aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/interp_search.c
blob: dd77f6a1c02643ee21ae2df62b2ceefe6b0a76e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/pred_common.h"
#include "av1/encoder/interp_search.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/rdopt_utils.h"
#include "av1/encoder/reconinter_enc.h"

// return mv_diff
static INLINE int is_interp_filter_good_match(
    const INTERPOLATION_FILTER_STATS *st, MB_MODE_INFO *const mi,
    int skip_level) {
  const int is_comp = has_second_ref(mi);
  int i;

  for (i = 0; i < 1 + is_comp; ++i) {
    if (st->ref_frames[i] != mi->ref_frame[i]) return INT_MAX;
  }

  if (skip_level == 1 && is_comp) {
    if (st->comp_type != mi->interinter_comp.type) return INT_MAX;
    if (st->compound_idx != mi->compound_idx) return INT_MAX;
  }

  int mv_diff = 0;
  for (i = 0; i < 1 + is_comp; ++i) {
    mv_diff += abs(st->mv[i].as_mv.row - mi->mv[i].as_mv.row) +
               abs(st->mv[i].as_mv.col - mi->mv[i].as_mv.col);
  }
  return mv_diff;
}

static INLINE int save_interp_filter_search_stat(
    MB_MODE_INFO *const mbmi, int64_t rd, unsigned int pred_sse,
    INTERPOLATION_FILTER_STATS *interp_filter_stats,
    int interp_filter_stats_idx) {
  if (interp_filter_stats_idx < MAX_INTERP_FILTER_STATS) {
    INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters,
                                        { mbmi->mv[0], mbmi->mv[1] },
                                        { mbmi->ref_frame[0],
                                          mbmi->ref_frame[1] },
                                        mbmi->interinter_comp.type,
                                        mbmi->compound_idx,
                                        rd,
                                        pred_sse };
    interp_filter_stats[interp_filter_stats_idx] = stat;
    interp_filter_stats_idx++;
  }
  return interp_filter_stats_idx;
}

static INLINE int find_interp_filter_in_stats(
    MB_MODE_INFO *const mbmi, INTERPOLATION_FILTER_STATS *interp_filter_stats,
    int interp_filter_stats_idx, int skip_level) {
  // [skip_levels][single or comp]
  const int thr[2][2] = { { 0, 0 }, { 3, 7 } };
  const int is_comp = has_second_ref(mbmi);

  // Find good enough match.
  // TODO(yunqing): Separate single-ref mode and comp mode stats for fast
  // search.
  int best = INT_MAX;
  int match = -1;
  for (int j = 0; j < interp_filter_stats_idx; ++j) {
    const INTERPOLATION_FILTER_STATS *st = &interp_filter_stats[j];
    const int mv_diff = is_interp_filter_good_match(st, mbmi, skip_level);
    // Exact match is found.
    if (mv_diff == 0) {
      match = j;
      break;
    } else if (mv_diff < best && mv_diff <= thr[skip_level - 1][is_comp]) {
      best = mv_diff;
      match = j;
    }
  }

  if (match != -1) {
    mbmi->interp_filters = interp_filter_stats[match].filters;
    return match;
  }
  return -1;  // no match result found
}

int av1_find_interp_filter_match(
    MB_MODE_INFO *const mbmi, const AV1_COMP *const cpi,
    const InterpFilter assign_filter, const int need_search,
    INTERPOLATION_FILTER_STATS *interp_filter_stats,
    int interp_filter_stats_idx) {
  int match_found_idx = -1;
  if (cpi->sf.interp_sf.use_interp_filter && need_search)
    match_found_idx = find_interp_filter_in_stats(
        mbmi, interp_filter_stats, interp_filter_stats_idx,
        cpi->sf.interp_sf.use_interp_filter);

  if (!need_search || match_found_idx == -1)
    set_default_interp_filters(mbmi, assign_filter);
  return match_found_idx;
}

static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2],
                                int num_planes) {
  const BUFFER_SET *buf0 = dst_bufs[0];
  dst_bufs[0] = dst_bufs[1];
  dst_bufs[1] = buf0;
  restore_dst_buf(xd, *dst_bufs[0], num_planes);
}

static INLINE int get_switchable_rate(MACROBLOCK *const x,
                                      const int_interpfilters filters,
                                      const int ctx[2], int dual_filter) {
  const InterpFilter filter0 = filters.as_filters.y_filter;
  int inter_filter_cost =
      x->mode_costs.switchable_interp_costs[ctx[0]][filter0];
  if (dual_filter) {
    const InterpFilter filter1 = filters.as_filters.x_filter;
    inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx[1]][filter1];
  }
  return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
}

// Build inter predictor and calculate model rd
// for a given plane.
static INLINE void interp_model_rd_eval(
    MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int plane_from, int plane_to,
    RD_STATS *rd_stats, int is_skip_build_pred) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  RD_STATS tmp_rd_stats;
  av1_init_rd_stats(&tmp_rd_stats);

  // Skip inter predictor if the predictor is already available.
  if (!is_skip_build_pred) {
    const int mi_row = xd->mi_row;
    const int mi_col = xd->mi_col;
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                  plane_from, plane_to);
  }

  model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
                     ? MODELRD_LEGACY
                     : MODELRD_TYPE_INTERP_FILTER](
      cpi, bsize, x, xd, plane_from, plane_to, &tmp_rd_stats.rate,
      &tmp_rd_stats.dist, &tmp_rd_stats.skip_txfm, &tmp_rd_stats.sse, NULL,
      NULL, NULL);

  av1_merge_rd_stats(rd_stats, &tmp_rd_stats);
}

// calculate the rdcost of given interpolation_filter
static INLINE int64_t interpolation_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int64_t *const rd,
    RD_STATS *rd_stats_luma, RD_STATS *rd_stats, int *const switchable_rate,
    const BUFFER_SET *dst_bufs[2], int filter_idx, const int switchable_ctx[2],
    const int skip_pred) {
  const AV1_COMMON *cm = &cpi->common;
  const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  RD_STATS this_rd_stats_luma, this_rd_stats;

  // Initialize rd_stats structures to default values.
  av1_init_rd_stats(&this_rd_stats_luma);
  this_rd_stats = *rd_stats_luma;
  const int_interpfilters last_best = mbmi->interp_filters;
  mbmi->interp_filters = filter_sets[filter_idx];
  const int tmp_rs =
      get_switchable_rate(x, mbmi->interp_filters, switchable_ctx,
                          cm->seq_params->enable_dual_filter);

  int64_t min_rd = RDCOST(x->rdmult, tmp_rs, 0);
  if (min_rd > *rd) {
    mbmi->interp_filters = last_best;
    return 0;
  }

  (void)tile_data;

  assert(skip_pred != 2);
  assert((rd_stats_luma->rate >= 0) && (rd_stats->rate >= 0));
  assert((rd_stats_luma->dist >= 0) && (rd_stats->dist >= 0));
  assert((rd_stats_luma->sse >= 0) && (rd_stats->sse >= 0));
  assert((rd_stats_luma->skip_txfm == 0) || (rd_stats_luma->skip_txfm == 1));
  assert((rd_stats->skip_txfm == 0) || (rd_stats->skip_txfm == 1));
  assert((skip_pred >= 0) &&
         (skip_pred <= interp_search_flags->default_interp_skip_flags));

  // When skip_txfm pred is equal to default_interp_skip_flags,
  // skip both luma and chroma MC.
  // For mono-chrome images:
  // num_planes = 1 and cpi->default_interp_skip_flags = 1,
  // skip_pred = 1: skip both luma and chroma
  // skip_pred = 0: Evaluate luma and as num_planes=1,
  // skip chroma evaluation
  int tmp_skip_pred =
      (skip_pred == interp_search_flags->default_interp_skip_flags)
          ? INTERP_SKIP_LUMA_SKIP_CHROMA
          : skip_pred;

  switch (tmp_skip_pred) {
    case INTERP_EVAL_LUMA_EVAL_CHROMA:
      // skip_pred = 0: Evaluate both luma and chroma.
      // Luma MC
      interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y,
                           &this_rd_stats_luma, 0);
      this_rd_stats = this_rd_stats_luma;
#if CONFIG_COLLECT_RD_STATS == 3
      RD_STATS rd_stats_y;
      av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
                                          INT64_MAX);
      PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize);
#endif  // CONFIG_COLLECT_RD_STATS == 3
      AOM_FALLTHROUGH_INTENDED;
    case INTERP_SKIP_LUMA_EVAL_CHROMA:
      // skip_pred = 1: skip luma evaluation (retain previous best luma stats)
      // and do chroma evaluation.
      for (int plane = 1; plane < num_planes; ++plane) {
        int64_t tmp_rd =
            RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist);
        if (tmp_rd >= *rd) {
          mbmi->interp_filters = last_best;
          return 0;
        }
        interp_model_rd_eval(x, cpi, bsize, orig_dst, plane, plane,
                             &this_rd_stats, 0);
      }
      break;
    case INTERP_SKIP_LUMA_SKIP_CHROMA:
      // both luma and chroma evaluation is skipped
      this_rd_stats = *rd_stats;
      break;
    case INTERP_EVAL_INVALID:
    default: assert(0); return 0;
  }
  int64_t tmp_rd =
      RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist);

  if (tmp_rd < *rd) {
    *rd = tmp_rd;
    *switchable_rate = tmp_rs;
    if (skip_pred != interp_search_flags->default_interp_skip_flags) {
      if (skip_pred == INTERP_EVAL_LUMA_EVAL_CHROMA) {
        // Overwrite the data as current filter is the best one
        *rd_stats_luma = this_rd_stats_luma;
        *rd_stats = this_rd_stats;
        // As luma MC data is computed, no need to recompute after the search
        x->recalc_luma_mc_data = 0;
      } else if (skip_pred == INTERP_SKIP_LUMA_EVAL_CHROMA) {
        // As luma MC data is not computed, update of luma data can be skipped
        *rd_stats = this_rd_stats;
        // As luma MC data is not recomputed and current filter is the best,
        // indicate the possibility of recomputing MC data
        // If current buffer contains valid MC data, toggle to indicate that
        // luma MC data needs to be recomputed
        x->recalc_luma_mc_data ^= 1;
      }
      swap_dst_buf(xd, dst_bufs, num_planes);
    }
    return 1;
  }
  mbmi->interp_filters = last_best;
  return 0;
}

static INLINE INTERP_PRED_TYPE is_pred_filter_search_allowed(
    const AV1_COMP *const cpi, MACROBLOCKD *xd, BLOCK_SIZE bsize,
    int_interpfilters *af, int_interpfilters *lf) {
  const AV1_COMMON *cm = &cpi->common;
  const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
  const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
  const int bsl = mi_size_wide_log2[bsize];
  int is_horiz_eq = 0, is_vert_eq = 0;

  if (above_mbmi && is_inter_block(above_mbmi))
    *af = above_mbmi->interp_filters;

  if (left_mbmi && is_inter_block(left_mbmi)) *lf = left_mbmi->interp_filters;

  if (af->as_filters.x_filter != INTERP_INVALID)
    is_horiz_eq = af->as_filters.x_filter == lf->as_filters.x_filter;
  if (af->as_filters.y_filter != INTERP_INVALID)
    is_vert_eq = af->as_filters.y_filter == lf->as_filters.y_filter;

  INTERP_PRED_TYPE pred_filter_type = (is_vert_eq << 1) + is_horiz_eq;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  int pred_filter_enable =
      cpi->sf.interp_sf.cb_pred_filter_search
          ? (((mi_row + mi_col) >> bsl) +
             get_chessboard_index(cm->current_frame.frame_number)) &
                0x1
          : 0;
  pred_filter_enable &= is_horiz_eq || is_vert_eq;
  // pred_filter_search = 0: pred_filter is disabled
  // pred_filter_search = 1: pred_filter is enabled and only horz pred matching
  // pred_filter_search = 2: pred_filter is enabled and only vert pred matching
  // pred_filter_search = 3: pred_filter is enabled and
  //                         both vert, horz pred matching
  return pred_filter_enable * pred_filter_type;
}

static DUAL_FILTER_TYPE find_best_interp_rd_facade(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats, int *const switchable_rate,
    const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
    const int skip_pred, uint16_t allow_interp_mask, int is_w4_or_h4) {
  int tmp_skip_pred = skip_pred;
  DUAL_FILTER_TYPE best_filt_type = REG_REG;

  // If no filter are set to be evaluated, return from function
  if (allow_interp_mask == 0x0) return best_filt_type;
  // For block width or height is 4, skip the pred evaluation of SHARP_SHARP
  tmp_skip_pred = is_w4_or_h4
                      ? cpi->interp_search_flags.default_interp_skip_flags
                      : skip_pred;

  // Loop over the all filter types and evaluate for only allowed filter types
  for (int filt_type = SHARP_SHARP; filt_type >= REG_REG; --filt_type) {
    const int is_filter_allowed =
        get_interp_filter_allowed_mask(allow_interp_mask, filt_type);
    if (is_filter_allowed)
      if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                                  rd_stats_y, rd_stats, switchable_rate,
                                  dst_bufs, filt_type, switchable_ctx,
                                  tmp_skip_pred))
        best_filt_type = filt_type;
    tmp_skip_pred = skip_pred;
  }
  return best_filt_type;
}

static INLINE void pred_dual_interp_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats, int *const switchable_rate,
    const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
    const int skip_pred, INTERP_PRED_TYPE pred_filt_type, int_interpfilters *af,
    int_interpfilters *lf) {
  (void)lf;
  assert(pred_filt_type > INTERP_HORZ_NEQ_VERT_NEQ);
  assert(pred_filt_type < INTERP_PRED_TYPE_ALL);
  uint16_t allowed_interp_mask = 0;

  if (pred_filt_type == INTERP_HORZ_EQ_VERT_NEQ) {
    // pred_filter_search = 1: Only horizontal filter is matching
    allowed_interp_mask =
        av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.x_filter];
  } else if (pred_filt_type == INTERP_HORZ_NEQ_VERT_EQ) {
    // pred_filter_search = 2: Only vertical filter is matching
    allowed_interp_mask =
        av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.y_filter];
  } else {
    // pred_filter_search = 3: Both horizontal and vertical filter are matching
    int filt_type =
        af->as_filters.x_filter + af->as_filters.y_filter * SWITCHABLE_FILTERS;
    set_interp_filter_allowed_mask(&allowed_interp_mask, filt_type);
  }
  // REG_REG is already been evaluated in the beginning
  reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG);
  find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y,
                             rd_stats, switchable_rate, dst_bufs,
                             switchable_ctx, skip_pred, allowed_interp_mask, 0);
}
// Evaluate dual filter type
// a) Using above, left block interp filter
// b) Find the best horizontal filter and
//    then evaluate corresponding vertical filters.
static INLINE void fast_dual_interp_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats, int *const switchable_rate,
    const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
    const int skip_hor, const int skip_ver) {
  const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ;
  int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID);
  int_interpfilters lf = af;

  if (!have_newmv_in_inter_mode(mbmi->mode)) {
    pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf);
  }

  if (pred_filter_type) {
    pred_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                               rd_stats_y, rd_stats, switchable_rate, dst_bufs,
                               switchable_ctx, (skip_hor & skip_ver),
                               pred_filter_type, &af, &lf);
  } else {
    const int bw = block_size_wide[bsize];
    const int bh = block_size_high[bsize];
    int best_dual_mode = 0;
    int skip_pred =
        bw <= 4 ? interp_search_flags->default_interp_skip_flags : skip_hor;
    // TODO(any): Make use of find_best_interp_rd_facade()
    // if speed impact is negligible
    for (int i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) {
      if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                                  rd_stats_y, rd_stats, switchable_rate,
                                  dst_bufs, i, switchable_ctx, skip_pred)) {
        best_dual_mode = i;
      }
      skip_pred = skip_hor;
    }
    // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes
    skip_pred =
        bh <= 4 ? interp_search_flags->default_interp_skip_flags : skip_ver;
    for (int i = (best_dual_mode + (SWITCHABLE_FILTERS * 2));
         i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) {
      interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                              rd_stats_y, rd_stats, switchable_rate, dst_bufs,
                              i, switchable_ctx, skip_pred);
      skip_pred = skip_ver;
    }
  }
}

// Find the best interp filter if dual_interp_filter = 0
static INLINE void find_best_non_dual_interp_filter(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats, int *const switchable_rate,
    const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2],
    const int skip_ver, const int skip_hor) {
  const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
  int8_t i;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];

  uint16_t interp_filter_search_mask =
      interp_search_flags->interp_filter_search_mask;

  if (cpi->sf.interp_sf.adaptive_interp_filter_search == 2) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    const int ctx0 = av1_get_pred_context_switchable_interp(xd, 0);
    const int ctx1 = av1_get_pred_context_switchable_interp(xd, 1);
    int *switchable_interp_p0;
    int *switchable_interp_p1;
#if CONFIG_FRAME_PARALLEL_ENCODE
    switchable_interp_p0 = (int *)cpi->ppi->temp_frame_probs
                               .switchable_interp_probs[update_type][ctx0];
    switchable_interp_p1 = (int *)cpi->ppi->temp_frame_probs
                               .switchable_interp_probs[update_type][ctx1];
#else
    switchable_interp_p0 =
        (int *)cpi->frame_probs.switchable_interp_probs[update_type][ctx0];
    switchable_interp_p1 =
        (int *)cpi->frame_probs.switchable_interp_probs[update_type][ctx1];
#endif
    static const int thr[7] = { 0, 8, 8, 8, 8, 0, 8 };
    const int thresh = thr[update_type];
    for (i = 0; i < SWITCHABLE_FILTERS; i++) {
      // For non-dual case, the 2 dir's prob should be identical.
      assert(switchable_interp_p0[i] == switchable_interp_p1[i]);
      if (switchable_interp_p0[i] < thresh &&
          switchable_interp_p1[i] < thresh) {
        DUAL_FILTER_TYPE filt_type = i + SWITCHABLE_FILTERS * i;
        reset_interp_filter_allowed_mask(&interp_filter_search_mask, filt_type);
      }
    }
  }

  // Regular filter evaluation should have been done and hence the same should
  // be the winner
  assert(x->e_mbd.mi[0]->interp_filters.as_int == filter_sets[0].as_int);
  if ((skip_hor & skip_ver) != interp_search_flags->default_interp_skip_flags) {
    INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ;
    int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID);
    int_interpfilters lf = af;

    pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf);
    if (pred_filter_type) {
      assert(af.as_filters.x_filter != INTERP_INVALID);
      int filter_idx = SWITCHABLE * af.as_filters.x_filter;
      // This assert tells that (filter_x == filter_y) for non-dual filter case
      assert(filter_sets[filter_idx].as_filters.x_filter ==
             filter_sets[filter_idx].as_filters.y_filter);
      if (cpi->sf.interp_sf.adaptive_interp_filter_search &&
          !(get_interp_filter_allowed_mask(interp_filter_search_mask,
                                           filter_idx))) {
        return;
      }
      if (filter_idx) {
        interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                                rd_stats_y, rd_stats, switchable_rate, dst_bufs,
                                filter_idx, switchable_ctx,
                                (skip_hor & skip_ver));
      }
      return;
    }
  }
  // Reuse regular filter's modeled rd data for sharp filter for following
  // cases
  // 1) When bsize is 4x4
  // 2) When block width is 4 (i.e. 4x8/4x16 blocks) and MV in vertical
  // direction is full-pel
  // 3) When block height is 4 (i.e. 8x4/16x4 blocks) and MV in horizontal
  // direction is full-pel
  // TODO(any): Optimize cases 2 and 3 further if luma MV in relavant direction
  // alone is full-pel

  if ((bsize == BLOCK_4X4) ||
      (block_size_wide[bsize] == 4 &&
       skip_ver == interp_search_flags->default_interp_skip_flags) ||
      (block_size_high[bsize] == 4 &&
       skip_hor == interp_search_flags->default_interp_skip_flags)) {
    int skip_pred = skip_hor & skip_ver;
    uint16_t allowed_interp_mask = 0;

    // REG_REG filter type is evaluated beforehand, hence skip it
    set_interp_filter_allowed_mask(&allowed_interp_mask, SHARP_SHARP);
    set_interp_filter_allowed_mask(&allowed_interp_mask, SMOOTH_SMOOTH);
    if (cpi->sf.interp_sf.adaptive_interp_filter_search)
      allowed_interp_mask &= interp_filter_search_mask;

    find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd,
                               rd_stats_y, rd_stats, switchable_rate, dst_bufs,
                               switchable_ctx, skip_pred, allowed_interp_mask,
                               1);
  } else {
    int skip_pred = (skip_hor & skip_ver);
    for (i = (SWITCHABLE_FILTERS + 1); i < DUAL_FILTER_SET_SIZE;
         i += (SWITCHABLE_FILTERS + 1)) {
      // This assert tells that (filter_x == filter_y) for non-dual filter case
      assert(filter_sets[i].as_filters.x_filter ==
             filter_sets[i].as_filters.y_filter);
      if (cpi->sf.interp_sf.adaptive_interp_filter_search &&
          !(get_interp_filter_allowed_mask(interp_filter_search_mask, i))) {
        continue;
      }
      interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                              rd_stats_y, rd_stats, switchable_rate, dst_bufs,
                              i, switchable_ctx, skip_pred);
      // In first iteration, smooth filter is evaluated. If smooth filter
      // (which is less sharper) is the winner among regular and smooth filters,
      // sharp filter evaluation is skipped
      // TODO(any): Refine this gating based on modelled rd only (i.e., by not
      // accounting switchable filter rate)
      if (cpi->sf.interp_sf.skip_sharp_interp_filter_search &&
          skip_pred != interp_search_flags->default_interp_skip_flags) {
        if (mbmi->interp_filters.as_int == filter_sets[SMOOTH_SMOOTH].as_int)
          break;
      }
    }
  }
}

static INLINE void calc_interp_skip_pred_flag(MACROBLOCK *const x,
                                              const AV1_COMP *const cpi,
                                              int *skip_hor, int *skip_ver) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int num_planes = av1_num_planes(cm);
  const int is_compound = has_second_ref(mbmi);
  assert(is_intrabc_block(mbmi) == 0);
  for (int ref = 0; ref < 1 + is_compound; ++ref) {
    const struct scale_factors *const sf =
        get_ref_scale_factors_const(cm, mbmi->ref_frame[ref]);
    // TODO(any): Refine skip flag calculation considering scaling
    if (av1_is_scaled(sf)) {
      *skip_hor = 0;
      *skip_ver = 0;
      break;
    }
    const MV mv = mbmi->mv[ref].as_mv;
    int skip_hor_plane = 0;
    int skip_ver_plane = 0;
    for (int plane_idx = 0; plane_idx < AOMMAX(1, (num_planes - 1));
         ++plane_idx) {
      struct macroblockd_plane *const pd = &xd->plane[plane_idx];
      const int bw = pd->width;
      const int bh = pd->height;
      const MV mv_q4 = clamp_mv_to_umv_border_sb(
          xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
      const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
      const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
      skip_hor_plane |= ((sub_x == 0) << plane_idx);
      skip_ver_plane |= ((sub_y == 0) << plane_idx);
    }
    *skip_hor &= skip_hor_plane;
    *skip_ver &= skip_ver_plane;
    // It is not valid that "luma MV is sub-pel, whereas chroma MV is not"
    assert(*skip_hor != 2);
    assert(*skip_ver != 2);
  }
  // When compond prediction type is compound segment wedge, luma MC and chroma
  // MC need to go hand in hand as mask generated during luma MC is reuired for
  // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during
  // vertical filter decision may be incorrect as temporary MC evaluation
  // overwrites the mask. Make skip_ver as 0 for this case so that mask is
  // populated during luma MC
  if (is_compound && mbmi->compound_idx == 1 &&
      mbmi->interinter_comp.type == COMPOUND_DIFFWTD) {
    assert(mbmi->comp_group_idx == 1);
    if (*skip_hor == 0 && *skip_ver == 1) *skip_ver = 0;
  }
}

/*!\brief AV1 interpolation filter search
 *
 * \ingroup inter_mode_search
 *
 * \param[in]     cpi               Top-level encoder structure.
 * \param[in]     tile_data         Pointer to struct holding adaptive
 *                                  data/contexts/models for the tile during
 *                                  encoding.
 * \param[in]     x                 Pointer to struc holding all the data for
 *                                  the current macroblock.
 * \param[in]     bsize             Current block size.
 * \param[in]     tmp_dst           A temporary prediction buffer to hold a
 *                                  computed prediction.
 * \param[in,out] orig_dst          A prediction buffer to hold a computed
 *                                  prediction. This will eventually hold the
 *                                  final prediction, and the tmp_dst info will
 *                                  be copied here.
 * \param[in,out] rd                The RD cost associated with the selected
 *                                  interpolation filter parameters.
 * \param[in,out] switchable_rate   The rate associated with using a SWITCHABLE
 *                                  filter mode.
 * \param[in,out] skip_build_pred   Indicates whether or not to build the inter
 *                                  predictor. If this is 0, the inter predictor
 *                                  has already been built and thus we can avoid
 *                                  repeating computation.
 * \param[in]     args              HandleInterModeArgs struct holding
 *                                  miscellaneous arguments for inter mode
 *                                  search. See the documentation for this
 *                                  struct for a description of each member.
 * \param[in]     ref_best_rd       Best RD found so far for this block.
 *                                  It is used for early termination of this
 *                                  search if the RD exceeds this value.
 *
 * \return Returns INT64_MAX if the filter parameters are invalid and the
 * current motion mode being tested should be skipped. It returns 0 if the
 * parameter search is a success.
 */
int64_t av1_interpolation_filter_search(
    MACROBLOCK *const x, const AV1_COMP *const cpi,
    const TileDataEnc *tile_data, BLOCK_SIZE bsize,
    const BUFFER_SET *const tmp_dst, const BUFFER_SET *const orig_dst,
    int64_t *const rd, int *const switchable_rate, int *skip_build_pred,
    HandleInterModeArgs *args, int64_t ref_best_rd) {
  const AV1_COMMON *cm = &cpi->common;
  const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int need_search =
      av1_is_interp_needed(xd) && !cpi->sf.rt_sf.skip_interp_filter_search;
  const int ref_frame = xd->mi[0]->ref_frame[0];
  RD_STATS rd_stats_luma, rd_stats;

  // Initialization of rd_stats structures with default values
  av1_init_rd_stats(&rd_stats_luma);
  av1_init_rd_stats(&rd_stats);

  int match_found_idx = -1;
  const InterpFilter assign_filter = cm->features.interp_filter;

  match_found_idx = av1_find_interp_filter_match(
      mbmi, cpi, assign_filter, need_search, args->interp_filter_stats,
      args->interp_filter_stats_idx);

  if (match_found_idx != -1) {
    *rd = args->interp_filter_stats[match_found_idx].rd;
    x->pred_sse[ref_frame] =
        args->interp_filter_stats[match_found_idx].pred_sse;
    return 0;
  }

  int switchable_ctx[2];
  switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0);
  switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1);
  *switchable_rate =
      get_switchable_rate(x, mbmi->interp_filters, switchable_ctx,
                          cm->seq_params->enable_dual_filter);

  // Do MC evaluation for default filter_type.
  // Luma MC
  interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y,
                       &rd_stats_luma, *skip_build_pred);

#if CONFIG_COLLECT_RD_STATS == 3
  RD_STATS rd_stats_y;
  av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
  PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize);
#endif  // CONFIG_COLLECT_RD_STATS == 3
  // Chroma MC
  if (num_planes > 1) {
    interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_U, AOM_PLANE_V,
                         &rd_stats, *skip_build_pred);
  }
  *skip_build_pred = 1;

  av1_merge_rd_stats(&rd_stats, &rd_stats_luma);

  assert(rd_stats.rate >= 0);

  *rd = RDCOST(x->rdmult, *switchable_rate + rd_stats.rate, rd_stats.dist);
  x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4);

  if (assign_filter != SWITCHABLE || match_found_idx != -1) {
    return 0;
  }
  if (!need_search) {
    int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
    assert(mbmi->interp_filters.as_int == filters.as_int);
    (void)filters;
    return 0;
  }
  if (args->modelled_rd != NULL) {
    if (has_second_ref(mbmi)) {
      const int ref_mv_idx = mbmi->ref_mv_idx;
      MV_REFERENCE_FRAME *refs = mbmi->ref_frame;
      const int mode0 = compound_ref0_mode(mbmi->mode);
      const int mode1 = compound_ref1_mode(mbmi->mode);
      const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
                                 args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
      if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) {
        return INT64_MAX;
      }
    }
  }

  x->recalc_luma_mc_data = 0;
  // skip_flag=xx (in binary form)
  // Setting 0th flag corresonds to skipping luma MC and setting 1st bt
  // corresponds to skipping chroma MC  skip_flag=0 corresponds to "Don't skip
  // luma and chroma MC"  Skip flag=1 corresponds to "Skip Luma MC only"
  // Skip_flag=2 is not a valid case
  // skip_flag=3 corresponds to "Skip both luma and chroma MC"
  int skip_hor = interp_search_flags->default_interp_skip_flags;
  int skip_ver = interp_search_flags->default_interp_skip_flags;
  calc_interp_skip_pred_flag(x, cpi, &skip_hor, &skip_ver);

  // do interp_filter search
  restore_dst_buf(xd, *tmp_dst, num_planes);
  const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst };
  // Evaluate dual interp filters
  if (cm->seq_params->enable_dual_filter) {
    if (cpi->sf.interp_sf.use_fast_interpolation_filter_search) {
      fast_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd,
                                 &rd_stats_luma, &rd_stats, switchable_rate,
                                 dst_bufs, switchable_ctx, skip_hor, skip_ver);
    } else {
      // Use full interpolation filter search
      uint16_t allowed_interp_mask = ALLOW_ALL_INTERP_FILT_MASK;
      // REG_REG filter type is evaluated beforehand, so loop is repeated over
      // REG_SMOOTH to SHARP_SHARP for full interpolation filter search
      reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG);
      find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd,
                                 &rd_stats_luma, &rd_stats, switchable_rate,
                                 dst_bufs, switchable_ctx,
                                 (skip_hor & skip_ver), allowed_interp_mask, 0);
    }
  } else {
    // Evaluate non-dual interp filters
    find_best_non_dual_interp_filter(
        x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats,
        switchable_rate, dst_bufs, switchable_ctx, skip_ver, skip_hor);
  }
  swap_dst_buf(xd, dst_bufs, num_planes);
  // Recompute final MC data if required
  if (x->recalc_luma_mc_data == 1) {
    // Recomputing final luma MC data is required only if the same was skipped
    // in either of the directions  Condition below is necessary, but not
    // sufficient
    assert((skip_hor == 1) || (skip_ver == 1));
    const int mi_row = xd->mi_row;
    const int mi_col = xd->mi_col;
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                  AOM_PLANE_Y, AOM_PLANE_Y);
  }
  x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4);

  // save search results
  if (cpi->sf.interp_sf.use_interp_filter) {
    assert(match_found_idx == -1);
    args->interp_filter_stats_idx = save_interp_filter_search_stat(
        mbmi, *rd, x->pred_sse[ref_frame], args->interp_filter_stats,
        args->interp_filter_stats_idx);
  }
  return 0;
}