;
    }
  }

  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
  sb_enc->tpl_data_count = mi_count;
}

// analysis_type 0: Use mc_dep_cost and intra_cost
// analysis_type 1: Use count of best inter predictor chosen
// analysis_type 2: Use cost reduction from intra to inter for best inter
//                  predictor chosen
int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
                                   int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  int64_t intra_cost = 0;
  int64_t mc_dep_cost = 0;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];
  const int base_qindex = cm->quant_params.base_qindex;

  if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  int tpl_stride = tpl_frame->stride;
  if (!tpl_frame->is_valid) return base_qindex;

  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return base_qindex;

  int mi_count = 0;
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int step = 1 << block_mis_log2;
  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
      TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
      int64_t mc_dep_delta =
          RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                 this_stats->mc_dep_dist);
      intra_cost += this_stats->recrf_dist << RDDIV_BITS;
      mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
      mi_count++;
    }
  }
  assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);

  int offset = 0;
  double beta = 1.0;
  if (mc_dep_cost > 0 && intra_cost > 0) {
    const double r0 = cpi->rd.r0;
    const double rk = (double)intra_cost / mc_dep_cost;
    beta = (r0 / rk);
    assert(beta > 0.0);
  }
  offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);

  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
  offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
  int qindex = cm->quant_params.base_qindex + offset;
  qindex = AOMMIN(qindex, MAXQ);
  qindex = AOMMAX(qindex, MINQ);

  return qindex;
}
#endif  // !CONFIG_REALTIME_ONLY

void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
                                            BLOCK_SIZE bsize) {
  sms_tree->partitioning = PARTITION_NONE;

  if (bsize >= BLOCK_8X8) {
    BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
    for (int idx = 0; idx < 4; ++idx)
      av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
  }
}

// Record the ref frames that have been selected by square partition blocks.
void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
                                       BLOCK_SIZE bsize, int mib_size,
                                       int mi_row, int mi_col) {
  assert(mi_size_wide[bsize] == mi_size_high[bsize]);
  const int sb_size_mask = mib_size - 1;
  const int mi_row_in_sb = mi_row & sb_size_mask;
  const int mi_col_in_sb = mi_col & sb_size_mask;
  const int mi_size = mi_size_wide[bsize];
  for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
    for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
      x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
    }
  }
}

static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
                           int num_cdfs, int cdf_stride, int nsymbs,
                           int wt_left, int wt_tr) {
  for (int i = 0; i < num_cdfs; i++) {
    for (int j = 0; j <= nsymbs; j++) {
      cdf_ptr_left[i * cdf_stride + j] =
          (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
                          (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
                          ((wt_left + wt_tr) / 2)) /
                         (wt_left + wt_tr));
      assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
             cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
    }
  }
}

#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
  AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))

#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \
  do {                                                                     \
    aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \
    aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \
    int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \
    int num_cdfs = array_size / cdf_stride;                                \
    avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
                   wt_left, wt_tr);                                        \
  } while (0)

static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
                    int wt_tr) {
  AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
  for (int i = 0; i < 2; i++) {
    AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
                MV_CLASSES);
    AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
                nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
    AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
    AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
    AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
                nmv_tr->comps[i].class0_hp_cdf, 2);
    AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
    AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
                CLASS0_SIZE);
    AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
  }
}

// In case of row-based multi-threading of encoder, since we always
// keep a top - right sync, we can average the top - right SB's CDFs and
// the left SB's CDFs and use the same for current SB's encoding to
// improve the performance. This function facilitates the averaging
// of CDF and used only when row-mt is enabled in encoder.
void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
                         int wt_left, int wt_tr) {
  AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
  AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
  AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
  AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
  AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
  AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
  AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
  AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
  AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
  AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
  AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
  AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
  AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
  AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
  AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
  AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
  AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
  AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
              ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
  AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
              MASKED_COMPOUND_TYPES);
  AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
  AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
  AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
  AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
              INTERINTRA_MODES);
  AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
  AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
  AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
              PALETTE_SIZES);
  AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
              PALETTE_SIZES);
  for (int j = 0; j < PALETTE_SIZES; j++) {
    int nsymbs = j + PALETTE_MIN_SIZE;
    AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
                   ctx_tr->palette_y_color_index_cdf[j], nsymbs,
                   CDF_SIZE(PALETTE_COLORS));
    AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
                   ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
                   CDF_SIZE(PALETTE_COLORS));
  }
  AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
  AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
  AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
  AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
  AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
  AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
  AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
  AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
  AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
  AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
  AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
  AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
  AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
  AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
  avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
  avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
  AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
  AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
  AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
  AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
              ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
  AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
  AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
              FILTER_INTRA_MODES);
  AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
              RESTORE_SWITCHABLE_TYPES);
  AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
  AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
  AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
  AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
                 UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
  AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
  for (int i = 0; i < PARTITION_CONTEXTS; i++) {
    if (i < 4) {
      AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
                     CDF_SIZE(10));
    } else if (i < 16) {
      AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
    } else {
      AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
                     CDF_SIZE(10));
    }
  }
  AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
              SWITCHABLE_FILTERS);
  AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
  AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
              2 * MAX_ANGLE_DELTA + 1);
  AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
                 CDF_SIZE(MAX_TX_DEPTH + 1));
  AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
              MAX_TX_DEPTH + 1);
  AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
              MAX_TX_DEPTH + 1);
  AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
              MAX_TX_DEPTH + 1);
  AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
  AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
  for (int i = 0; i < FRAME_LF_COUNT; i++) {
    AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
                DELTA_LF_PROBS + 1);
  }
  AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
                 CDF_SIZE(TX_TYPES));
  AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
                 CDF_SIZE(TX_TYPES));
  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
                 CDF_SIZE(TX_TYPES));
  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
                 CDF_SIZE(TX_TYPES));
  AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
                 CDF_SIZE(TX_TYPES));
  AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
  AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
              CFL_ALPHABET_SIZE);
}

// Grade the temporal variation of the source by comparing the current sb and
// its collocated block in the last frame.
void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, int offset) {
  unsigned int tmp_sse;
  unsigned int tmp_variance;
  const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
  uint8_t *src_y = cpi->source->y_buffer;
  int src_ystride = cpi->source->y_stride;
  uint8_t *last_src_y = cpi->last_source->y_buffer;
  int last_src_ystride = cpi->last_source->y_stride;
  uint64_t avg_source_sse_threshold = 100000;        // ~5*5*(64*64)
  uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64)
  uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5
#if CONFIG_AV1_HIGHBITDEPTH
  MACROBLOCKD *xd = &x->e_mbd;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
#endif
  src_y += offset;
  last_src_y += offset;
  tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
                                            last_src_ystride, &tmp_sse);
  if (tmp_sse < avg_source_sse_threshold)
    x->content_state_sb.source_sad = kLowSad;
  else if (tmp_sse > avg_source_sse_threshold_high)
    x->content_state_sb.source_sad = kHighSad;
  // Detect large lighting change.
  // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
  if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
    x->content_state_sb.lighting_change = 1;
  if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
    x->content_state_sb.low_sumdiff = 1;
}

// Memset the mbmis at the current superblock to 0
void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
                    int mi_row, int mi_col) {
  // size of sb in unit of mi (BLOCK_4X4)
  const int sb_size_mi = mi_size_wide[sb_size];
  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
  // size of sb in unit of allocated mi size
  const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
  assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
         "mi is not allocated as a multiple of sb!");
  assert(mi_params->mi_stride % sb_size_mi == 0 &&
         "mi_grid_base is not allocated as a multiple of sb!");

  const int mi_rows = mi_size_high[sb_size];
  for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
    assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
           mi_params->mi_stride);
    const int mi_grid_idx =
        get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
    const int alloc_mi_idx =
        get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
    memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
           sb_size_mi * sizeof(*mi_params->mi_grid_base));
    memset(&mi_params->tx_type_map[mi_grid_idx], 0,
           sb_size_mi * sizeof(*mi_params->tx_type_map));
    if (cur_mi_row % mi_alloc_size_1d == 0) {
      memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
             sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
    }
  }
}

void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
                         ThreadData *td, const TileDataEnc *tile_data,
                         int mi_row, int mi_col) {
  MACROBLOCK *x = &td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  const TileInfo *tile_info = &tile_data->tile_info;

  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;

  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);

  sb_fp_stats->rd_count = cpi->td.rd_counts;
  sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;

  sb_fp_stats->fc = *td->counts;

  memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
         sizeof(sb_fp_stats->inter_mode_rd_models));

  memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
         sizeof(sb_fp_stats->thresh_freq_fact));

  const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
  sb_fp_stats->current_qindex =
      cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;

#if CONFIG_INTERNAL_STATS
  memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
         sizeof(sb_fp_stats->mode_chosen_counts));
#endif  // CONFIG_INTERNAL_STATS
}

void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
                          ThreadData *td, TileDataEnc *tile_data, int mi_row,
                          int mi_col) {
  MACROBLOCK *x = &td->mb;

  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;

  av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
                      num_planes);

  cpi->td.rd_counts = sb_fp_stats->rd_count;
  x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;

  *td->counts = sb_fp_stats->fc;

  memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
         sizeof(sb_fp_stats->inter_mode_rd_models));
  memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
         sizeof(sb_fp_stats->thresh_freq_fact));

  const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
  cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
      sb_fp_stats->current_qindex;

#if CONFIG_INTERNAL_STATS
  memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
         sizeof(sb_fp_stats->mode_chosen_counts));
#endif  // CONFIG_INTERNAL_STATS
}

/*! Checks whether to skip updating the entropy cost based on tile info.
 *
 * This function contains codes common to both \ref skip_mv_cost_update and
 * \ref skip_dv_cost_update.
 */
static int skip_cost_update(const SequenceHeader *seq_params,
                            const TileInfo *const tile_info, const int mi_row,
                            const int mi_col,
                            INTERNAL_COST_UPDATE_TYPE upd_level) {
  if (upd_level == INTERNAL_COST_UPD_SB) return 0;
  if (upd_level == INTERNAL_COST_UPD_OFF) return 1;

  // upd_level is at most as frequent as each sb_row in a tile.
  if (mi_col != tile_info->mi_col_start) return 1;

  if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
    const int mib_size_log2 = seq_params->mib_size_log2;
    const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
    const int sb_size = seq_params->mib_size * MI_SIZE;
    const int tile_height =
        (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
    // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
    // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
    // as the update will not be equally spaced in smaller resolutions making
    // it equally spaced by calculating (mv_num_rows_cost_update) the number of
    // rows after which the cost update should happen.
    const int sb_size_update_freq_map[2] = { 2, 4 };
    const int update_freq_sb_rows =
        sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
    const int update_freq_num_rows = sb_size * update_freq_sb_rows;
    // Round-up the division result to next integer.
    const int num_updates_per_tile =
        (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
    const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
    // Round-up the division result to next integer.
    const int num_sb_rows_per_update =
        (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
    if ((sb_row % num_sb_rows_per_update) != 0) return 1;
  }
  return 0;
}

// Checks for skip status of mv cost update.
static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
                               const int mi_row, const int mi_col) {
  const AV1_COMMON *cm = &cpi->common;
  // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
  // cost calculation is skipped in this case.
  if (frame_is_intra_only(cm)) return 1;

  return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
                          cpi->sf.inter_sf.mv_cost_upd_level);
}

// Checks for skip status of dv cost update.
static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
                               const int mi_row, const int mi_col) {
  const AV1_COMMON *cm = &cpi->common;
  // Intrabc is only applicable to intra frames. So skip if intrabc is not
  // allowed.
  if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
    return 1;
  }

  return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
                          cpi->sf.intra_sf.dv_cost_upd_level);
}

// Update the rate costs of some symbols according to the frequency directed
// by speed features
void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
                           const TileInfo *const tile_info, const int mi_row,
                           const int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;

  switch (cpi->oxcf.cost_upd_freq.coeff) {
    case COST_UPD_OFF:
    case COST_UPD_TILE:  // Tile level
      break;
    case COST_UPD_SBROW:  // SB row level in tile
      if (mi_col != tile_info->mi_col_start) break;
      AOM_FALLTHROUGH_INTENDED;
    case COST_UPD_SB:  // SB level
      if (cpi->sf.inter_sf.coeff_cost_upd_level == INTERNAL_COST_UPD_SBROW &&
          mi_col != tile_info->mi_col_start)
        break;
      av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
      break;
    default: assert(0);
  }

  switch (cpi->oxcf.cost_upd_freq.mode) {
    case COST_UPD_OFF:
    case COST_UPD_TILE:  // Tile level
      break;
    case COST_UPD_SBROW:  // SB row level in tile
      if (mi_col != tile_info->mi_col_start) break;
      AOM_FALLTHROUGH_INTENDED;
    case COST_UPD_SB:  // SB level
      if (cpi->sf.inter_sf.mode_cost_upd_level == INTERNAL_COST_UPD_SBROW &&
          mi_col != tile_info->mi_col_start)
        break;
      av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
      break;
    default: assert(0);
  }
  switch (cpi->oxcf.cost_upd_freq.mv) {
    case COST_UPD_OFF:
    case COST_UPD_TILE:  // Tile level
      break;
    case COST_UPD_SBROW:  // SB row level in tile
      if (mi_col != tile_info->mi_col_start) break;
      AOM_FALLTHROUGH_INTENDED;
    case COST_UPD_SB:  // SB level
      // Checks for skip status of mv cost update.
      if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
      av1_fill_mv_costs(&xd->tile_ctx->nmvc,
                        cm->features.cur_frame_force_integer_mv,
                        cm->features.allow_high_precision_mv, x->mv_costs);
      break;
    default: assert(0);
  }

  switch (cpi->oxcf.cost_upd_freq.dv) {
    case COST_UPD_OFF:
    case COST_UPD_TILE:  // Tile level
      break;
    case COST_UPD_SBROW:  // SB row level in tile
      if (mi_col != tile_info->mi_col_start) break;
      AOM_FALLTHROUGH_INTENDED;
    case COST_UPD_SB:  // SB level
      // Checks for skip status of dv cost update.
      if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
      av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
      break;
    default: assert(0);
  }
}