aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/partition_search.c
blob: c5bfaf684f72b4b75e83c34e51021313fd7481b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "aom_ports/system_state.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"

#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/av1_ml_partition_models.h"

#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif

void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) {
  part_sf->partition_search_type = SEARCH_PARTITION;
  part_sf->less_rectangular_check_level = 0;
  part_sf->use_square_partition_only_threshold = BLOCK_128X128;
  part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE;
  part_sf->default_max_partition_size = BLOCK_LARGEST;
  part_sf->default_min_partition_size = BLOCK_4X4;
  part_sf->adjust_var_based_rd_partitioning = 0;
  part_sf->allow_partition_search_skip = 0;
  part_sf->max_intra_bsize = BLOCK_LARGEST;
  // This setting only takes effect when partition_search_type is set
  // to FIXED_PARTITION.
  part_sf->fixed_partition_size = BLOCK_16X16;
  // Recode loop tolerance %.
  part_sf->partition_search_breakout_dist_thr = 0;
  part_sf->partition_search_breakout_rate_thr = 0;
  part_sf->prune_ext_partition_types_search_level = 0;
  part_sf->prune_part4_search = 0;
  part_sf->ml_prune_partition = 0;
  part_sf->ml_early_term_after_part_split_level = 0;
  for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) {
    part_sf->ml_partition_search_breakout_thresh[i] =
        -1;  // -1 means not enabled.
  }
  part_sf->simple_motion_search_prune_agg = 0;
  part_sf->simple_motion_search_split = 0;
  part_sf->simple_motion_search_prune_rect = 0;
  part_sf->simple_motion_search_early_term_none = 0;
  part_sf->simple_motion_search_reduce_search_steps = 0;
  part_sf->intra_cnn_split = 0;
  part_sf->ext_partition_eval_thresh = BLOCK_8X8;
  part_sf->prune_ext_part_using_split_info = 0;
  part_sf->prune_rectangular_split_based_on_qidx = 0;
  part_sf->early_term_after_none_split = 0;
  part_sf->ml_predict_breakout_level = 0;
  part_sf->prune_sub_8x8_partition_level = 0;
  part_sf->simple_motion_search_rect_split = 0;
  part_sf->reuse_prev_rd_results_for_part_ab = 0;
  part_sf->reuse_best_prediction_for_part_ab = 0;
  part_sf->use_best_rd_for_pruning = 0;
}

static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
                              FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
                              int blk_row, int blk_col,
                              uint8_t allow_update_cdf) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int max_blocks_high = max_block_high(xd, bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, bsize, 0);
  int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
                                   xd->left_txfm_context + blk_row, mbmi->bsize,
                                   tx_size);
  const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
  const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
  assert(tx_size > TX_4X4);

  if (depth == MAX_VARTX_DEPTH) {
    // Don't add to counts in this case
    mbmi->tx_size = tx_size;
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
    return;
  }

  if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
    ++counts->txfm_partition[ctx][0];
#endif
    if (allow_update_cdf)
      update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
    mbmi->tx_size = tx_size;
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];

#if CONFIG_ENTROPY_STATS
    ++counts->txfm_partition[ctx][1];
#endif
    if (allow_update_cdf)
      update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
    ++x->txfm_search_info.txb_split_count;

    if (sub_txs == TX_4X4) {
      mbmi->inter_tx_size[txb_size_index] = TX_4X4;
      mbmi->tx_size = TX_4X4;
      txfm_partition_update(xd->above_txfm_context + blk_col,
                            xd->left_txfm_context + blk_row, TX_4X4, tx_size);
      return;
    }

    for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
      for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
        int offsetr = row;
        int offsetc = col;

        update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
                          blk_col + offsetc, allow_update_cdf);
      }
    }
  }
}

static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
                                      BLOCK_SIZE plane_bsize,
                                      FRAME_COUNTS *td_counts,
                                      uint8_t allow_update_cdf) {
  MACROBLOCKD *xd = &x->e_mbd;
  const int mi_width = mi_size_wide[plane_bsize];
  const int mi_height = mi_size_high[plane_bsize];
  const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
  const int bh = tx_size_high_unit[max_tx_size];
  const int bw = tx_size_wide_unit[max_tx_size];

  xd->above_txfm_context =
      cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);

  for (int idy = 0; idy < mi_height; idy += bh) {
    for (int idx = 0; idx < mi_width; idx += bw) {
      update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
                        allow_update_cdf);
    }
  }
}

static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
                             int blk_col) {
  MB_MODE_INFO *mbmi = xd->mi[0];
  const BLOCK_SIZE bsize = mbmi->bsize;
  const int max_blocks_high = max_block_high(xd, bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, bsize, 0);
  const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
  const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  if (tx_size == plane_tx_size) {
    mbmi->tx_size = tx_size;
    txfm_partition_update(xd->above_txfm_context + blk_col,
                          xd->left_txfm_context + blk_row, tx_size, tx_size);

  } else {
    if (tx_size == TX_8X8) {
      mbmi->inter_tx_size[txb_size_index] = TX_4X4;
      mbmi->tx_size = TX_4X4;
      txfm_partition_update(xd->above_txfm_context + blk_col,
                            xd->left_txfm_context + blk_row, TX_4X4, tx_size);
      return;
    }
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];
    const int row_end =
        AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
    const int col_end =
        AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
    for (int row = 0; row < row_end; row += bsh) {
      const int offsetr = blk_row + row;
      for (int col = 0; col < col_end; col += bsw) {
        const int offsetc = blk_col + col;
        set_txfm_context(xd, sub_txs, offsetr, offsetc);
      }
    }
  }
}

static void tx_partition_set_contexts(const AV1_COMMON *const cm,
                                      MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
  const int mi_width = mi_size_wide[plane_bsize];
  const int mi_height = mi_size_high[plane_bsize];
  const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
  const int bh = tx_size_high_unit[max_tx_size];
  const int bw = tx_size_wide_unit[max_tx_size];

  xd->above_txfm_context =
      cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);

  for (int idy = 0; idy < mi_height; idy += bh) {
    for (int idx = 0; idx < mi_width; idx += bw) {
      set_txfm_context(xd, max_tx_size, idy, idx);
    }
  }
}

static void update_zeromv_cnt(const AV1_COMP *const cpi,
                              const MB_MODE_INFO *const mi, int mi_row,
                              int mi_col, BLOCK_SIZE bsize) {
  if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) ||
      mi->segment_id > CR_SEGMENT_ID_BOOST2) {
    return;
  }
  const AV1_COMMON *const cm = &cpi->common;
  const MV mv = mi->mv[0].as_mv;
  const int bw = mi_size_wide[bsize] >> 1;
  const int bh = mi_size_high[bsize] >> 1;
  const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw);
  const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh);
  const int block_index =
      (mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1);
  for (int y = 0; y < ymis; y++) {
    for (int x = 0; x < xmis; x++) {
      // consec_zero_mv is in the scale of 8x8 blocks
      const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x;
      if (abs(mv.row) < 10 && abs(mv.col) < 10) {
        if (cpi->consec_zero_mv[map_offset] < 255)
          cpi->consec_zero_mv[map_offset]++;
      } else {
        cpi->consec_zero_mv[map_offset] = 0;
      }
    }
  }
}

static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                              ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
                              BLOCK_SIZE bsize, int *rate) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO **mi_4x4 = xd->mi;
  MB_MODE_INFO *mbmi = mi_4x4[0];
  const int seg_skip =
      segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
  const int mis = cm->mi_params.mi_stride;
  const int mi_width = mi_size_wide[bsize];
  const int mi_height = mi_size_high[bsize];
  const int is_inter = is_inter_block(mbmi);

  // Initialize tx_mode and tx_size_search_method
  TxfmSearchParams *txfm_params = &x->txfm_search_params;
  set_tx_size_search_method(
      cm, &cpi->winner_mode_params, txfm_params,
      cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1);

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  if (!is_inter) {
    xd->cfl.store_y = store_cfl_required(cm, xd);
    mbmi->skip_txfm = 1;
    for (int plane = 0; plane < num_planes; ++plane) {
      av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
                                   cpi->optimize_seg_arr[mbmi->segment_id]);
    }

    // If there is at least one lossless segment, force the skip for intra
    // block to be 0, in order to avoid the segment_id to be changed by in
    // write_segment_id().
    if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
        cpi->enc_seg.has_lossless_segment)
      mbmi->skip_txfm = 0;

    xd->cfl.store_y = 0;
    if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
      for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
        if (mbmi->palette_mode_info.palette_size[plane] > 0) {
          if (!dry_run) {
            av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
                                   PALETTE_MAP, tile_data->allow_update_cdf,
                                   td->counts);
          } else if (dry_run == DRY_RUN_COSTCOEFFS) {
            rate +=
                av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
          }
        }
      }
    }

    av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize,
                                    tile_data->allow_update_cdf);
  } else {
    int ref;
    const int is_compound = has_second_ref(mbmi);

    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
    for (ref = 0; ref < 1 + is_compound; ++ref) {
      const YV12_BUFFER_CONFIG *cfg =
          get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
      assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
      av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
                           xd->block_ref_scale_factors[ref], num_planes);
    }
    const int start_plane = (cpi->sf.rt_sf.reuse_inter_pred_nonrd &&
                             cm->seq_params->bit_depth == AOM_BITS_8)
                                ? 1
                                : 0;
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
                                  start_plane, av1_num_planes(cm) - 1);
    if (mbmi->motion_mode == OBMC_CAUSAL) {
      assert(cpi->oxcf.motion_mode_cfg.enable_obmc);
      av1_build_obmc_inter_predictors_sb(cm, xd);
    }

#if CONFIG_MISMATCH_DEBUG
    if (dry_run == OUTPUT_ENABLED) {
      for (int plane = 0; plane < num_planes; ++plane) {
        const struct macroblockd_plane *pd = &xd->plane[plane];
        int pixel_c, pixel_r;
        mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
                        pd->subsampling_x, pd->subsampling_y);
        if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
                                 pd->subsampling_y))
          continue;
        mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
                                  cm->current_frame.order_hint, plane, pixel_c,
                                  pixel_r, pd->width, pd->height,
                                  xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
      }
    }
#else
    (void)num_planes;
#endif

    av1_encode_sb(cpi, x, bsize, dry_run);
    av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
                          tile_data->allow_update_cdf);
  }

  if (!dry_run) {
    if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
    if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
        !xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 &&
        !(is_inter && (mbmi->skip_txfm || seg_skip))) {
      if (is_inter) {
        tx_partition_count_update(cm, x, bsize, td->counts,
                                  tile_data->allow_update_cdf);
      } else {
        if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
          ++x->txfm_search_info.txb_split_count;
        if (block_signals_txsize(bsize)) {
          const int tx_size_ctx = get_tx_size_context(xd);
          const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
          const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
          const int max_depths = bsize_to_max_depth(bsize);

          if (tile_data->allow_update_cdf)
            update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
                       depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
          ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
        }
      }
      assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
    } else {
      int i, j;
      TX_SIZE intra_tx_size;
      // The new intra coding scheme requires no change of transform size
      if (is_inter) {
        if (xd->lossless[mbmi->segment_id]) {
          intra_tx_size = TX_4X4;
        } else {
          intra_tx_size =
              tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
        }
      } else {
        intra_tx_size = mbmi->tx_size;
      }

      for (j = 0; j < mi_height; j++)
        for (i = 0; i < mi_width; i++)
          if (mi_col + i < cm->mi_params.mi_cols &&
              mi_row + j < cm->mi_params.mi_rows)
            mi_4x4[mis * j + i]->tx_size = intra_tx_size;

      if (intra_tx_size != max_txsize_rect_lookup[bsize])
        ++x->txfm_search_info.txb_split_count;
    }
  }

  if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
      block_signals_txsize(mbmi->bsize) && is_inter &&
      !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) {
    if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
  } else {
    TX_SIZE tx_size = mbmi->tx_size;
    // The new intra coding scheme requires no change of transform size
    if (is_inter) {
      if (xd->lossless[mbmi->segment_id]) {
        tx_size = TX_4X4;
      } else {
        tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
      }
    } else {
      tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
    }
    mbmi->tx_size = tx_size;
    set_txfm_ctxs(tx_size, xd->width, xd->height,
                  (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd);
  }

  if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) {
    cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
  }
  if (!dry_run) {
    if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
        cpi->sf.rt_sf.use_temporal_noise_estimate &&
        (!cpi->ppi->use_svc ||
         (cpi->ppi->use_svc &&
          !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
          cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
      update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize);
  }
}

static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
                               int mi_row, int mi_col, BLOCK_SIZE bsize,
                               AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
  x->rdmult = cpi->rd.RDMULT;

  if (aq_mode != NO_AQ) {
    assert(mbmi != NULL);
    if (aq_mode == VARIANCE_AQ) {
      if (cpi->vaq_refresh) {
        const int energy = bsize <= BLOCK_16X16
                               ? x->mb_energy
                               : av1_log_block_var(cpi, x, bsize);
        mbmi->segment_id = energy;
      }
      x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
    } else if (aq_mode == COMPLEXITY_AQ) {
      x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
    } else if (aq_mode == CYCLIC_REFRESH_AQ) {
      // If segment is boosted, use rdmult for that segment.
      if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
        x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
    }
  }

  const AV1_COMMON *const cm = &cpi->common;
  if (cm->delta_q_info.delta_q_present_flag &&
      !cpi->sf.rt_sf.use_nonrd_pick_mode) {
    x->rdmult =
        av1_get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult);
  }

  if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) {
    av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col,
                        &x->rdmult);
  }
#if CONFIG_TUNE_VMAF
  if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
      cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
      cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
    av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
  }
#endif
#if CONFIG_TUNE_BUTTERAUGLI
  if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) {
    av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
  }
#endif
}

void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi,
                                        const TileInfo *const tile,
                                        MACROBLOCK *const x, int mi_row,
                                        int mi_col, BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  assert(bsize < BLOCK_SIZES_ALL);
  const int mi_width = mi_size_wide[bsize];
  const int mi_height = mi_size_high[bsize];

  set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
                        mi_row, mi_col);

  set_entropy_context(xd, mi_row, mi_col, num_planes);
  xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);

  // Set up destination pointers.
  av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
                       num_planes);

  // Set up limit values for MV components.
  // Mv beyond the range do not produce new/different prediction block.
  av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
                    mi_width, cpi->oxcf.border_in_pixels);

  set_plane_n4(xd, mi_width, mi_height, num_planes);

  // Set up distance of MB to edge of frame in 1/8th pel units.
  assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
  set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
                 cm->mi_params.mi_rows, cm->mi_params.mi_cols);

  // Set up source buffers.
  av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);

  // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
  xd->tile = *tile;
}

void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
                     MACROBLOCK *const x, int mi_row, int mi_col,
                     BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const struct segmentation *const seg = &cm->seg;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi;

  av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);

  // Setup segment ID.
  mbmi = xd->mi[0];
  mbmi->segment_id = 0;
  if (seg->enabled) {
    if (seg->enabled && !cpi->vaq_refresh) {
      const uint8_t *const map =
          seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
      mbmi->segment_id =
          map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
    }
    av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
  }
}

/*!\brief Hybrid intra mode search.
 *
 * \ingroup intra_mode_search
 * \callgraph
 * \callergraph
 * This is top level function for mode search for intra frames in non-RD
 * optimized case. Depending on speed feature and block size it calls
 * either non-RD or RD optimized intra mode search.
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    x              Pointer to structure holding all the data for
                                the current macroblock
 * \param[in]    rd_cost        Struct to keep track of the RD information
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Structure to hold snapshot of coding context
                                during the mode picking process
 *
 * \return Nothing is returned. Instead, the MB_MODE_INFO struct inside x
 * is modified to store information about the best mode computed
 * in this function. The rd_cost struct is also updated with the RD stats
 * corresponding to the best mode found.
 */

static AOM_INLINE void hybrid_intra_mode_search(AV1_COMP *cpi,
                                                MACROBLOCK *const x,
                                                RD_STATS *rd_cost,
                                                BLOCK_SIZE bsize,
                                                PICK_MODE_CONTEXT *ctx) {
  if (cpi->sf.rt_sf.hybrid_intra_pickmode && bsize < BLOCK_16X16)
    av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
  else
    av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
}

/*!\brief Interface for AV1 mode search for an individual coding block
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 * Searches prediction modes, transform, and coefficient coding modes for an
 * individual coding block. This function is the top-level interface that
 * directs the encoder to the proper mode search function, among these
 * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    tile_data      Pointer to struct holding adaptive
 *                              data/contexts/models for the tile during
 *                              encoding
 * \param[in]    x              Pointer to structure holding all the data for
 *                              the current macroblock
 * \param[in]    mi_row         Row coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    mi_col         Column coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    rd_cost        Pointer to structure holding rate and distortion
 *                              stats for the current block
 * \param[in]    partition      Partition mode of the parent block
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Pointer to structure holding coding contexts and
 *                              chosen modes for the current block
 * \param[in]    best_rd        Upper bound of rd cost of a valid partition
 *
 * \return Nothing is returned. Instead, the chosen modes and contexts necessary
 * for reconstruction are stored in ctx, the rate-distortion stats are stored in
 * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
 * signalled by an INT64_MAX rd_cost->rdcost.
 */
static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
                          MACROBLOCK *const x, int mi_row, int mi_col,
                          RD_STATS *rd_cost, PARTITION_TYPE partition,
                          BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
                          RD_STATS best_rd) {
  if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) {
    ctx->rd_stats.rdcost = INT64_MAX;
    ctx->rd_stats.skip_txfm = 0;
    av1_invalid_rd_stats(rd_cost);
    return;
  }

  av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);

  if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab &&
      ctx->rd_mode_is_ready) {
    assert(ctx->mic.bsize == bsize);
    assert(ctx->mic.partition == partition);
    rd_cost->rate = ctx->rd_stats.rate;
    rd_cost->dist = ctx->rd_stats.dist;
    rd_cost->rdcost = ctx->rd_stats.rdcost;
    return;
  }

  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi;
  struct macroblock_plane *const p = x->plane;
  struct macroblockd_plane *const pd = xd->plane;
  const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;

  int i;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rd_pick_sb_modes_time);
#endif

  aom_clear_system_state();

  mbmi = xd->mi[0];
  mbmi->bsize = bsize;
  mbmi->partition = partition;

#if CONFIG_RD_DEBUG
  mbmi->mi_row = mi_row;
  mbmi->mi_col = mi_col;
#endif

  // Sets up the tx_type_map buffer in MACROBLOCKD.
  xd->tx_type_map = txfm_info->tx_type_map_;
  xd->tx_type_map_stride = mi_size_wide[bsize];

  for (i = 0; i < num_planes; ++i) {
    p[i].coeff = ctx->coeff[i];
    p[i].qcoeff = ctx->qcoeff[i];
    p[i].dqcoeff = ctx->dqcoeff[i];
    p[i].eobs = ctx->eobs[i];
    p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
  }

  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];

  ctx->skippable = 0;
  // Set to zero to make sure we do not use the previous encoded frame stats
  mbmi->skip_txfm = 0;
  // Reset skip mode flag.
  mbmi->skip_mode = 0;

  if (is_cur_buf_hbd(xd)) {
    x->source_variance = av1_high_get_sby_perpixel_variance(
        cpi, &x->plane[0].src, bsize, xd->bd);
  } else {
    x->source_variance =
        av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
  }

  // Initialize default mode evaluation params
  set_mode_eval_params(cpi, x, DEFAULT_EVAL);

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
  // Set error per bit for current rdmult
  av1_set_error_per_bit(&x->errorperbit, x->rdmult);
  av1_rd_cost_update(x->rdmult, &best_rd);

  // If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous
  // rdcost information for the following mode search.
  // Disabling the feature could get some coding gain, with encoder slowdown.
  if (!cpi->sf.part_sf.use_best_rd_for_pruning) {
    av1_invalid_rd_stats(&best_rd);
  }

  // Find best coding mode & reconstruct the MB so it is available
  // as a predictor for MBs that follow in the SB
  if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
    av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
  } else {
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
    if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
      av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
                                         rd_cost, bsize, ctx, best_rd.rdcost);
    } else {
      av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx,
                             best_rd.rdcost);
    }
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
  }

  // Examine the resulting rate and for AQ mode 2 make a segment choice.
  if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
      bsize >= BLOCK_16X16) {
    av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
  }

  x->rdmult = orig_rdmult;

  // TODO(jingning) The rate-distortion optimization flow needs to be
  // refactored to provide proper exit/return handle.
  if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;

  ctx->rd_stats.rate = rd_cost->rate;
  ctx->rd_stats.dist = rd_cost->dist;
  ctx->rd_stats.rdcost = rd_cost->rdcost;

#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rd_pick_sb_modes_time);
#endif
}

static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {
  MACROBLOCK *x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const CurrentFrame *const current_frame = &cm->current_frame;
  const BLOCK_SIZE bsize = mbmi->bsize;
  FRAME_CONTEXT *fc = xd->tile_ctx;
  const int seg_ref_active =
      segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);

  if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
      is_comp_ref_allowed(bsize)) {
    const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
    td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
    update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
  }

  if (!mbmi->skip_mode && !seg_ref_active) {
    const int skip_ctx = av1_get_skip_txfm_context(xd);
#if CONFIG_ENTROPY_STATS
    td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++;
#endif
    update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2);
  }

#if CONFIG_ENTROPY_STATS
  // delta quant applies to both intra and inter
  const int super_block_upper_left =
      ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
      ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  if (delta_q_info->delta_q_present_flag &&
      (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
      super_block_upper_left) {
    const int dq = (mbmi->current_qindex - xd->current_base_qindex) /
                   delta_q_info->delta_q_res;
    const int absdq = abs(dq);
    for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
      td->counts->delta_q[i][1]++;
    }
    if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
    if (delta_q_info->delta_lf_present_flag) {
      if (delta_q_info->delta_lf_multi) {
        const int frame_lf_count =
            av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
        for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
          const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
                               delta_q_info->delta_lf_res;
          const int abs_delta_lf = abs(delta_lf);
          for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
            td->counts->delta_lf_multi[lf_id][i][1]++;
          }
          if (abs_delta_lf < DELTA_LF_SMALL)
            td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
        }
      } else {
        const int delta_lf =
            (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
            delta_q_info->delta_lf_res;
        const int abs_delta_lf = abs(delta_lf);
        for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
          td->counts->delta_lf[i][1]++;
        }
        if (abs_delta_lf < DELTA_LF_SMALL)
          td->counts->delta_lf[abs_delta_lf][0]++;
      }
    }
  }
#endif

  if (!is_inter_block(mbmi)) {
    av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
                        frame_is_intra_only(cm));
  }

  if (av1_allow_intrabc(cm)) {
    const int is_intrabc = is_intrabc_block(mbmi);
    update_cdf(fc->intrabc_cdf, is_intrabc, 2);
#if CONFIG_ENTROPY_STATS
    ++td->counts->intrabc[is_intrabc];
#endif  // CONFIG_ENTROPY_STATS
    if (is_intrabc) {
      const int_mv dv_ref = x->mbmi_ext_frame->ref_mv_stack[0].this_mv;
      av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc,
                          MV_SUBPEL_NONE);
    }
  }

  if (frame_is_intra_only(cm) || mbmi->skip_mode) return;

  FRAME_COUNTS *const counts = td->counts;
  const int inter_block = is_inter_block(mbmi);

  if (!seg_ref_active) {
#if CONFIG_ENTROPY_STATS
    counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif
    update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
               inter_block, 2);
    // If the segment reference feature is enabled we have only a single
    // reference frame allowed for the segment so exclude it from
    // the reference frame counts used to work out probabilities.
    if (inter_block) {
      const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
      const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
      if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
        if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
          counts->comp_inter[av1_get_reference_mode_context(xd)]
                            [has_second_ref(mbmi)]++;
#endif  // CONFIG_ENTROPY_STATS
          update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2);
        }
      }

      if (has_second_ref(mbmi)) {
        const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
                                                      ? UNIDIR_COMP_REFERENCE
                                                      : BIDIR_COMP_REFERENCE;
        update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
                   COMP_REFERENCE_TYPES);
#if CONFIG_ENTROPY_STATS
        counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
                             [comp_ref_type]++;
#endif  // CONFIG_ENTROPY_STATS

        if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
          const int bit = (ref0 == BWDREF_FRAME);
          update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
          counts
              ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++;
#endif  // CONFIG_ENTROPY_STATS
          if (!bit) {
            const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
            update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
            counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
                                [bit1]++;
#endif  // CONFIG_ENTROPY_STATS
            if (bit1) {
              update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
                         ref1 == GOLDEN_FRAME, 2);
#if CONFIG_ENTROPY_STATS
              counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2]
                                  [ref1 == GOLDEN_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
            }
          }
        } else {
          const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
          update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
          counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
#endif  // CONFIG_ENTROPY_STATS
          if (!bit) {
            update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME,
                       2);
#if CONFIG_ENTROPY_STATS
            counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
                            [ref0 == LAST2_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          } else {
            update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME,
                       2);
#if CONFIG_ENTROPY_STATS
            counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
                            [ref0 == GOLDEN_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          }
          update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME,
                     2);
#if CONFIG_ENTROPY_STATS
          counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
                             [ref1 == ALTREF_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          if (ref1 != ALTREF_FRAME) {
            update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
                       ref1 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
            counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
                               [ref1 == ALTREF2_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          }
        }
      } else {
        const int bit = (ref0 >= BWDREF_FRAME);
        update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
        counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
#endif  // CONFIG_ENTROPY_STATS
        if (bit) {
          assert(ref0 <= ALTREF_FRAME);
          update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME,
                     2);
#if CONFIG_ENTROPY_STATS
          counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
                            [ref0 == ALTREF_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          if (ref0 != ALTREF_FRAME) {
            update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
                       ref0 == ALTREF2_FRAME, 2);
#if CONFIG_ENTROPY_STATS
            counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
                              [ref0 == ALTREF2_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          }
        } else {
          const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
          update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
          counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
#endif  // CONFIG_ENTROPY_STATS
          if (!bit1) {
            update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME,
                       2);
#if CONFIG_ENTROPY_STATS
            counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
                              [ref0 != LAST_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          } else {
            update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME,
                       2);
#if CONFIG_ENTROPY_STATS
            counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
                              [ref0 != LAST3_FRAME]++;
#endif  // CONFIG_ENTROPY_STATS
          }
        }
      }

      if (cm->seq_params->enable_interintra_compound &&
          is_interintra_allowed(mbmi)) {
        const int bsize_group = size_group_lookup[bsize];
        if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
          counts->interintra[bsize_group][1]++;
#endif
          update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
          counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
          update_cdf(fc->interintra_mode_cdf[bsize_group],
                     mbmi->interintra_mode, INTERINTRA_MODES);
          if (av1_is_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
            counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
            update_cdf(fc->wedge_interintra_cdf[bsize],
                       mbmi->use_wedge_interintra, 2);
            if (mbmi->use_wedge_interintra) {
#if CONFIG_ENTROPY_STATS
              counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
              update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
                         16);
            }
          }
        } else {
#if CONFIG_ENTROPY_STATS
          counts->interintra[bsize_group][0]++;
#endif
          update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
        }
      }

      const MOTION_MODE motion_allowed =
          cm->features.switchable_motion_mode
              ? motion_mode_allowed(xd->global_motion, xd, mbmi,
                                    cm->features.allow_warped_motion)
              : SIMPLE_TRANSLATION;
      if (mbmi->ref_frame[1] != INTRA_FRAME) {
        if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
          counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
          update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
                     MOTION_MODES);
        } else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_ENTROPY_STATS
          counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
          update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
        }
      }

      if (has_second_ref(mbmi)) {
        assert(current_frame->reference_mode != SINGLE_REFERENCE &&
               is_inter_compound_mode(mbmi->mode) &&
               mbmi->motion_mode == SIMPLE_TRANSLATION);

        const int masked_compound_used = is_any_masked_compound_used(bsize) &&
                                         cm->seq_params->enable_masked_compound;
        if (masked_compound_used) {
          const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
#if CONFIG_ENTROPY_STATS
          ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
          update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
                     mbmi->comp_group_idx, 2);
        }

        if (mbmi->comp_group_idx == 0) {
          const int comp_index_ctx = get_comp_index_context(cm, xd);
#if CONFIG_ENTROPY_STATS
          ++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
#endif
          update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx,
                     2);
        } else {
          assert(masked_compound_used);
          if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
            ++counts->compound_type[bsize][mbmi->interinter_comp.type -
                                           COMPOUND_WEDGE];
#endif
            update_cdf(fc->compound_type_cdf[bsize],
                       mbmi->interinter_comp.type - COMPOUND_WEDGE,
                       MASKED_COMPOUND_TYPES);
          }
        }
      }
      if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
        if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
          counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
          update_cdf(fc->wedge_idx_cdf[bsize],
                     mbmi->interinter_comp.wedge_index, 16);
        }
      }
    }
  }

  if (inter_block && cm->features.interp_filter == SWITCHABLE &&
      mbmi->motion_mode != WARPED_CAUSAL &&
      !is_nontrans_global_motion(xd, mbmi)) {
    update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter);
  }
  if (inter_block &&
      !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
    const PREDICTION_MODE mode = mbmi->mode;
    const int16_t mode_ctx =
        av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
    if (has_second_ref(mbmi)) {
#if CONFIG_ENTROPY_STATS
      ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
      update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
                 INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
    } else {
      av1_update_inter_mode_stats(fc, counts, mode, mode_ctx);
    }

    const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
    if (new_mv) {
      const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
      for (int idx = 0; idx < 2; ++idx) {
        if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
          const uint8_t drl_ctx =
              av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
          update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2);
#if CONFIG_ENTROPY_STATS
          ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
#endif
          if (mbmi->ref_mv_idx == idx) break;
        }
      }
    }

    if (have_nearmv_in_inter_mode(mbmi->mode)) {
      const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
      for (int idx = 1; idx < 3; ++idx) {
        if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
          const uint8_t drl_ctx =
              av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
          update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2);
#if CONFIG_ENTROPY_STATS
          ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
#endif
          if (mbmi->ref_mv_idx == idx - 1) break;
        }
      }
    }
    if (have_newmv_in_inter_mode(mbmi->mode)) {
      const int allow_hp = cm->features.cur_frame_force_integer_mv
                               ? MV_SUBPEL_NONE
                               : cm->features.allow_high_precision_mv;
      if (new_mv) {
        for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
          const int_mv ref_mv = av1_get_ref_mv(x, ref);
          av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
                              allow_hp);
        }
      } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) {
        const int ref = 1;
        const int_mv ref_mv = av1_get_ref_mv(x, ref);
        av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
                            allow_hp);
      } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) {
        const int ref = 0;
        const int_mv ref_mv = av1_get_ref_mv(x, ref);
        av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
                            allow_hp);
      }
    }
  }
}

/*!\brief Reconstructs an individual coding block
 *
 * \ingroup partition_search
 * Reconstructs an individual coding block by applying the chosen modes stored
 * in ctx, also updates mode counts and entropy models.
 *
 * \param[in]    cpi       Top-level encoder structure
 * \param[in]    tile_data Pointer to struct holding adaptive
 *                         data/contexts/models for the tile during encoding
 * \param[in]    td        Pointer to thread data
 * \param[in]    tp        Pointer to the starting token
 * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
 * \param[in]    mi_col    Column coordinate of the block in a step size of
 *                         MI_SIZE
 * \param[in]    dry_run   A code indicating whether it is part of the final
 *                         pass for reconstructing the superblock
 * \param[in]    bsize     Current block size
 * \param[in]    partition Partition mode of the parent block
 * \param[in]    ctx       Pointer to structure holding coding contexts and the
 *                         chosen modes for the current block
 * \param[in]    rate      Pointer to the total rate for the current block
 *
 * \return Nothing is returned. Instead, reconstructions (w/o in-loop filters)
 * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
 * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
 */
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                     ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
                     RUN_TYPE dry_run, BLOCK_SIZE bsize,
                     PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx,
                     int *rate) {
  const AV1_COMMON *const cm = &cpi->common;
  TileInfo *const tile = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  const int subsampling_x = cm->seq_params->subsampling_x;
  const int subsampling_y = cm->seq_params->subsampling_y;

  av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
  const int origin_mult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
  MB_MODE_INFO *mbmi = xd->mi[0];
  mbmi->partition = partition;
  av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);

  if (!dry_run) {
    set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
                   x->cb_offset[PLANE_TYPE_UV]);
    assert(x->cb_offset[PLANE_TYPE_Y] <
           (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
    assert(x->cb_offset[PLANE_TYPE_UV] <
           ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
            (subsampling_x + subsampling_y)));
  }

  encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);

  if (!dry_run) {
    update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
    if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 &&
        cm->delta_q_info.delta_lf_present_flag) {
      const int frame_lf_count =
          av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
      for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
        mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
      mbmi->delta_lf_from_base = xd->delta_lf_from_base;
    }
    if (has_second_ref(mbmi)) {
      if (mbmi->compound_idx == 0 ||
          mbmi->interinter_comp.type == COMPOUND_AVERAGE)
        mbmi->comp_group_idx = 0;
      else
        mbmi->comp_group_idx = 1;
    }

    // delta quant applies to both intra and inter
    const int super_block_upper_left =
        ((mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
        ((mi_col & (cm->seq_params->mib_size - 1)) == 0);
    const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
    if (delta_q_info->delta_q_present_flag &&
        (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) &&
        super_block_upper_left) {
      xd->current_base_qindex = mbmi->current_qindex;
      if (delta_q_info->delta_lf_present_flag) {
        if (delta_q_info->delta_lf_multi) {
          const int frame_lf_count =
              av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
          for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
            xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
          }
        } else {
          xd->delta_lf_from_base = mbmi->delta_lf_from_base;
        }
      }
    }

    RD_COUNTS *rdc = &td->rd_counts;
    if (mbmi->skip_mode) {
      assert(!frame_is_intra_only(cm));
      rdc->skip_mode_used_flag = 1;
      if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
        assert(has_second_ref(mbmi));
        rdc->compound_ref_used_flag = 1;
      }
      set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
    } else {
      const int seg_ref_active =
          segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
      if (!seg_ref_active) {
        // If the segment reference feature is enabled we have only a single
        // reference frame allowed for the segment so exclude it from
        // the reference frame counts used to work out probabilities.
        if (is_inter_block(mbmi)) {
          av1_collect_neighbors_ref_counts(xd);
          if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
            if (has_second_ref(mbmi)) {
              // This flag is also updated for 4x4 blocks
              rdc->compound_ref_used_flag = 1;
            }
          }
          set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
        }
      }
    }

    if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);

    // Gather obmc and warped motion count to update the probability.
    if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
         cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) ||
        (cm->features.allow_warped_motion &&
         cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
      const int inter_block = is_inter_block(mbmi);
      const int seg_ref_active =
          segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
      if (!seg_ref_active && inter_block) {
        const MOTION_MODE motion_allowed =
            cm->features.switchable_motion_mode
                ? motion_mode_allowed(xd->global_motion, xd, mbmi,
                                      cm->features.allow_warped_motion)
                : SIMPLE_TRANSLATION;

        if (mbmi->ref_frame[1] != INTRA_FRAME) {
          if (motion_allowed >= OBMC_CAUSAL) {
            td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
          }
          if (motion_allowed == WARPED_CAUSAL) {
            td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
          }
        }
      }
    }
  }
  // TODO(Ravi/Remya): Move this copy function to a better logical place
  // This function will copy the best mode information from block
  // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
  // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
  // bitstream preparation.
  av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
                                      av1_ref_frame_type(xd->mi[0]->ref_frame));
  x->rdmult = origin_mult;
}

/*!\brief Reconstructs a partition (may contain multiple coding blocks)
 *
 * \ingroup partition_search
 * Reconstructs a sub-partition of the superblock by applying the chosen modes
 * and partition trees stored in pc_tree.
 *
 * \param[in]    cpi       Top-level encoder structure
 * \param[in]    td        Pointer to thread data
 * \param[in]    tile_data Pointer to struct holding adaptive
 *                         data/contexts/models for the tile during encoding
 * \param[in]    tp        Pointer to the starting token
 * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
 * \param[in]    mi_col    Column coordinate of the block in a step size of
 *                         MI_SIZE
 * \param[in]    dry_run   A code indicating whether it is part of the final
 *                         pass for reconstructing the superblock
 * \param[in]    bsize     Current block size
 * \param[in]    pc_tree   Pointer to the PC_TREE node storing the picked
 *                         partitions and mode info for the current block
 * \param[in]    rate      Pointer to the total rate for the current block
 *
 * \return Nothing is returned. Instead, reconstructions (w/o in-loop filters)
 * will be updated in the pixel buffers in td->mb.e_mbd.
 */
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
                      TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
                      int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
                      PC_TREE *pc_tree, int *rate) {
  assert(bsize < BLOCK_SIZES_ALL);
  const AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  assert(bsize < BLOCK_SIZES_ALL);
  const int hbs = mi_size_wide[bsize] / 2;
  const int is_partition_root = bsize >= BLOCK_8X8;
  const int ctx = is_partition_root
                      ? partition_plane_context(xd, mi_row, mi_col, bsize)
                      : -1;
  const PARTITION_TYPE partition = pc_tree->partitioning;
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
  int quarter_step = mi_size_wide[bsize] / 4;
  int i;
  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);

  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
  if (subsize == BLOCK_INVALID) return;

  if (!dry_run && ctx >= 0) {
    const int has_rows = (mi_row + hbs) < mi_params->mi_rows;
    const int has_cols = (mi_col + hbs) < mi_params->mi_cols;

    if (has_rows && has_cols) {
#if CONFIG_ENTROPY_STATS
      td->counts->partition[ctx][partition]++;
#endif

      if (tile_data->allow_update_cdf) {
        FRAME_CONTEXT *fc = xd->tile_ctx;
        update_cdf(fc->partition_cdf[ctx], partition,
                   partition_cdf_length(bsize));
      }
    }
  }

  switch (partition) {
    case PARTITION_NONE:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
               partition, pc_tree->none, rate);
      break;
    case PARTITION_VERT:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
               partition, pc_tree->vertical[0], rate);
      if (mi_col + hbs < mi_params->mi_cols) {
        encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
                 partition, pc_tree->vertical[1], rate);
      }
      break;
    case PARTITION_HORZ:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
               partition, pc_tree->horizontal[0], rate);
      if (mi_row + hbs < mi_params->mi_rows) {
        encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
                 partition, pc_tree->horizontal[1], rate);
      }
      break;
    case PARTITION_SPLIT:
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
                pc_tree->split[0], rate);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
                pc_tree->split[1], rate);
      encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
                pc_tree->split[2], rate);
      encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
                subsize, pc_tree->split[3], rate);
      break;

    case PARTITION_HORZ_A:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
               partition, pc_tree->horizontala[0], rate);
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
               partition, pc_tree->horizontala[1], rate);
      encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
               partition, pc_tree->horizontala[2], rate);
      break;
    case PARTITION_HORZ_B:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
               partition, pc_tree->horizontalb[0], rate);
      encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
               partition, pc_tree->horizontalb[1], rate);
      encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
               bsize2, partition, pc_tree->horizontalb[2], rate);
      break;
    case PARTITION_VERT_A:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
               partition, pc_tree->verticala[0], rate);
      encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
               partition, pc_tree->verticala[1], rate);
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
               partition, pc_tree->verticala[2], rate);

      break;
    case PARTITION_VERT_B:
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
               partition, pc_tree->verticalb[0], rate);
      encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
               partition, pc_tree->verticalb[1], rate);
      encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
               bsize2, partition, pc_tree->verticalb[2], rate);
      break;
    case PARTITION_HORZ_4:
      for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
        int this_mi_row = mi_row + i * quarter_step;
        if (i > 0 && this_mi_row >= mi_params->mi_rows) break;

        encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
                 partition, pc_tree->horizontal4[i], rate);
      }
      break;
    case PARTITION_VERT_4:
      for (i = 0; i < SUB_PARTITIONS_PART4; ++i) {
        int this_mi_col = mi_col + i * quarter_step;
        if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
        encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
                 partition, pc_tree->vertical4[i], rate);
      }
      break;
    default: assert(0 && "Invalid partition type."); break;
  }

  update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}

/*!\brief AV1 block partition search (partition estimation and partial search).
*
* \ingroup partition_search
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. Minor partition
* adjustments are tested and applied if they lead to lower rd costs. The
* partition types are limited to a basic set: none, horz, vert, and split.
*
* \param[in]    cpi       Top-level encoder structure
* \param[in]    td        Pointer to thread data
* \param[in]    tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in]    mib       Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in]    tp        Pointer to the starting token
* \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
* \param[in]    mi_col    Column coordinate of the block in a step size of
MI_SIZE
* \param[in]    bsize     Current block size
* \param[in]    rate      Pointer to the final rate for encoding the current
block
* \param[in]    dist      Pointer to the final distortion of the current block
* \param[in]    do_recon  Whether the reconstruction function needs to be run,
either for finalizing a superblock or providing
reference for future sub-partitions
* \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \return Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes. The rate and dist are also updated with those
* corresponding to the best partition found.
*/
void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
                          MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
                          int mi_col, BLOCK_SIZE bsize, int *rate,
                          int64_t *dist, int do_recon, PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int num_planes = av1_num_planes(cm);
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int bs = mi_size_wide[bsize];
  const int hbs = bs / 2;
  const int pl = (bsize >= BLOCK_8X8)
                     ? partition_plane_context(xd, mi_row, mi_col, bsize)
                     : 0;
  const PARTITION_TYPE partition =
      (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
                           : PARTITION_NONE;
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc;
  BLOCK_SIZE sub_subsize = BLOCK_4X4;
  int splits_below = 0;
  BLOCK_SIZE bs_type = mib[0]->bsize;

  if (pc_tree->none == NULL) {
    pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
  }
  PICK_MODE_CONTEXT *ctx_none = pc_tree->none;

  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);

  av1_invalid_rd_stats(&last_part_rdc);
  av1_invalid_rd_stats(&none_rdc);
  av1_invalid_rd_stats(&chosen_rdc);
  av1_invalid_rd_stats(&invalid_rdc);

  pc_tree->partitioning = partition;

  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
    av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
    x->mb_energy = av1_log_block_var(cpi, x, bsize);
  }

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);

  if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
      ((cpi->sf.part_sf.adjust_var_based_rd_partitioning == 2 &&
        bsize <= BLOCK_32X32) ||
       (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 &&
        cm->quant_params.base_qindex > 190 && bsize <= BLOCK_32X32 &&
        !frame_is_intra_only(cm)))) {
    // Check if any of the sub blocks are further split.
    if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
      sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT);
      splits_below = 1;
      for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
        int jj = i >> 1, ii = i & 0x01;
        MB_MODE_INFO *this_mi = mib[jj * hbs * mi_params->mi_stride + ii * hbs];
        if (this_mi && this_mi->bsize >= sub_subsize) {
          splits_below = 0;
        }
      }
    }

    // If partition is not none try none unless each of the 4 splits are split
    // even further..
    if (partition != PARTITION_NONE && !splits_below &&
        mi_row + hbs < mi_params->mi_rows &&
        mi_col + hbs < mi_params->mi_cols) {
      pc_tree->partitioning = PARTITION_NONE;
      pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
                    PARTITION_NONE, bsize, ctx_none, invalid_rdc);

      if (none_rdc.rate < INT_MAX) {
        none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
        none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
      }

      av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
      mib[0]->bsize = bs_type;
      pc_tree->partitioning = partition;
    }
  }

  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
    pc_tree->split[i]->index = i;
  }
  switch (partition) {
    case PARTITION_NONE:
      pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
                    PARTITION_NONE, bsize, ctx_none, invalid_rdc);
      break;
    case PARTITION_HORZ:
      for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
        pc_tree->horizontal[i] =
            av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
      }
      pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
                    PARTITION_HORZ, subsize, pc_tree->horizontal[0],
                    invalid_rdc);
      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
          mi_row + hbs < mi_params->mi_rows) {
        RD_STATS tmp_rdc;
        const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0];
        av1_init_rd_stats(&tmp_rdc);
        av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
        encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
                          NULL);
        pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
                      PARTITION_HORZ, subsize, pc_tree->horizontal[1],
                      invalid_rdc);
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
          av1_invalid_rd_stats(&last_part_rdc);
          break;
        }
        last_part_rdc.rate += tmp_rdc.rate;
        last_part_rdc.dist += tmp_rdc.dist;
        last_part_rdc.rdcost += tmp_rdc.rdcost;
      }
      break;
    case PARTITION_VERT:
      for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
        pc_tree->vertical[i] =
            av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
      }
      pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
                    PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc);
      if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
          mi_col + hbs < mi_params->mi_cols) {
        RD_STATS tmp_rdc;
        const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0];
        av1_init_rd_stats(&tmp_rdc);
        av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
        encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
                          NULL);
        pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
                      PARTITION_VERT, subsize,
                      pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc);
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
          av1_invalid_rd_stats(&last_part_rdc);
          break;
        }
        last_part_rdc.rate += tmp_rdc.rate;
        last_part_rdc.dist += tmp_rdc.dist;
        last_part_rdc.rdcost += tmp_rdc.rdcost;
      }
      break;
    case PARTITION_SPLIT:
      if (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 &&
          none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) {
        av1_invalid_rd_stats(&last_part_rdc);
        break;
      }
      last_part_rdc.rate = 0;
      last_part_rdc.dist = 0;
      last_part_rdc.rdcost = 0;
      for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
        int x_idx = (i & 1) * hbs;
        int y_idx = (i >> 1) * hbs;
        int jj = i >> 1, ii = i & 0x01;
        RD_STATS tmp_rdc;
        if ((mi_row + y_idx >= mi_params->mi_rows) ||
            (mi_col + x_idx >= mi_params->mi_cols))
          continue;

        av1_init_rd_stats(&tmp_rdc);
        av1_rd_use_partition(
            cpi, td, tile_data,
            mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
            mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
            &tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]);
        if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
          av1_invalid_rd_stats(&last_part_rdc);
          break;
        }
        last_part_rdc.rate += tmp_rdc.rate;
        last_part_rdc.dist += tmp_rdc.dist;
      }
      break;
    case PARTITION_VERT_A:
    case PARTITION_VERT_B:
    case PARTITION_HORZ_A:
    case PARTITION_HORZ_B:
    case PARTITION_HORZ_4:
    case PARTITION_VERT_4:
      assert(0 && "Cannot handle extended partition types");
    default: assert(0); break;
  }

  if (last_part_rdc.rate < INT_MAX) {
    last_part_rdc.rate += mode_costs->partition_cost[pl][partition];
    last_part_rdc.rdcost =
        RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
  }

  if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION &&
       cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) &&
      partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
      (mi_row + bs < mi_params->mi_rows ||
       mi_row + hbs == mi_params->mi_rows) &&
      (mi_col + bs < mi_params->mi_cols ||
       mi_col + hbs == mi_params->mi_cols)) {
    BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
    chosen_rdc.rate = 0;
    chosen_rdc.dist = 0;

    av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
    pc_tree->partitioning = PARTITION_SPLIT;

    // Split partition.
    for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
      int x_idx = (i & 1) * hbs;
      int y_idx = (i >> 1) * hbs;
      RD_STATS tmp_rdc;

      if ((mi_row + y_idx >= mi_params->mi_rows) ||
          (mi_col + x_idx >= mi_params->mi_cols))
        continue;

      av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
      pc_tree->split[i]->partitioning = PARTITION_NONE;
      if (pc_tree->split[i]->none == NULL)
        pc_tree->split[i]->none =
            av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf);
      pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
                    PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none,
                    invalid_rdc);

      av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
      if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
        av1_invalid_rd_stats(&chosen_rdc);
        break;
      }

      chosen_rdc.rate += tmp_rdc.rate;
      chosen_rdc.dist += tmp_rdc.dist;

      if (i != SUB_PARTITIONS_SPLIT - 1)
        encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
                  OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);

      chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
    }
    if (chosen_rdc.rate < INT_MAX) {
      chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
      chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
    }
  }

  // If last_part is better set the partitioning to that.
  if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
    mib[0]->bsize = bsize;
    if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
    chosen_rdc = last_part_rdc;
  }
  // If none was better set the partitioning to that.
  if (none_rdc.rdcost < chosen_rdc.rdcost) {
    if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
    chosen_rdc = none_rdc;
  }

  av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  // We must have chosen a partitioning and encoding or we'll fail later on.
  // No other opportunities for success.
  if (bsize == cm->seq_params->sb_size)
    assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);

  if (do_recon) {
    if (bsize == cm->seq_params->sb_size) {
      // NOTE: To get estimate for rate due to the tokens, use:
      // int rate_coeffs = 0;
      // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
      //           bsize, pc_tree, &rate_coeffs);
      set_cb_offsets(x->cb_offset, 0, 0);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
                pc_tree, NULL);
    } else {
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
                pc_tree, NULL);
    }
  }

  *rate = chosen_rdc.rate;
  *dist = chosen_rdc.dist;
  x->rdmult = orig_rdmult;
}

static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data,
                           ThreadData *td, TokenExtra **tp, int mi_row,
                           int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
                           PARTITION_TYPE partition,
                           PICK_MODE_CONTEXT *const ctx, int *rate) {
  TileInfo *const tile = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
  const int origin_mult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
  MB_MODE_INFO *mbmi = xd->mi[0];
  mbmi->partition = partition;
  // Nonrd pickmode does not currently support second/combined reference.
  assert(!has_second_ref(mbmi));
  av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
  const int subsampling_x = cpi->common.seq_params->subsampling_x;
  const int subsampling_y = cpi->common.seq_params->subsampling_y;
  if (!dry_run) {
    set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y],
                   x->cb_offset[PLANE_TYPE_UV]);
    assert(x->cb_offset[PLANE_TYPE_Y] <
           (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]));
    assert(x->cb_offset[PLANE_TYPE_UV] <
           ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >>
            (subsampling_x + subsampling_y)));
  }
  encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate);
  if (!dry_run) {
    update_cb_offsets(x, bsize, subsampling_x, subsampling_y);
    if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
  }
  if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && mbmi->skip_txfm)
    av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize);
  // TODO(Ravi/Remya): Move this copy function to a better logical place
  // This function will copy the best mode information from block
  // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
  // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
  // bitstream preparation.
  av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext,
                                      av1_ref_frame_type(xd->mi[0]->ref_frame));
  x->rdmult = origin_mult;
}

static AOM_INLINE void wait_for_top_right_sb(
    AV1EncRowMultiThreadInfo *enc_row_mt, AV1EncRowMultiThreadSync *row_mt_sync,
    TileInfo *tile_info, BLOCK_SIZE sb_size, int sb_mi_size_log2,
    BLOCK_SIZE bsize, int mi_row, int mi_col) {
  const int sb_size_in_mi = mi_size_wide[sb_size];
  const int bw_in_mi = mi_size_wide[bsize];
  const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1);
  const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1);
  const int top_right_block_in_sb =
      (blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi);

  // Don't wait if the block is the not the top-right block in the superblock.
  if (!top_right_block_in_sb) return;

  // Wait for the top-right superblock to finish encoding.
  const int sb_row_in_tile =
      (mi_row - tile_info->mi_row_start) >> sb_mi_size_log2;
  const int sb_col_in_tile =
      (mi_col - tile_info->mi_col_start) >> sb_mi_size_log2;

  (*(enc_row_mt->sync_read_ptr))(row_mt_sync, sb_row_in_tile, sb_col_in_tile);
}

/*!\brief Top level function to pick block mode for non-RD optimized case
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 * Searches prediction modes, transform, and coefficient coding modes for an
 * individual coding block. This function is the top-level function that is
 * used for non-RD optimized mode search (controlled by
 * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls
 * inter/skip/hybrid-intra mode search functions
 *
 * \param[in]    cpi            Top-level encoder structure
 * \param[in]    tile_data      Pointer to struct holding adaptive
 *                              data/contexts/models for the tile during
 *                              encoding
 * \param[in]    x              Pointer to structure holding all the data for
 *                              the current macroblock
 * \param[in]    mi_row         Row coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    mi_col         Column coordinate of the block in a step size of
 *                              MI_SIZE
 * \param[in]    rd_cost        Pointer to structure holding rate and distortion
 *                              stats for the current block
 * \param[in]    bsize          Current block size
 * \param[in]    ctx            Pointer to structure holding coding contexts and
 *                              chosen modes for the current block
 *
 * \return Nothing is returned. Instead, the chosen modes and contexts necessary
 * for reconstruction are stored in ctx, the rate-distortion stats are stored in
 * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
 * signalled by an INT64_MAX rd_cost->rdcost.
 */
static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data,
                                MACROBLOCK *const x, int mi_row, int mi_col,
                                RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                PICK_MODE_CONTEXT *ctx) {
  av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize);
  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  struct macroblock_plane *const p = x->plane;
  struct macroblockd_plane *const pd = xd->plane;
  const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  int i;

  wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync,
                        &tile_data->tile_info, cm->seq_params->sb_size,
                        cm->seq_params->mib_size_log2, bsize, mi_row, mi_col);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rd_pick_sb_modes_time);
#endif
  aom_clear_system_state();
  // Sets up the tx_type_map buffer in MACROBLOCKD.
  xd->tx_type_map = txfm_info->tx_type_map_;
  xd->tx_type_map_stride = mi_size_wide[bsize];
  for (i = 0; i < num_planes; ++i) {
    p[i].coeff = ctx->coeff[i];
    p[i].qcoeff = ctx->qcoeff[i];
    p[i].dqcoeff = ctx->dqcoeff[i];
    p[i].eobs = ctx->eobs[i];
    p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
  }
  for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
  if (is_cur_buf_hbd(xd)) {
    x->source_variance = av1_high_get_sby_perpixel_variance(
        cpi, &x->plane[0].src, bsize, xd->bd);
  } else {
    x->source_variance =
        av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
  }
  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
  // Set error per bit for current rdmult
  av1_set_error_per_bit(&x->errorperbit, x->rdmult);
  // Find best coding mode & reconstruct the MB so it is available
  // as a predictor for MBs that follow in the SB
  if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
    hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
  } else {
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
    if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
      RD_STATS invalid_rd;
      av1_invalid_rd_stats(&invalid_rd);
      // TODO(kyslov): add av1_nonrd_pick_inter_mode_sb_seg_skip
      av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
                                         rd_cost, bsize, ctx,
                                         invalid_rd.rdcost);
    } else {
      av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx);
    }
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
  }
  if (cpi->sf.rt_sf.skip_cdef_sb) {
    // Find the corresponding 64x64 block. It'll be the 128x128 block if that's
    // the block size.
    const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64;
    const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64;
    MB_MODE_INFO **mi_sb =
        cm->mi_params.mi_grid_base +
        get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb);
    // Do not skip if intra or new mv is picked.
    const int skip = mi_sb[0]->skip_cdef_curr_sb &&
                     !(mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV);
    // If 128x128 block is used, we need to set the flag for all 4 64x64 sub
    // "blocks".
    const int block64_in_sb = (bsize == BLOCK_128X128) ? 2 : 1;
    for (int r = 0; r < block64_in_sb; ++r) {
      for (int c = 0; c < block64_in_sb; ++c) {
        const int idx_in_sb =
            r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64;
        if (mi_sb[idx_in_sb]) mi_sb[idx_in_sb]->skip_cdef_curr_sb = skip;
      }
    }
    // Store in the pickmode context.
    ctx->mic.skip_cdef_curr_sb = mi_sb[0]->skip_cdef_curr_sb;
  }
  x->rdmult = orig_rdmult;
  ctx->rd_stats.rate = rd_cost->rate;
  ctx->rd_stats.dist = rd_cost->dist;
  ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rd_pick_sb_modes_time);
#endif
}

/*!\brief AV1 block partition application (minimal RD search).
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. The only
* partition adjustment allowed is merging leaf split nodes if it leads to a
* lower rd cost. The partition types are limited to a basic set: none, horz,
* vert, and split. This function is only used in the real-time mode.
*
* \param[in]    cpi       Top-level encoder structure
* \param[in]    td        Pointer to thread data
* \param[in]    tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in]    mib       Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in]    tp        Pointer to the starting token
* \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE
* \param[in]    mi_col    Column coordinate of the block in a step size of
MI_SIZE
* \param[in]    bsize     Current block size
* \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* \return Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes.
*/
void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td,
                             TileDataEnc *tile_data, MB_MODE_INFO **mib,
                             TokenExtra **tp, int mi_row, int mi_col,
                             BLOCK_SIZE bsize, PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const ModeCosts *mode_costs = &x->mode_costs;
  // Only square blocks from 8x8 to 128x128 are supported
  assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128);
  const int bs = mi_size_wide[bsize];
  const int hbs = bs / 2;
  const PARTITION_TYPE partition =
      (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
                           : PARTITION_NONE;
  BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
  assert(subsize <= BLOCK_LARGEST);
  const int pl = (bsize >= BLOCK_8X8)
                     ? partition_plane_context(xd, mi_row, mi_col, bsize)
                     : 0;

  RD_STATS dummy_cost;
  av1_invalid_rd_stats(&dummy_cost);

  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);

  pc_tree->partitioning = partition;

  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);

  // Initialize default mode evaluation params
  set_mode_eval_params(cpi, x, DEFAULT_EVAL);

  switch (partition) {
    case PARTITION_NONE:
      pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
      if (cpi->sf.rt_sf.nonrd_check_partition_split && do_slipt_check(bsize) &&
          !frame_is_intra_only(cm)) {
        RD_STATS split_rdc, none_rdc, block_rdc;
        RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;

        av1_init_rd_stats(&split_rdc);
        av1_invalid_rd_stats(&none_rdc);

        av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
        subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
        pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
                            pc_tree->none);
        none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
        none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
        av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

        for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
          av1_invalid_rd_stats(&block_rdc);
          const int x_idx = (i & 1) * hbs;
          const int y_idx = (i >> 1) * hbs;
          if (mi_row + y_idx >= mi_params->mi_rows ||
              mi_col + x_idx >= mi_params->mi_cols)
            continue;
          xd->above_txfm_context =
              cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
          xd->left_txfm_context =
              xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK);
          pc_tree->split[i]->partitioning = PARTITION_NONE;
          pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
                              &block_rdc, subsize, pc_tree->split[i]->none);
          split_rdc.rate += block_rdc.rate;
          split_rdc.dist += block_rdc.dist;

          encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx,
                         1, subsize, PARTITION_NONE, pc_tree->split[i]->none,
                         NULL);
        }
        split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
        split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
        av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

        if (none_rdc.rdcost < split_rdc.rdcost) {
          mib[0]->bsize = bsize;
          pc_tree->partitioning = PARTITION_NONE;
          encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize,
                         partition, pc_tree->none, NULL);
        } else {
          mib[0]->bsize = subsize;
          pc_tree->partitioning = PARTITION_SPLIT;
          for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
            const int x_idx = (i & 1) * hbs;
            const int y_idx = (i >> 1) * hbs;
            if (mi_row + y_idx >= mi_params->mi_rows ||
                mi_col + x_idx >= mi_params->mi_cols)
              continue;
            encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx,
                           mi_col + x_idx, 0, subsize, PARTITION_NONE,
                           pc_tree->split[i]->none, NULL);
          }
        }

      } else {
        pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
                            bsize, pc_tree->none);
        encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize,
                       partition, pc_tree->none, NULL);
      }
      break;
    case PARTITION_VERT:
      for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
        pc_tree->vertical[i] =
            av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
      }
      pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
                          subsize, pc_tree->vertical[0]);
      encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
                     PARTITION_VERT, pc_tree->vertical[0], NULL);
      if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) {
        pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs,
                            &dummy_cost, subsize, pc_tree->vertical[1]);
        encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize,
                       PARTITION_VERT, pc_tree->vertical[1], NULL);
      }
      break;
    case PARTITION_HORZ:
      for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
        pc_tree->horizontal[i] =
            av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
      }
      pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost,
                          subsize, pc_tree->horizontal[0]);
      encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize,
                     PARTITION_HORZ, pc_tree->horizontal[0], NULL);

      if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) {
        pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col,
                            &dummy_cost, subsize, pc_tree->horizontal[1]);
        encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize,
                       PARTITION_HORZ, pc_tree->horizontal[1], NULL);
      }
      break;
    case PARTITION_SPLIT:
      for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
        pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
        pc_tree->split[i]->index = i;
      }
      if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode &&
          av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) &&
          !frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
        RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
        RD_STATS split_rdc, none_rdc;
        av1_invalid_rd_stats(&split_rdc);
        av1_invalid_rd_stats(&none_rdc);
        av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
        xd->above_txfm_context =
            cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
        xd->left_txfm_context =
            xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
        pc_tree->partitioning = PARTITION_NONE;
        pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
        pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize,
                            pc_tree->none);
        none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
        none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
        av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
        if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode != 2 ||
            none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) {
          av1_init_rd_stats(&split_rdc);
          for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
            RD_STATS block_rdc;
            av1_invalid_rd_stats(&block_rdc);
            int x_idx = (i & 1) * hbs;
            int y_idx = (i >> 1) * hbs;
            if ((mi_row + y_idx >= mi_params->mi_rows) ||
                (mi_col + x_idx >= mi_params->mi_cols))
              continue;
            xd->above_txfm_context =
                cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx;
            xd->left_txfm_context = xd->left_txfm_context_buffer +
                                    ((mi_row + y_idx) & MAX_MIB_MASK);
            if (pc_tree->split[i]->none == NULL)
              pc_tree->split[i]->none =
                  av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
            pc_tree->split[i]->partitioning = PARTITION_NONE;
            pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx,
                                mi_col + x_idx, &block_rdc, subsize,
                                pc_tree->split[i]->none);
            split_rdc.rate += block_rdc.rate;
            split_rdc.dist += block_rdc.dist;

            encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx,
                           mi_col + x_idx, 1, subsize, PARTITION_NONE,
                           pc_tree->split[i]->none, NULL);
          }
          av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);
          split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
          split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist);
        }
        if (none_rdc.rdcost < split_rdc.rdcost) {
          mib[0]->bsize = bsize;
          pc_tree->partitioning = PARTITION_NONE;
          encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize,
                         partition, pc_tree->none, NULL);
        } else {
          mib[0]->bsize = subsize;
          pc_tree->partitioning = PARTITION_SPLIT;
          for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
            int x_idx = (i & 1) * hbs;
            int y_idx = (i >> 1) * hbs;
            if ((mi_row + y_idx >= mi_params->mi_rows) ||
                (mi_col + x_idx >= mi_params->mi_cols))
              continue;

            if (pc_tree->split[i]->none == NULL)
              pc_tree->split[i]->none =
                  av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
            encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx,
                           mi_col + x_idx, 0, subsize, PARTITION_NONE,
                           pc_tree->split[i]->none, NULL);
          }
        }
      } else {
        for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
          int x_idx = (i & 1) * hbs;
          int y_idx = (i >> 1) * hbs;
          int jj = i >> 1, ii = i & 0x01;
          if ((mi_row + y_idx >= mi_params->mi_rows) ||
              (mi_col + x_idx >= mi_params->mi_cols))
            continue;
          av1_nonrd_use_partition(
              cpi, td, tile_data,
              mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp,
              mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]);
        }
      }
      break;
    case PARTITION_VERT_A:
    case PARTITION_VERT_B:
    case PARTITION_HORZ_A:
    case PARTITION_HORZ_B:
    case PARTITION_HORZ_4:
    case PARTITION_VERT_4:
      assert(0 && "Cannot handle extended partition types");
    default: assert(0); break;
  }
}

#if !CONFIG_REALTIME_ONLY
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks).
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
                           TileDataEnc *tile_data, TokenExtra **tp, int is_last,
                           int mi_row, int mi_col, BLOCK_SIZE subsize,
                           RD_STATS best_rdcost, RD_STATS *sum_rdc,
                           PARTITION_TYPE partition,
                           PICK_MODE_CONTEXT *this_ctx) {
  MACROBLOCK *const x = &td->mb;
  const int orig_mult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);

  av1_rd_cost_update(x->rdmult, &best_rdcost);

  RD_STATS rdcost_remaining;
  av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
  RD_STATS this_rdc;
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
                subsize, this_ctx, rdcost_remaining);

  if (this_rdc.rate == INT_MAX) {
    sum_rdc->rdcost = INT64_MAX;
  } else {
    sum_rdc->rate += this_rdc.rate;
    sum_rdc->dist += this_rdc.dist;
    av1_rd_cost_update(x->rdmult, sum_rdc);
  }

  if (sum_rdc->rdcost >= best_rdcost.rdcost) {
    x->rdmult = orig_mult;
    return 0;
  }

  if (!is_last) {
    av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
    encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL);
  }

  x->rdmult = orig_mult;
  return 1;
}

// Tests an AB partition, and updates the encoder status, the pick mode
// contexts, the best rdcost, and the best partition.
static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
                               TileDataEnc *tile_data, TokenExtra **tp,
                               PC_TREE *pc_tree, RD_STATS *best_rdc,
                               int64_t *this_rdcost,
                               PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB],
                               int mi_row, int mi_col, BLOCK_SIZE bsize,
                               PARTITION_TYPE partition,
                               const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
                               const int ab_mi_pos[SUB_PARTITIONS_AB][2],
                               const MB_MODE_INFO **mode_cache) {
  MACROBLOCK *const x = &td->mb;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
  RD_STATS sum_rdc;
  av1_init_rd_stats(&sum_rdc);
  sum_rdc.rate = x->mode_costs.partition_cost[pl][partition];
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
  // Loop over sub-partitions in AB partition type.
  for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
    if (mode_cache && mode_cache[i]) {
      x->use_mb_mode_cache = 1;
      x->mb_mode_cache = mode_cache[i];
    }
    const int mode_search_success =
        rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1,
                        ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i],
                        *best_rdc, &sum_rdc, partition, ctxs[i]);
    x->use_mb_mode_cache = 0;
    x->mb_mode_cache = NULL;
    if (!mode_search_success) {
      return false;
    }
  }

  av1_rd_cost_update(x->rdmult, &sum_rdc);
  *this_rdcost = sum_rdc.rdcost;
  if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
  *this_rdcost = sum_rdc.rdcost;
  if (sum_rdc.rdcost >= best_rdc->rdcost) return false;

  *best_rdc = sum_rdc;
  pc_tree->partitioning = partition;
  return true;
}

#if CONFIG_COLLECT_PARTITION_STATS
static void init_partition_block_timing_stats(
    PartitionTimingStats *part_timing_stats) {
  av1_zero(*part_timing_stats);
}

static INLINE void start_partition_block_timer(
    PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) {
  assert(!part_timing_stats->timer_is_on);
  part_timing_stats->partition_attempts[partition_type] += 1;
  aom_usec_timer_start(&part_timing_stats->timer);
  part_timing_stats->timer_is_on = 1;
}

static INLINE void end_partition_block_timer(
    PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type,
    int64_t rdcost) {
  if (part_timing_stats->timer_is_on) {
    aom_usec_timer_mark(&part_timing_stats->timer);
    const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer);
    part_timing_stats->partition_times[partition_type] += time;
    part_timing_stats->partition_rdcost[partition_type] = rdcost;
    part_timing_stats->timer_is_on = 0;
  }
}
static INLINE void print_partition_timing_stats_with_rdcost(
    const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col,
    BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number,
    const RD_STATS *best_rdc, const char *filename) {
  FILE *f = fopen(filename, "a");
  fprintf(f, "%d,%d,%d,%d,%d,%d,%ld,%ld,", bsize, frame_number,
          frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist,
          best_rdc->rdcost);
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%ld,", part_timing_stats->partition_times[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) {
      fprintf(f, "%d,", -1);
    } else {
      fprintf(f, "%ld,", part_timing_stats->partition_rdcost[idx]);
    }
  }
  fprintf(f, "\n");
  fclose(f);
}

static INLINE void print_partition_timing_stats(
    const PartitionTimingStats *part_timing_stats, int intra_only,
    int show_frame, const BLOCK_SIZE bsize, const char *filename) {
  FILE *f = fopen(filename, "a");
  fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only);
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]);
  }
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    fprintf(f, "%ld,", part_timing_stats->partition_times[idx]);
  }
  fprintf(f, "\n");
  fclose(f);
}

static INLINE void accumulate_partition_timing_stats(
    FramePartitionTimingStats *fr_part_timing_stats,
    const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) {
  const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
  int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx];
  int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx];
  int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx];
  for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
    agg_attempts[idx] += part_timing_stats->partition_attempts[idx];
    agg_decisions[idx] += part_timing_stats->partition_decisions[idx];
    agg_times[idx] += part_timing_stats->partition_times[idx];
  }
}
#endif  // CONFIG_COLLECT_PARTITION_STATS

// Initialize state variables of partition search used in
// av1_rd_pick_partition().
static void init_partition_search_state_params(
    MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state,
    int mi_row, int mi_col, BLOCK_SIZE bsize) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
  const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;

  // Initialization of block size related parameters.
  blk_params->mi_step = mi_size_wide[bsize] / 2;
  blk_params->mi_row = mi_row;
  blk_params->mi_col = mi_col;
  blk_params->mi_row_edge = mi_row + blk_params->mi_step;
  blk_params->mi_col_edge = mi_col + blk_params->mi_step;
  blk_params->width = block_size_wide[bsize];
  blk_params->min_partition_size_1d =
      block_size_wide[x->sb_enc.min_partition_size];
  blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
  blk_params->split_bsize2 = blk_params->subsize;
  blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
  blk_params->bsize = bsize;

  // Check if the partition corresponds to edge block.
  blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows);
  blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols);

  // Update intra partitioning related info.
  part_search_state->intra_part_info = &x->part_search_info;
  // Prepare for segmentation CNN-based partitioning for intra-frame.
  if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
    part_search_state->intra_part_info->quad_tree_idx = 0;
    part_search_state->intra_part_info->cnn_output_valid = 0;
  }

  // Set partition plane context index.
  part_search_state->pl_ctx_idx =
      blk_params->bsize_at_least_8x8
          ? partition_plane_context(xd, mi_row, mi_col, bsize)
          : 0;

  // Partition cost buffer update
  ModeCosts *mode_costs = &x->mode_costs;
  part_search_state->partition_cost =
      mode_costs->partition_cost[part_search_state->pl_ctx_idx];

  // Initialize HORZ and VERT win flags as true for all split partitions.
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
    part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true;
    part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true;
  }

  // Initialize the rd cost.
  av1_init_rd_stats(&part_search_state->this_rdc);

  // Initialize RD costs for partition types to 0.
  part_search_state->none_rd = 0;
  av1_zero(part_search_state->split_rd);
  av1_zero(part_search_state->rect_part_rd);

  // Initialize SPLIT partition to be not ready.
  av1_zero(part_search_state->is_split_ctx_is_ready);
  // Initialize HORZ and VERT partitions to be not ready.
  av1_zero(part_search_state->is_rect_ctx_is_ready);

  // Chroma subsampling.
  part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x;
  part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y;

  // Initialize partition search flags to defaults.
  part_search_state->terminate_partition_search = 0;
  part_search_state->do_square_split = blk_params->bsize_at_least_8x8;
  part_search_state->do_rectangular_split =
      cpi->oxcf.part_cfg.enable_rect_partitions;
  av1_zero(part_search_state->prune_rect_part);

  // Initialize allowed partition types for the partition block.
  part_search_state->partition_none_allowed =
      blk_params->has_rows && blk_params->has_cols;
  part_search_state->partition_rect_allowed[HORZ] =
      blk_params->has_cols && blk_params->bsize_at_least_8x8 &&
      cpi->oxcf.part_cfg.enable_rect_partitions &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->partition_rect_allowed[VERT] =
      blk_params->has_rows && blk_params->bsize_at_least_8x8 &&
      cpi->oxcf.part_cfg.enable_rect_partitions &&
      get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT),
                           part_search_state->ss_x,
                           part_search_state->ss_y) != BLOCK_INVALID;

  // Reset the flag indicating whether a partition leading to a rdcost lower
  // than the bound best_rdc has been found.
  part_search_state->found_best_partition = false;

#if CONFIG_COLLECT_PARTITION_STATS
  init_partition_block_timing_stats(&part_search_state->part_timing_stats);
#endif  // CONFIG_COLLECT_PARTITION_STATS
}

// Override partition cost buffer for the edge blocks.
static void set_partition_cost_for_edge_blk(
    AV1_COMMON const *cm, PartitionSearchState *part_search_state) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0);
  const aom_cdf_prob *partition_cdf =
      cm->fc->partition_cdf[part_search_state->pl_ctx_idx];
  const int max_cost = av1_cost_symbol(0);
  for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i)
    part_search_state->tmp_partition_cost[i] = max_cost;
  if (blk_params.has_cols) {
    // At the bottom, the two possibilities are HORZ and SPLIT.
    aom_cdf_prob bot_cdf[2];
    partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize);
    static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
    av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf,
                             bot_inv_map);
  } else if (blk_params.has_rows) {
    // At the right, the two possibilities are VERT and SPLIT.
    aom_cdf_prob rhs_cdf[2];
    partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize);
    static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
    av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf,
                             rhs_inv_map);
  } else {
    // At the bottom right, we always split.
    part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0;
  }
  // Override the partition cost buffer.
  part_search_state->partition_cost = part_search_state->tmp_partition_cost;
}

// Reset the partition search state flags when
// must_find_valid_partition is equal to 1.
static AOM_INLINE void reset_part_limitations(
    AV1_COMP *const cpi, PartitionSearchState *part_search_state) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int is_rect_part_allowed =
      blk_params.bsize_at_least_8x8 &&
      cpi->oxcf.part_cfg.enable_rect_partitions &&
      (blk_params.width > blk_params.min_partition_size_1d);
  part_search_state->do_square_split =
      blk_params.bsize_at_least_8x8 &&
      (blk_params.width > blk_params.min_partition_size_1d);
  part_search_state->partition_none_allowed =
      blk_params.has_rows && blk_params.has_cols &&
      (blk_params.width >= blk_params.min_partition_size_1d);
  part_search_state->partition_rect_allowed[HORZ] =
      blk_params.has_cols && is_rect_part_allowed &&
      get_plane_block_size(
          get_partition_subsize(blk_params.bsize, PARTITION_HORZ),
          part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->partition_rect_allowed[VERT] =
      blk_params.has_rows && is_rect_part_allowed &&
      get_plane_block_size(
          get_partition_subsize(blk_params.bsize, PARTITION_VERT),
          part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID;
  part_search_state->terminate_partition_search = 0;
}

// Rectangular partitions evaluation at sub-block level.
static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data,
                                   MACROBLOCK *x,
                                   PICK_MODE_CONTEXT *cur_partition_ctx,
                                   PartitionSearchState *part_search_state,
                                   RD_STATS *best_rdc, const int idx,
                                   int mi_row, int mi_col, BLOCK_SIZE bsize,
                                   PARTITION_TYPE partition_type) {
  // Obtain the remainder from the best rd cost
  // for further processing of partition.
  RD_STATS best_remain_rdcost;
  av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc,
                           &best_remain_rdcost);

  // Obtain the best mode for the partition sub-block.
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc,
                partition_type, bsize, cur_partition_ctx, best_remain_rdcost);
  av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc);

  // Update the partition rd cost with the current sub-block rd.
  if (part_search_state->this_rdc.rate == INT_MAX) {
    part_search_state->sum_rdc.rdcost = INT64_MAX;
  } else {
    part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate;
    part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist;
    av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
  }
  const RECT_PART_TYPE rect_part =
      partition_type == PARTITION_HORZ ? HORZ : VERT;
  part_search_state->rect_part_rd[rect_part][idx] =
      part_search_state->this_rdc.rdcost;
}

typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step);

// Checks if HORZ / VERT partition search is allowed.
static AOM_INLINE int is_rect_part_allowed(
    const AV1_COMP *cpi, PartitionSearchState *part_search_state,
    active_edge_info *active_edge, RECT_PART_TYPE rect_part, const int mi_pos) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int is_part_allowed =
      (!part_search_state->terminate_partition_search &&
       part_search_state->partition_rect_allowed[rect_part] &&
       !part_search_state->prune_rect_part[rect_part] &&
       (part_search_state->do_rectangular_split ||
        active_edge[rect_part](cpi, mi_pos, blk_params.mi_step)));
  return is_part_allowed;
}

static void rectangular_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
    RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type,
    const RECT_PART_TYPE end_type) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS *sum_rdc = &part_search_state->sum_rdc;
  const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ,
                                                    PARTITION_VERT };

  // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of
  //                                           HORZ and VERT partition types.
  // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of
  //                                           HORZ and VERT partition types.
  const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = {
    { { blk_params.mi_row, blk_params.mi_col },
      { blk_params.mi_row_edge, blk_params.mi_col } },
    { { blk_params.mi_row, blk_params.mi_col },
      { blk_params.mi_row, blk_params.mi_col_edge } }
  };

  // Initialize active edge_type function pointer
  // for HOZR and VERT partition types.
  active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge,
                                                        av1_active_v_edge };

  // Indicates edge blocks for HORZ and VERT partition types.
  const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows,
                                                  blk_params.has_cols };

  // Initialize pc tree context for HORZ and VERT partition types.
  PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = {
    { &pc_tree->horizontal[0], &pc_tree->horizontal[1] },
    { &pc_tree->vertical[0], &pc_tree->vertical[1] }
  };

  // Loop over rectangular partition types.
  for (RECT_PART_TYPE i = start_type; i <= end_type; i++) {
    assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                   !part_search_state->partition_rect_allowed[i]));

    // Check if the HORZ / VERT partition search is to be performed.
    if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i,
                              mi_pos_rect[i][0][i]))
      continue;

    // Sub-partition idx.
    int sub_part_idx = 0;
    PARTITION_TYPE partition_type = rect_partition_type[i];
    blk_params.subsize =
        get_partition_subsize(blk_params.bsize, partition_type);
    assert(blk_params.subsize <= BLOCK_LARGEST);
    av1_init_rd_stats(sum_rdc);
    for (int j = 0; j < SUB_PARTITIONS_RECT; j++) {
      if (cur_ctx[i][j][0] == NULL) {
        cur_ctx[i][j][0] =
            av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf);
      }
    }
    sum_rdc->rate = part_search_state->partition_cost[partition_type];
    sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
    PartitionTimingStats *part_timing_stats =
        &part_search_state->part_timing_stats;
    if (best_rdc->rdcost - sum_rdc->rdcost >= 0) {
      start_partition_block_timer(part_timing_stats, partition_type);
    }
#endif

    // First sub-partition evaluation in HORZ / VERT partition type.
    rd_pick_rect_partition(
        cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
        best_rdc, 0, mi_pos_rect[i][sub_part_idx][0],
        mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);

    // Start of second sub-partition evaluation.
    // Evaluate second sub-partition if the first sub-partition cost
    // is less than the best cost and if it is not an edge block.
    if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) {
      const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic;
      const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
      // Neither palette mode nor cfl predicted.
      if (pmi->palette_size[PLANE_TYPE_Y] == 0 &&
          pmi->palette_size[PLANE_TYPE_UV] == 0) {
        if (mbmi->uv_mode != UV_CFL_PRED)
          part_search_state->is_rect_ctx_is_ready[i] = 1;
      }
      av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row,
                       blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL);
      encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
                        blk_params.subsize, NULL);

      // Second sub-partition evaluation in HORZ / VERT partition type.
      sub_part_idx = 1;
      rd_pick_rect_partition(
          cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
          best_rdc, 1, mi_pos_rect[i][sub_part_idx][0],
          mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
    }
    // Update HORZ / VERT best partition.
    if (sum_rdc->rdcost < best_rdc->rdcost) {
      sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist);
      if (sum_rdc->rdcost < best_rdc->rdcost) {
        *best_rdc = *sum_rdc;
        part_search_state->found_best_partition = true;
        pc_tree->partitioning = partition_type;
      }
    } else {
      // Update HORZ / VERT win flag.
      if (rect_part_win_info != NULL)
        rect_part_win_info->rect_part_win[i] = false;
    }
#if CONFIG_COLLECT_PARTITION_STATS
    if (part_timing_stats->timer_is_on) {
      end_partition_block_timer(part_timing_stats, partition_type,
                                sum_rdc->rdcost);
    }
#endif
    av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
                        blk_params.bsize, av1_num_planes(cm));
  }
}

// AB partition type evaluation.
static void rd_pick_ab_part(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB],
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
    const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type,
    const MB_MODE_INFO **mode_cache) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const int bsize = blk_params.bsize;
  int64_t this_rdcost = 0;

#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  {
    RD_STATS tmp_sum_rdc;
    av1_init_rd_stats(&tmp_sum_rdc);
    tmp_sum_rdc.rate = part_search_state->partition_cost[part_type];
    tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
    if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) {
      start_partition_block_timer(part_timing_stats, part_type);
    }
  }
#endif

  // Test this partition and update the best partition.
  const bool find_best_ab_part = rd_test_partition3(
      cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row,
      mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache);
  part_search_state->found_best_partition |= find_best_ab_part;

#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    if (!find_best_ab_part) this_rdcost = INT64_MAX;
    end_partition_block_timer(part_timing_stats, part_type, this_rdcost);
  }
#endif
  av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// Check if AB partitions search is allowed.
static AOM_INLINE int is_ab_part_allowed(
    PartitionSearchState *part_search_state,
    const int ab_partitions_allowed[NUM_AB_PARTS], const int ab_part_type) {
  const int is_horz_ab = (ab_part_type >> 1);
  const int is_part_allowed =
      (!part_search_state->terminate_partition_search &&
       part_search_state->partition_rect_allowed[is_horz_ab] &&
       ab_partitions_allowed[ab_part_type]);
  return is_part_allowed;
}

// Set mode search context.
static AOM_INLINE void set_mode_search_ctx(
    PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2],
    PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) {
  mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0];
  mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0];

  if (is_ctx_ready[HORZ_A][0])
    mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none;

  if (is_ctx_ready[VERT_A][0])
    mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none;

  if (is_ctx_ready[HORZ_A][1])
    mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none;
}

static AOM_INLINE void copy_partition_mode_from_mode_context(
    const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) {
  if (ctx && ctx->rd_stats.rate < INT_MAX) {
    *dst_mode = &ctx->mic;
  } else {
    *dst_mode = NULL;
  }
}

static AOM_INLINE void copy_partition_mode_from_pc_tree(
    const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) {
  if (pc_tree) {
    copy_partition_mode_from_mode_context(dst_mode, pc_tree->none);
  } else {
    *dst_mode = NULL;
  }
}

static AOM_INLINE void set_mode_cache_for_partition_ab(
    const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree,
    AB_PART_TYPE ab_part_type) {
  switch (ab_part_type) {
    case HORZ_A:
      copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
      copy_partition_mode_from_mode_context(&mode_cache[2],
                                            pc_tree->horizontal[1]);
      break;
    case HORZ_B:
      copy_partition_mode_from_mode_context(&mode_cache[0],
                                            pc_tree->horizontal[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
      copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
      break;
    case VERT_A:
      copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]);
      copy_partition_mode_from_mode_context(&mode_cache[2],
                                            pc_tree->vertical[1]);
      break;
    case VERT_B:
      copy_partition_mode_from_mode_context(&mode_cache[0],
                                            pc_tree->vertical[0]);
      copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]);
      copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]);
      break;
    default: assert(0 && "Invalid ab partition type!\n");
  }
}

// AB Partitions type search.
static void ab_partitions_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PartitionSearchState *part_search_state,
    RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info,
    int pb_source_variance, int ext_partition_allowed,
    const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const int bsize = blk_params.bsize;

  int ab_partitions_allowed[NUM_AB_PARTS] = { 1, 1, 1, 1 };
  // Prune AB partitions
  av1_prune_ab_partitions(
      cpi, x, pc_tree, bsize, mi_row, mi_col, pb_source_variance,
      best_rdc->rdcost, part_search_state->rect_part_rd,
      part_search_state->split_rd, rect_part_win_info, ext_partition_allowed,
      part_search_state->partition_rect_allowed[HORZ],
      part_search_state->partition_rect_allowed[VERT],
      &ab_partitions_allowed[HORZ_A], &ab_partitions_allowed[HORZ_B],
      &ab_partitions_allowed[VERT_A], &ab_partitions_allowed[VERT_B]);

  // Flags to indicate whether the mode search is done.
  const int is_ctx_ready[NUM_AB_PARTS][2] = {
    { part_search_state->is_split_ctx_is_ready[0],
      part_search_state->is_split_ctx_is_ready[1] },
    { part_search_state->is_rect_ctx_is_ready[HORZ], 0 },
    { part_search_state->is_split_ctx_is_ready[0], 0 },
    { part_search_state->is_rect_ctx_is_ready[VERT], 0 }
  };

  // Current partition context.
  PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala,
                                                      pc_tree->horizontalb,
                                                      pc_tree->verticala,
                                                      pc_tree->verticalb };

  // Context of already evaluted partition types.
  PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2];
  // Set context of already evaluted partition types.
  set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx);

  // Array of sub-partition size of AB partition types.
  const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = {
    { blk_params.split_bsize2, blk_params.split_bsize2,
      get_partition_subsize(bsize, PARTITION_HORZ_A) },
    { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2,
      blk_params.split_bsize2 },
    { blk_params.split_bsize2, blk_params.split_bsize2,
      get_partition_subsize(bsize, PARTITION_VERT_A) },
    { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2,
      blk_params.split_bsize2 }
  };

  // Array of mi_row, mi_col positions corresponds to each sub-partition in AB
  // partition types.
  const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = {
    { { mi_row, mi_col },
      { mi_row, blk_params.mi_col_edge },
      { blk_params.mi_row_edge, mi_col } },
    { { mi_row, mi_col },
      { blk_params.mi_row_edge, mi_col },
      { blk_params.mi_row_edge, blk_params.mi_col_edge } },
    { { mi_row, mi_col },
      { blk_params.mi_row_edge, mi_col },
      { mi_row, blk_params.mi_col_edge } },
    { { mi_row, mi_col },
      { mi_row, blk_params.mi_col_edge },
      { blk_params.mi_row_edge, blk_params.mi_col_edge } }
  };

  // Loop over AB partition types.
  for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type;
       ab_part_type++) {
    const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A;

    // Check if the AB partition search is to be performed.
    if (!is_ab_part_allowed(part_search_state, ab_partitions_allowed,
                            ab_part_type))
      continue;

    blk_params.subsize = get_partition_subsize(bsize, part_type);
    if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) {
      for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
        // Set AB partition context.
        cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc(
            cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf);
        // Set mode as not ready.
        cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0;
      }

      // We can copy directly the mode search results if we have already
      // searched the current block and the contexts match.
      if (is_ctx_ready[ab_part_type][0]) {
        av1_copy_tree_context(cur_part_ctxs[ab_part_type][0],
                              mode_srch_ctx[ab_part_type][0][0]);
        cur_part_ctxs[ab_part_type][0]->mic.partition = part_type;
        cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1;
        if (is_ctx_ready[ab_part_type][1]) {
          av1_copy_tree_context(cur_part_ctxs[ab_part_type][1],
                                mode_srch_ctx[ab_part_type][1][0]);
          cur_part_ctxs[ab_part_type][1]->mic.partition = part_type;
          cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1;
        }
      }
    }

    // Even if the contexts don't match, we can still speed up by reusing the
    // previous prediction mode.
    const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL };
    if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) {
      set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type);
    }

    // Evaluation of AB partition type.
    rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree,
                    cur_part_ctxs[ab_part_type], part_search_state, best_rdc,
                    ab_subsize[ab_part_type], ab_mi_pos[ab_part_type],
                    part_type, mode_cache);
  }
}

// Set mi positions for HORZ4 / VERT4 sub-block partitions.
static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES],
                                  int mi_pos[SUB_PARTITIONS_PART4][2],
                                  const int mi_row, const int mi_col) {
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) {
    mi_pos[i][0] = mi_row + i * inc_step[HORZ4];
    mi_pos[i][1] = mi_col + i * inc_step[VERT4];
  }
}

// Set context and RD cost for HORZ4 / VERT4 partition types.
static void set_4_part_ctx_and_rdcost(
    MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td,
    PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
    PartitionSearchState *part_search_state, PARTITION_TYPE partition_type,
    BLOCK_SIZE bsize) {
  // Initialize sum_rdc RD cost structure.
  av1_init_rd_stats(&part_search_state->sum_rdc);
  const int subsize = get_partition_subsize(bsize, partition_type);
  part_search_state->sum_rdc.rate =
      part_search_state->partition_cost[partition_type];
  part_search_state->sum_rdc.rdcost =
      RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0);
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i)
    cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf);
}

// Partition search of HORZ4 / VERT4 partition types.
static void rd_pick_4partition(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  // mi positions needed for HORZ4 and VERT4 partition types.
  int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows,
                                        cm->mi_params.mi_cols };
  const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4);
  int mi_pos[SUB_PARTITIONS_PART4][2];

  blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type);
  // Set partition context and RD cost.
  set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state,
                            partition_type, blk_params.bsize);
  // Set mi positions for sub-block sizes.
  set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col);
#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, partition_type);
  }
#endif
  // Loop over sub-block partitions.
  for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break;

    // Sub-block evaluation of Horz4 / Vert4 partition type.
    cur_part_ctx[i]->rd_mode_is_ready = 0;
    if (!rd_try_subblock(
            cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1),
            mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc,
            &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) {
      av1_invalid_rd_stats(&part_search_state->sum_rdc);
      break;
    }
  }

  // Calculate the total cost and update the best partition.
  av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
  if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) {
    *best_rdc = part_search_state->sum_rdc;
    part_search_state->found_best_partition = true;
    pc_tree->partitioning = partition_type;
  }
#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    end_partition_block_timer(part_timing_stats, partition_type,
                              part_search_state->sum_rdc.rdcost);
  }
#endif
  av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col,
                      blk_params.bsize, av1_num_planes(cm));
}

// Prune 4-way partitions based on the number of horz/vert wins
// in the current block and sub-blocks in PARTITION_SPLIT.
static void prune_4_partition_using_split_info(
    AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state,
    int part4_search_allowed[NUM_PART4_TYPES]) {
  PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 };
  // Count of child blocks in which HORZ or VERT partition has won
  int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 };
  // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
  // split partiitons.
  // Conservative pruning for high quantizers.
  const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);

  for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
    if (!(cpi->sf.part_sf.prune_ext_part_using_split_info &&
          part4_search_allowed[cur_part[i]]))
      continue;
    // Loop over split partitions.
    // Get rectangular partitions winner info of split partitions.
    for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++)
      num_child_rect_win[i] +=
          (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1
                                                                         : 0;
    if (num_child_rect_win[i] < num_win_thresh) {
      part4_search_allowed[cur_part[i]] = 0;
    }
  }
}

// Prune 4-way partition search.
static void prune_4_way_partition_search(
    AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    int pb_source_variance, int ext_partition_allowed,
    int part4_search_allowed[NUM_PART4_TYPES]) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;

  // Disable 4-way partition search flags for width less than a multiple of the
  // minimum partition width.
  if (blk_params.width < (blk_params.min_partition_size_1d
                          << cpi->sf.part_sf.prune_part4_search)) {
    part4_search_allowed[HORZ4] = 0;
    part4_search_allowed[VERT4] = 0;
    return;
  }

  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const int bsize = blk_params.bsize;
  PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4,
                                               PARTITION_VERT_4 };
  const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
  // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
  // PARTITION_VERT_4 for this block. This is almost the same as
  // ext_partition_allowed, except that we don't allow 128x32 or 32x128
  // blocks, so we require that bsize is not BLOCK_128X128.
  const int partition4_allowed = part_cfg->enable_1to4_partitions &&
                                 ext_partition_allowed &&
                                 bsize != BLOCK_128X128;

  for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) {
    part4_search_allowed[i] =
        partition4_allowed && part_search_state->partition_rect_allowed[i] &&
        get_plane_block_size(get_partition_subsize(bsize, cur_part[i]),
                             part_search_state->ss_x,
                             part_search_state->ss_y) != BLOCK_INVALID;
  }
  // Pruning: pruning out 4-way partitions based on the current best partition.
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
    part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ ||
                                    pc_tree->partitioning == PARTITION_HORZ_A ||
                                    pc_tree->partitioning == PARTITION_HORZ_B ||
                                    pc_tree->partitioning == PARTITION_SPLIT ||
                                    pc_tree->partitioning == PARTITION_NONE);
    part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT ||
                                    pc_tree->partitioning == PARTITION_VERT_A ||
                                    pc_tree->partitioning == PARTITION_VERT_B ||
                                    pc_tree->partitioning == PARTITION_SPLIT ||
                                    pc_tree->partitioning == PARTITION_NONE);
  }

  // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of
  // sub-blocks from basic partition types.
  if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed &&
      part_search_state->partition_rect_allowed[HORZ] &&
      part_search_state->partition_rect_allowed[VERT]) {
    av1_ml_prune_4_partition(
        cpi, x, bsize, pc_tree->partitioning, best_rdc->rdcost,
        part_search_state->rect_part_rd, part_search_state->split_rd,
        &part4_search_allowed[HORZ4], &part4_search_allowed[VERT4],
        pb_source_variance, mi_row, mi_col);
  }

  // Pruning: pruning out 4-way partitions based on the number of horz/vert wins
  // in the current block and sub-blocks in PARTITION_SPLIT.
  prune_4_partition_using_split_info(cpi, x, part_search_state,
                                     part4_search_allowed);
}

// Set params needed for PARTITION_NONE search.
static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td,
                                      MACROBLOCK *x, PC_TREE *pc_tree,
                                      PartitionSearchState *part_search_state,
                                      RD_STATS *best_remain_rdcost,
                                      RD_STATS *best_rdc, int *pt_cost) {
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS partition_rdcost;
  // Set PARTITION_NONE context.
  if (pc_tree->none == NULL)
    pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf);

  // Set PARTITION_NONE type cost.
  if (part_search_state->partition_none_allowed) {
    if (blk_params.bsize_at_least_8x8) {
      *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX
                     ? part_search_state->partition_cost[PARTITION_NONE]
                     : 0;
    }

    // Initialize the RD stats structure.
    av1_init_rd_stats(&partition_rdcost);
    partition_rdcost.rate = *pt_cost;
    av1_rd_cost_update(x->rdmult, &partition_rdcost);
    av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost,
                             best_remain_rdcost);
  }
}

// Skip other partitions based on PARTITION_NONE rd cost.
static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x,
                                        SIMPLE_MOTION_DATA_TREE *sms_tree,
                                        PICK_MODE_CONTEXT *ctx_none,
                                        PartitionSearchState *part_search_state,
                                        RD_STATS *best_rdc,
                                        unsigned int *pb_source_variance) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  RD_STATS *this_rdc = &part_search_state->this_rdc;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  if (!frame_is_intra_only(cm) &&
      (part_search_state->do_square_split ||
       part_search_state->do_rectangular_split) &&
      !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
    const int use_ml_based_breakout =
        bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
        bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1;
    if (use_ml_based_breakout) {
      av1_ml_predict_breakout(cpi, bsize, x, this_rdc, blk_params,
                              *pb_source_variance, xd->bd,
                              &part_search_state->do_square_split,
                              &part_search_state->do_rectangular_split);
    }

    // Adjust dist breakout threshold according to the partition size.
    const int64_t dist_breakout_thr =
        cpi->sf.part_sf.partition_search_breakout_dist_thr >>
        ((2 * (MAX_SB_SIZE_LOG2 - 2)) -
         (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
    const int rate_breakout_thr =
        cpi->sf.part_sf.partition_search_breakout_rate_thr *
        num_pels_log2_lookup[bsize];
    // If all y, u, v transform blocks in this partition are skippable,
    // and the dist & rate are within the thresholds, the partition
    // search is terminated for current branch of the partition search
    // tree. The dist & rate thresholds are set to 0 at speed 0 to
    // disable the early termination at that speed.
    if (best_rdc->dist < dist_breakout_thr &&
        best_rdc->rate < rate_breakout_thr) {
      part_search_state->do_square_split = 0;
      part_search_state->do_rectangular_split = 0;
    }
  }

  // Early termination: using simple_motion_search features and the
  // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a
  // decision on early terminating at PARTITION_NONE.
  if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame &&
      !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
      blk_params.mi_row_edge < mi_params->mi_rows &&
      blk_params.mi_col_edge < mi_params->mi_cols &&
      this_rdc->rdcost < INT64_MAX && this_rdc->rdcost >= 0 &&
      this_rdc->rate < INT_MAX && this_rdc->rate >= 0 &&
      (part_search_state->do_square_split ||
       part_search_state->do_rectangular_split)) {
    av1_simple_motion_search_early_term_none(
        cpi, x, sms_tree, blk_params.mi_row, blk_params.mi_col, bsize, this_rdc,
        &part_search_state->terminate_partition_search);
  }
}

// Decide early termination and rectangular partition pruning
// based on PARTITION_NONE and PARTITION_SPLIT costs.
static void prune_partitions_after_split(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    int64_t part_none_rd, int64_t part_split_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  // Early termination: using the rd costs of PARTITION_NONE and subblocks
  // from PARTITION_SPLIT to determine an early breakout.
  if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
      !frame_is_intra_only(cm) &&
      !part_search_state->terminate_partition_search &&
      part_search_state->do_rectangular_split &&
      (part_search_state->partition_rect_allowed[HORZ] ||
       part_search_state->partition_rect_allowed[VERT])) {
    av1_ml_early_term_after_split(
        cpi, x, sms_tree, bsize, best_rdc->rdcost, part_none_rd, part_split_rd,
        part_search_state->split_rd, mi_row, mi_col,
        &part_search_state->terminate_partition_search);
  }

  // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT
  // to prune out rectangular partitions in some directions.
  if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
      cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) &&
      (part_search_state->partition_rect_allowed[HORZ] ||
       part_search_state->partition_rect_allowed[VERT]) &&
      !(part_search_state->prune_rect_part[HORZ] ||
        part_search_state->prune_rect_part[VERT]) &&
      !part_search_state->terminate_partition_search) {
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm),
                         bsize);
    av1_ml_prune_rect_partition(cpi, x, bsize, mi_row, mi_col, best_rdc->rdcost,
                                part_search_state->none_rd,
                                part_search_state->split_rd,
                                &part_search_state->prune_rect_part[HORZ],
                                &part_search_state->prune_rect_part[VERT]);
  }
}

// PARTITION_NONE search.
static void none_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x,
    PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree,
    RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  RD_STATS *this_rdc = &part_search_state->this_rdc;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);

  if (!part_search_state->partition_none_allowed) return;

  int pt_cost = 0;
  RD_STATS best_remain_rdcost;
  av1_invalid_rd_stats(&best_remain_rdcost);

  // Set PARTITION_NONE context and cost.
  set_none_partition_params(cpi, td, x, pc_tree, part_search_state,
                            &best_remain_rdcost, best_rdc, &pt_cost);

#if CONFIG_COLLECT_PARTITION_STATS
  // Timer start for partition None.
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_remain_rdcost.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, PARTITION_NONE);
  }
#endif
  // PARTITION_NONE evaluation and cost update.
  pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE,
                bsize, pc_tree->none, best_remain_rdcost);

  av1_rd_cost_update(x->rdmult, this_rdc);

#if CONFIG_COLLECT_PARTITION_STATS
  // Timer end for partition None.
  if (part_timing_stats->timer_is_on) {
    RD_STATS tmp_rdc;
    av1_init_rd_stats(&tmp_rdc);
    if (this_rdc->rate != INT_MAX) {
      tmp_rdc.rate = this_rdc->rate;
      tmp_rdc.dist = this_rdc->dist;
      tmp_rdc.rdcost = this_rdc->rdcost;
      if (blk_params.bsize_at_least_8x8) {
        tmp_rdc.rate += pt_cost;
        tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist);
      }
    }
    end_partition_block_timer(part_timing_stats, PARTITION_NONE,
                              tmp_rdc.rdcost);
  }
#endif
  *pb_source_variance = x->source_variance;
  if (none_rd) *none_rd = this_rdc->rdcost;
  part_search_state->none_rd = this_rdc->rdcost;
  if (this_rdc->rate != INT_MAX) {
    // Record picked ref frame to prune ref frames for other partition types.
    if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
      const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame);
      av1_update_picked_ref_frames_mask(
          x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col);
    }

    // Calculate the total cost and update the best partition.
    if (blk_params.bsize_at_least_8x8) {
      this_rdc->rate += pt_cost;
      this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist);
    }
    *part_none_rd = this_rdc->rdcost;
    if (this_rdc->rdcost < best_rdc->rdcost) {
      *best_rdc = *this_rdc;
      part_search_state->found_best_partition = true;
      if (blk_params.bsize_at_least_8x8) {
        pc_tree->partitioning = PARTITION_NONE;
      }

      // Disable split and rectangular partition search
      // based on PARTITION_NONE cost.
      prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none,
                                  part_search_state, best_rdc,
                                  pb_source_variance);
    }
  }
  av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// PARTITION_SPLIT search.
static void split_partition_search(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
    SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
    PartitionSearchState *part_search_state, RD_STATS *best_rdc,
    SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  PartitionBlkParams blk_params = part_search_state->part_blk_params;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const int bsize = blk_params.bsize;
  assert(bsize < BLOCK_SIZES_ALL);
  RD_STATS sum_rdc = part_search_state->sum_rdc;
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);

  // Check if partition split is allowed.
  if (part_search_state->terminate_partition_search ||
      !part_search_state->do_square_split)
    return;

  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    if (pc_tree->split[i] == NULL)
      pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
    pc_tree->split[i]->index = i;
  }

  // Initialization of this partition RD stats.
  av1_init_rd_stats(&sum_rdc);
  sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT];
  sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);

  int idx;
#if CONFIG_COLLECT_PARTITION_STATS
  PartitionTimingStats *part_timing_stats =
      &part_search_state->part_timing_stats;
  if (best_rdc->rdcost - sum_rdc.rdcost >= 0) {
    start_partition_block_timer(part_timing_stats, PARTITION_SPLIT);
  }
#endif
  // Recursive partition search on 4 sub-blocks.
  for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost;
       ++idx) {
    const int x_idx = (idx & 1) * blk_params.mi_step;
    const int y_idx = (idx >> 1) * blk_params.mi_step;

    if (mi_row + y_idx >= mi_params->mi_rows ||
        mi_col + x_idx >= mi_params->mi_cols)
      continue;

    pc_tree->split[idx]->index = idx;
    int64_t *p_split_rd = &part_search_state->split_rd[idx];
    RD_STATS best_remain_rdcost;
    av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc,
                             &best_remain_rdcost);

    int curr_quad_tree_idx = 0;
    if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
      curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx;
      part_search_state->intra_part_info->quad_tree_idx =
          4 * curr_quad_tree_idx + idx + 1;
    }
    // Split partition evaluation of corresponding idx.
    // If the RD cost exceeds the best cost then do not
    // evaluate other split sub-partitions.
    if (!av1_rd_pick_partition(
            cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
            &part_search_state->this_rdc, best_remain_rdcost,
            pc_tree->split[idx], sms_tree->split[idx], p_split_rd,
            multi_pass_mode, &part_search_state->split_part_rect_win[idx])) {
      av1_invalid_rd_stats(&sum_rdc);
      break;
    }
    if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
      part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx;
    }

    sum_rdc.rate += part_search_state->this_rdc.rate;
    sum_rdc.dist += part_search_state->this_rdc.dist;
    av1_rd_cost_update(x->rdmult, &sum_rdc);

    // Set split ctx as ready for use.
    if (idx <= 1 && (bsize <= BLOCK_8X8 ||
                     pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
      const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic;
      const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
      // Neither palette mode nor cfl predicted.
      if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
        if (mbmi->uv_mode != UV_CFL_PRED)
          part_search_state->is_split_ctx_is_ready[idx] = 1;
      }
    }
  }
#if CONFIG_COLLECT_PARTITION_STATS
  if (part_timing_stats->timer_is_on) {
    end_partition_block_timer(part_timing_stats, PARTITION_SPLIT,
                              sum_rdc.rdcost);
  }
#endif
  const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT);

  // Calculate the total cost and update the best partition.
  *part_split_rd = sum_rdc.rdcost;
  if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) {
    sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
    if (sum_rdc.rdcost < best_rdc->rdcost) {
      *best_rdc = sum_rdc;
      part_search_state->found_best_partition = true;
      pc_tree->partitioning = PARTITION_SPLIT;
    }
  } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
    // Skip rectangular partition test when partition type none gives better
    // rd than partition type split.
    if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
      const int partition_none_valid = part_search_state->none_rd > 0;
      const int partition_none_better =
          part_search_state->none_rd < sum_rdc.rdcost;
      part_search_state->do_rectangular_split &=
          !(partition_none_valid && partition_none_better);
    }
  }
  av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}

// The max number of nodes in the partition tree.
// The number of leaf nodes is (128x128) / (4x4) = 1024.
// The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023.
#define NUM_NODES 2048

static void write_partition_tree(AV1_COMP *const cpi,
                                 const PC_TREE *const pc_tree,
                                 const BLOCK_SIZE bsize, const int mi_row,
                                 const int mi_col) {
  (void)mi_row;
  (void)mi_col;
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
           cpi->sb_counter, 0);
  ++cpi->sb_counter;
  FILE *pfile = fopen(filename, "w");
  fprintf(pfile, "%d", bsize);

  // Write partition type with BFS order.
  const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int q_idx = 0;
  int depth = 0;
  int last_idx = 1;
  int num_nodes = 1;

  // First traversal to get number of leaf nodes and depth.
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      ++depth;
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  const int num_leafs = last_idx;
  fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);

  // Write partitions for each node.
  q_idx = 0;
  depth = 0;
  last_idx = 1;
  num_nodes = 1;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    fprintf(pfile, ",%d", node->partitioning);
    if (node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      ++depth;
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  fprintf(pfile, "\n");

  fclose(pfile);
}

static void verify_write_partition_tree(const AV1_COMP *const cpi,
                                        const PC_TREE *const pc_tree,
                                        const BLOCK_SIZE bsize,
                                        const int config_id, const int mi_row,
                                        const int mi_col) {
  (void)mi_row;
  (void)mi_col;
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d",
           path, cpi->sb_counter, config_id);
  FILE *pfile = fopen(filename, "w");
  fprintf(pfile, "%d", bsize);

  // Write partition type with BFS order.
  const PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int q_idx = 0;
  int depth = 0;
  int last_idx = 1;
  int num_nodes = 1;

  // First traversal to get number of leaf nodes and depth.
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL && node->partitioning == PARTITION_SPLIT) {
      for (int i = 0; i < 4; ++i) {
        tree_node_queue[last_idx] = node->split[i];
        ++last_idx;
      }
      ++depth;
      num_nodes += 4;
    }
    --num_nodes;
    ++q_idx;
  }
  const int num_leafs = last_idx;
  fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1);

  // Write partitions for each node.
  q_idx = 0;
  depth = 0;
  last_idx = 1;
  num_nodes = 1;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    const PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL) {  // suppress warning
      fprintf(pfile, ",%d", node->partitioning);
      if (node->partitioning == PARTITION_SPLIT) {
        for (int i = 0; i < 4; ++i) {
          tree_node_queue[last_idx] = node->split[i];
          ++last_idx;
        }
        ++depth;
        num_nodes += 4;
      }
    }
    --num_nodes;
    ++q_idx;
  }
  fprintf(pfile, "\n");

  fclose(pfile);
}

static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree,
                               const int config_id) {
  const char *path = cpi->oxcf.partition_info_path;
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path,
           cpi->sb_counter, config_id);
  FILE *pfile = fopen(filename, "r");
  if (pfile == NULL) {
    printf("Can't find the file: %s\n", filename);
    exit(0);
  }

  int read_bsize;
  int num_nodes;
  int num_configs;
  fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs);
  assert(read_bsize == cpi->common.seq_params->sb_size);
  BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize;

  PC_TREE *tree_node_queue[NUM_NODES] = { NULL };
  int last_idx = 1;
  int q_idx = 0;
  tree_node_queue[q_idx] = pc_tree;
  while (num_nodes > 0) {
    int partitioning;
    fscanf(pfile, ",%d", &partitioning);
    assert(partitioning >= PARTITION_NONE &&
           partitioning < EXT_PARTITION_TYPES);
    PC_TREE *node = tree_node_queue[q_idx];
    if (node != NULL) node->partitioning = partitioning;
    if (partitioning == PARTITION_SPLIT) {
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      for (int i = 0; i < 4; ++i) {
        if (node != NULL) {  // Suppress warning
          node->split[i] = av1_alloc_pc_tree_node(subsize);
          node->split[i]->index = i;
          tree_node_queue[last_idx] = node->split[i];
          ++last_idx;
        }
      }
      bsize = subsize;
    }
    --num_nodes;
    ++q_idx;
  }
  fclose(pfile);

  return num_configs;
}

static RD_STATS rd_search_for_fixed_partition(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col,
    const BLOCK_SIZE bsize, PC_TREE *pc_tree) {
  const PARTITION_TYPE partition = pc_tree->partitioning;
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  TileInfo *const tile_info = &tile_data->tile_info;
  RD_STATS best_rdc;
  av1_invalid_rd_stats(&best_rdc);
  int sum_subblock_rate = 0;
  int64_t sum_subblock_dist = 0;
  PartitionSearchState part_search_state;
  init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
                                     bsize);
  // Override partition costs at the edges of the frame in the same
  // way as in read_partition (see decodeframe.c).
  PartitionBlkParams blk_params = part_search_state.part_blk_params;
  if (!(blk_params.has_rows && blk_params.has_cols))
    set_partition_cost_for_edge_blk(cm, &part_search_state);

  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
  (void)orig_rdmult;

  // Set the context.
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  assert(bsize < BLOCK_SIZES_ALL);
  unsigned int pb_source_variance = UINT_MAX;
  int64_t part_none_rd = INT64_MAX;
  int64_t none_rd = INT64_MAX;
  int inc_step[NUM_PART4_TYPES] = { 0 };
  if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4;
  if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4;

  switch (partition) {
    case PARTITION_NONE:
      none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
                            &part_search_state, &best_rdc, &pb_source_variance,
                            &none_rd, &part_none_rd);
      break;
    case PARTITION_HORZ:
      rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                                   &part_search_state, &best_rdc, NULL, HORZ,
                                   HORZ);
      break;
    case PARTITION_VERT:
      rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                                   &part_search_state, &best_rdc, NULL, VERT,
                                   VERT);
      break;
    case PARTITION_HORZ_A:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, HORZ_A, HORZ_A);
      break;
    case PARTITION_HORZ_B:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, HORZ_B, HORZ_B);
      break;
    case PARTITION_VERT_A:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, VERT_A, VERT_A);
      break;
    case PARTITION_VERT_B:
      ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                           &part_search_state, &best_rdc, NULL,
                           pb_source_variance, 1, VERT_B, VERT_B);
      break;
    case PARTITION_HORZ_4:
      rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                         pc_tree->horizontal4, &part_search_state, &best_rdc,
                         inc_step, PARTITION_HORZ_4);
      break;
    case PARTITION_VERT_4:
      rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                         pc_tree->vertical4, &part_search_state, &best_rdc,
                         inc_step, PARTITION_VERT_4);
      break;
    case PARTITION_SPLIT:
      for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) {
        const BLOCK_SIZE subsize =
            get_partition_subsize(bsize, PARTITION_SPLIT);
        assert(subsize < BLOCK_SIZES_ALL);
        const int next_mi_row =
            idx < 2 ? mi_row : mi_row + mi_size_high[subsize];
        const int next_mi_col =
            idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize];
        if (next_mi_row >= cm->mi_params.mi_rows ||
            next_mi_col >= cm->mi_params.mi_cols) {
          continue;
        }
        const RD_STATS subblock_rdc = rd_search_for_fixed_partition(
            cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row,
            next_mi_col, subsize, pc_tree->split[idx]);
        sum_subblock_rate += subblock_rdc.rate;
        sum_subblock_dist += subblock_rdc.dist;
      }
      best_rdc.rate = sum_subblock_rate;
      best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT];
      best_rdc.dist = sum_subblock_dist;
      best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist);
      break;
    default: assert(0 && "invalid partition type."); exit(0);
  }
  // Note: it is necessary to restore context information.
  av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

  if (bsize != cm->seq_params->sb_size) {
    encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
              pc_tree, NULL);
  }
  x->rdmult = orig_rdmult;

  return best_rdc;
}

bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td,
                             TileDataEnc *tile_data, TokenExtra **tp,
                             SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row,
                             int mi_col, const BLOCK_SIZE bsize,
                             RD_STATS *best_rd_cost) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  int best_idx = 0;
  int64_t min_rdcost = INT64_MAX;
  int num_configs;
  RD_STATS *rdcost = NULL;
  int i = 0;
  do {
    PC_TREE *const pc_tree = av1_alloc_pc_tree_node(bsize);
    num_configs = read_partition_tree(cpi, pc_tree, i);
    if (i == 0) {
      rdcost = aom_calloc(num_configs, sizeof(*rdcost));
    }
    if (num_configs <= 0) {
      av1_free_pc_tree_recursive(pc_tree, av1_num_planes(cm), 0, 0);
      if (rdcost != NULL) aom_free(rdcost);
      exit(0);
      return false;
    }
    verify_write_partition_tree(cpi, pc_tree, bsize, i, mi_row, mi_col);
    // Encode the block with the given partition tree. Get rdcost and encoding
    // time.
    rdcost[i] = rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root,
                                              mi_row, mi_col, bsize, pc_tree);

    if (rdcost[i].rdcost < min_rdcost) {
      min_rdcost = rdcost[i].rdcost;
      best_idx = i;
      *best_rd_cost = rdcost[i];
    }
    av1_free_pc_tree_recursive(pc_tree, av1_num_planes(cm), 0, 0);
    ++i;
  } while (i < num_configs);

  // Encode with the partition configuration with the smallest rdcost.
  PC_TREE *const pc_tree = av1_alloc_pc_tree_node(bsize);
  read_partition_tree(cpi, pc_tree, best_idx);
  rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row,
                                mi_col, bsize, pc_tree);
  set_cb_offsets(x->cb_offset, 0, 0);
  encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
            pc_tree, NULL);

  av1_free_pc_tree_recursive(pc_tree, av1_num_planes(cm), 0, 0);
  aom_free(rdcost);
  ++cpi->sb_counter;

  return true;
}

/*!\brief AV1 block partition search (full search).
*
* \ingroup partition_search
* \callgraph
* Searches for the best partition pattern for a block based on the
* rate-distortion cost, and returns a bool value to indicate whether a valid
* partition pattern is found. The partition can recursively go down to the
* smallest block size.
*
* \param[in]    cpi                Top-level encoder structure
* \param[in]    td                 Pointer to thread data
* \param[in]    tile_data          Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in]    tp                 Pointer to the starting token
* \param[in]    mi_row             Row coordinate of the block in a step size
of MI_SIZE
* \param[in]    mi_col             Column coordinate of the block in a step
size of MI_SIZE
* \param[in]    bsize              Current block size
* \param[in]    rd_cost            Pointer to the final rd cost of the block
* \param[in]    best_rdc           Upper bound of rd cost of a valid partition
* \param[in]    pc_tree            Pointer to the PC_TREE node storing the
picked partitions and mode info for the
current block
* \param[in]    sms_tree           Pointer to struct holding simple motion
search data for the current block
* \param[in]    none_rd            Pointer to the rd cost in the case of not
splitting the current block
* \param[in]    multi_pass_mode    SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
* \param[in]    rect_part_win_info Pointer to struct storing whether horz/vert
partition outperforms previously tested
partitions
*
* \return A bool value is returned indicating if a valid partition is found.
* The pc_tree struct is modified to store the picked partition and modes.
* The rd_cost struct is also updated with the RD stats corresponding to the
* best partition found.
*/
bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
                           TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
                           int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost,
                           RD_STATS best_rdc, PC_TREE *pc_tree,
                           SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd,
                           SB_MULTI_PASS_MODE multi_pass_mode,
                           RD_RECT_PART_WIN_INFO *rect_part_win_info) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  const TokenExtra *const tp_orig = *tp;
  PartitionSearchState part_search_state;
  // Initialization of state variables used in partition search.
  init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col,
                                     bsize);
  PartitionBlkParams blk_params = part_search_state.part_blk_params;

  sms_tree->partitioning = PARTITION_NONE;
  if (best_rdc.rdcost < 0) {
    av1_invalid_rd_stats(rd_cost);
    return part_search_state.found_best_partition;
  }
  if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0;

  // Override skipping rectangular partition operations for edge blocks.
  if (none_rd) *none_rd = 0;
  (void)*tp_orig;

#if CONFIG_COLLECT_PARTITION_STATS
  // Stats at the current quad tree
  PartitionTimingStats *part_timing_stats =
      &part_search_state.part_timing_stats;
  // Stats aggregated at frame level
  FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats;
#endif  // CONFIG_COLLECT_PARTITION_STATS

  // Override partition costs at the edges of the frame in the same
  // way as in read_partition (see decodeframe.c).
  if (!(blk_params.has_rows && blk_params.has_cols))
    set_partition_cost_for_edge_blk(cm, &part_search_state);

  // Disable rectangular partitions for inner blocks when the current block is
  // forced to only use square partitions.
  if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
    part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows;
    part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols;
  }

#ifndef NDEBUG
  // Nothing should rely on the default value of this array (which is just
  // leftover from encoding the previous block. Setting it to fixed pattern
  // when debugging.
  // bit 0, 1, 2 are blk_skip of each plane
  // bit 4, 5, 6 are initialization checking of each plane
  memset(x->txfm_search_info.blk_skip, 0x77,
         sizeof(x->txfm_search_info.blk_skip));
#endif  // NDEBUG

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);

  // Set buffers and offsets.
  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);

  // Save rdmult before it might be changed, so it can be restored later.
  const int orig_rdmult = x->rdmult;
  setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);

  // Update rd cost of the bound using the current multiplier.
  av1_rd_cost_update(x->rdmult, &best_rdc);

  if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
    x->mb_energy = av1_log_block_var(cpi, x, bsize);

  // Set the context.
  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, av1_prune_partitions_time);
#endif
  int *partition_horz_allowed = &part_search_state.partition_rect_allowed[HORZ];
  int *partition_vert_allowed = &part_search_state.partition_rect_allowed[VERT];
  int *prune_horz = &part_search_state.prune_rect_part[HORZ];
  int *prune_vert = &part_search_state.prune_rect_part[VERT];
  // Pruning: before searching any partition type, using source and simple
  // motion search results to prune out unlikely partitions.
  av1_prune_partitions_before_search(
      cpi, x, mi_row, mi_col, bsize, sms_tree,
      &part_search_state.partition_none_allowed, partition_horz_allowed,
      partition_vert_allowed, &part_search_state.do_rectangular_split,
      &part_search_state.do_square_split, prune_horz, prune_vert);

  // Pruning: eliminating partition types leading to coding block sizes outside
  // the min and max bsize limitations set from the encoder.
  av1_prune_partitions_by_max_min_bsize(
      &x->sb_enc, bsize, blk_params.has_rows && blk_params.has_cols,
      &part_search_state.partition_none_allowed, partition_horz_allowed,
      partition_vert_allowed, &part_search_state.do_square_split);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, av1_prune_partitions_time);
#endif

  // Partition search
BEGIN_PARTITION_SEARCH:
  // If a valid partition is required, usually when the first round cannot find
  // a valid one under the cost limit after pruning, reset the limitations on
  // partition types and intra cnn output.
  if (x->must_find_valid_partition) {
    reset_part_limitations(cpi, &part_search_state);
    // Invalidate intra cnn output for key frames.
    if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
      part_search_state.intra_part_info->quad_tree_idx = 0;
      part_search_state.intra_part_info->cnn_output_valid = 0;
    }
  }
  // Partition block source pixel variance.
  unsigned int pb_source_variance = UINT_MAX;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, none_partition_search_time);
#endif
  // PARTITION_NONE search stage.
  int64_t part_none_rd = INT64_MAX;
  none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
                        &part_search_state, &best_rdc, &pb_source_variance,
                        none_rd, &part_none_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, none_partition_search_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, split_partition_search_time);
#endif
  // PARTITION_SPLIT search stage.
  int64_t part_split_rd = INT64_MAX;
  split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx,
                         &part_search_state, &best_rdc, multi_pass_mode,
                         &part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, split_partition_search_time);
#endif
  // Terminate partition search for child partition,
  // when NONE and SPLIT partition rd_costs are INT64_MAX.
  if (cpi->sf.part_sf.early_term_after_none_split &&
      part_none_rd == INT64_MAX && part_split_rd == INT64_MAX &&
      !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) {
    part_search_state.terminate_partition_search = 1;
  }

  // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT.
  prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc,
                               part_none_rd, part_split_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rectangular_partition_search_time);
#endif
  // Rectangular partitions search stage.
  rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
                               &part_search_state, &best_rdc,
                               rect_part_win_info, HORZ, VERT);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rectangular_partition_search_time);
#endif

  if (pb_source_variance == UINT_MAX) {
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
    if (is_cur_buf_hbd(xd)) {
      pb_source_variance = av1_high_get_sby_perpixel_variance(
          cpi, &x->plane[0].src, bsize, xd->bd);
    } else {
      pb_source_variance =
          av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
    }
  }

  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part_search_state.do_rectangular_split));

  const int ext_partition_allowed =
      part_search_state.do_rectangular_split &&
      bsize > cpi->sf.part_sf.ext_partition_eval_thresh &&
      blk_params.has_rows && blk_params.has_cols;
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, ab_partitions_search_time);
#endif
  // AB partitions search stage.
  ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       &part_search_state, &best_rdc, rect_part_win_info,
                       pb_source_variance, ext_partition_allowed, HORZ_A,
                       VERT_B);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, ab_partitions_search_time);
#endif

  // 4-way partitions search stage.
  int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 };
  // Prune 4-way partition search.
  prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc,
                               pb_source_variance, ext_partition_allowed,
                               part4_search_allowed);

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, rd_pick_4partition_time);
#endif
  // PARTITION_HORZ_4
  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part4_search_allowed[HORZ4]));
  if (!part_search_state.terminate_partition_search &&
      part4_search_allowed[HORZ4] && blk_params.has_rows &&
      (part_search_state.do_rectangular_split ||
       av1_active_h_edge(cpi, mi_row, blk_params.mi_step))) {
    const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4,
                                            0 };
    // Evaluation of Horz4 partition type.
    rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       pc_tree->horizontal4, &part_search_state, &best_rdc,
                       inc_step, PARTITION_HORZ_4);
  }

  // PARTITION_VERT_4
  assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
                 !part4_search_allowed[VERT4]));
  if (!part_search_state.terminate_partition_search &&
      part4_search_allowed[VERT4] && blk_params.has_cols &&
      (part_search_state.do_rectangular_split ||
       av1_active_v_edge(cpi, mi_row, blk_params.mi_step))) {
    const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] /
                                                   4 };
    // Evaluation of Vert4 partition type.
    rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
                       pc_tree->vertical4, &part_search_state, &best_rdc,
                       inc_step, PARTITION_VERT_4);
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, rd_pick_4partition_time);
#endif

  if (bsize == cm->seq_params->sb_size &&
      !part_search_state.found_best_partition) {
    // Did not find a valid partition, go back and search again, with less
    // constraint on which partition types to search.
    x->must_find_valid_partition = 1;
#if CONFIG_COLLECT_PARTITION_STATS
    fr_part_timing_stats->partition_redo += 1;
#endif  // CONFIG_COLLECT_PARTITION_STATS
    goto BEGIN_PARTITION_SEARCH;
  }

  // Store the final rd cost
  *rd_cost = best_rdc;

  // Also record the best partition in simple motion data tree because it is
  // necessary for the related speed features.
  sms_tree->partitioning = pc_tree->partitioning;

#if CONFIG_COLLECT_PARTITION_STATS
  if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
    part_timing_stats->partition_decisions[pc_tree->partitioning] += 1;
  }

  // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
  // prediction block.
  print_partition_timing_stats_with_rdcost(
      part_timing_stats, mi_row, mi_col, bsize,
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
      cm->current_frame.frame_number, &best_rdc, "part_timing.csv");
  /*
  print_partition_timing_stats(part_timing_stats, cm->show_frame,
                               frame_is_intra_only(cm), bsize,
                               "part_timing_data.csv");
  */
  // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for
  // the whole clip. So we need to pass the information upstream to the encoder.
  accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats,
                                    bsize);
#endif  // CONFIG_COLLECT_PARTITION_STATS

  // Reset the PC_TREE deallocation flag.
  int pc_tree_dealloc = 0;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, encode_sb_time);
#endif
  // If a valid partition is found and reconstruction is required for future
  // sub-blocks in the same group.
  if (part_search_state.found_best_partition && pc_tree->index != 3) {
    if (bsize == cm->seq_params->sb_size) {
      // Encode the superblock.
      const int emit_output = multi_pass_mode != SB_DRY_PASS;
      const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;

      // Write partition tree to file. Not used by default.
      if (0) write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col);

      set_cb_offsets(x->cb_offset, 0, 0);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
                pc_tree, NULL);
      // Dealloc the whole PC_TREE after a superblock is done.
      av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0);
      pc_tree_dealloc = 1;
    } else {
      // Encode the smaller blocks in DRY_RUN mode.
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
                pc_tree, NULL);
    }
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, encode_sb_time);
#endif

  // If the tree still exists (non-superblock), dealloc most nodes, only keep
  // nodes for the best partition and PARTITION_NONE.
  if (pc_tree_dealloc == 0)
    av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1);

  if (bsize == cm->seq_params->sb_size) {
    assert(best_rdc.rate < INT_MAX);
    assert(best_rdc.dist < INT64_MAX);
  } else {
    assert(tp_orig == *tp);
  }

  // Restore the rd multiplier.
  x->rdmult = orig_rdmult;
  return part_search_state.found_best_partition;
}
#endif  // !CONFIG_REALTIME_ONLY

#if CONFIG_RT_ML_PARTITIONING
#define FEATURES 6
#define LABELS 2
static int ml_predict_var_paritioning(AV1_COMP *cpi, MACROBLOCK *x,
                                      BLOCK_SIZE bsize, int mi_row,
                                      int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  const NN_CONFIG *nn_config = NULL;
  const float *means = NULL;
  const float *vars = NULL;
  switch (bsize) {
    case BLOCK_64X64:
      nn_config = &av1_var_part_nnconfig_64;
      means = av1_var_part_means_64;
      vars = av1_var_part_vars_64;
      break;
    case BLOCK_32X32:
      nn_config = &av1_var_part_nnconfig_32;
      means = av1_var_part_means_32;
      vars = av1_var_part_vars_32;
      break;
    case BLOCK_16X16:
      nn_config = &av1_var_part_nnconfig_16;
      means = av1_var_part_means_16;
      vars = av1_var_part_vars_16;
      break;
    case BLOCK_8X8:
    default: assert(0 && "Unexpected block size."); return -1;
  }

  if (!nn_config) return -1;

  aom_clear_system_state();

  {
    const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
    float features[FEATURES] = { 0.0f };
    const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
                                      cm->seq_params->bit_depth);
    int feature_idx = 0;
    float score[LABELS];

    features[feature_idx] =
        (logf((float)(dc_q * dc_q) / 256.0f + 1.0f) - means[feature_idx]) /
        sqrtf(vars[feature_idx]);
    feature_idx++;
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
    {
      const int bs = block_size_wide[bsize];
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      const int sb_offset_row = 4 * (mi_row & 15);
      const int sb_offset_col = 4 * (mi_col & 15);
      const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
      const uint8_t *src = x->plane[0].src.buf;
      const int src_stride = x->plane[0].src.stride;
      const int pred_stride = 64;
      unsigned int sse;
      int i;
      // Variance of whole block.
      const unsigned int var =
          cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
      const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);

      features[feature_idx] = (logf((float)var + 1.0f) - means[feature_idx]) /
                              sqrtf(vars[feature_idx]);
      feature_idx++;
      for (i = 0; i < 4; ++i) {
        const int x_idx = (i & 1) * bs / 2;
        const int y_idx = (i >> 1) * bs / 2;
        const int src_offset = y_idx * src_stride + x_idx;
        const int pred_offset = y_idx * pred_stride + x_idx;
        // Variance of quarter block.
        const unsigned int sub_var =
            cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
                                    pred + pred_offset, pred_stride, &sse);
        const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
        features[feature_idx] =
            (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]);
        feature_idx++;
      }
    }
    //    for (int i = 0; i<FEATURES; i++)
    //      printf("F_%d, %f; ", i, features[i]);
    assert(feature_idx == FEATURES);
    av1_nn_predict(features, nn_config, 1, score);
    //    printf("Score %f, thr %f ", (float)score[0], thresh);
    if (score[0] > thresh) return PARTITION_SPLIT;
    if (score[0] < -thresh) return PARTITION_NONE;
    return -1;
  }
}
#undef FEATURES
#undef LABELS

// Uncomment for collecting data for ML-based partitioning
// #define _COLLECT_GROUND_TRUTH_

#ifdef _COLLECT_GROUND_TRUTH_
static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
                                int mi_row, int mi_col, PARTITION_TYPE part) {
  AV1_COMMON *const cm = &cpi->common;
  char fname[128];
  switch (bsize) {
    case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break;
    case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break;
    case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break;
    case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break;
    default: assert(0 && "Unexpected block size."); return -1;
  }

  float features[6];  // DC_Q, VAR, VAR_RATIO-0..3

  FILE *f = fopen(fname, "a");

  aom_clear_system_state();

  {
    const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0,
                                      cm->seq_params->bit_depth);
    int feature_idx = 0;

    features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
    av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize);
    {
      const int bs = block_size_wide[bsize];
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
      const int sb_offset_row = 4 * (mi_row & 15);
      const int sb_offset_col = 4 * (mi_col & 15);
      const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
      const uint8_t *src = x->plane[0].src.buf;
      const int src_stride = x->plane[0].src.stride;
      const int pred_stride = 64;
      unsigned int sse;
      int i;
      // Variance of whole block.
      /*
                if (bs == 8)
                {
                  int r, c;
                  printf("%d %d\n", mi_row, mi_col);
                  for (r = 0; r < bs; ++r) {
                    for (c = 0; c < bs; ++c) {
                      printf("%3d ",
                             src[r * src_stride + c] - pred[64 * r + c]);
                    }
                    printf("\n");
                  }
                  printf("\n");
                }
      */
      const unsigned int var =
          cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
      const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);

      features[feature_idx++] = logf((float)var + 1.0f);

      fprintf(f, "%f,%f,", features[0], features[1]);
      for (i = 0; i < 4; ++i) {
        const int x_idx = (i & 1) * bs / 2;
        const int y_idx = (i >> 1) * bs / 2;
        const int src_offset = y_idx * src_stride + x_idx;
        const int pred_offset = y_idx * pred_stride + x_idx;
        // Variance of quarter block.
        const unsigned int sub_var =
            cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
                                    pred + pred_offset, pred_stride, &sse);
        const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
        features[feature_idx++] = var_ratio;
        fprintf(f, "%f,", var_ratio);
      }

      fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1);
    }

    fclose(f);
    return -1;
  }
}
#endif

static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd,
                                      int mi_row, int mi_col,
                                      BLOCK_SIZE bsize) {
  const int block_width =
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
  const int block_height =
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
  const int mi_stride = xd->mi_stride;
  MB_MODE_INFO *const src_mi = xd->mi[0];
  int i, j;

  for (j = 0; j < block_height; ++j)
    for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
}

static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
    MB_MODE_INFO_EXT *const mbmi_ext,
    const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) {
  memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
         sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
  memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
         sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
  mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
  mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
  memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
         sizeof(mbmi_ext->global_mvs));
}

static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
                              int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  int hbs = mi_size_wide[bsize] >> 1;
  PARTITION_TYPE partition = pc_tree->partitioning;
  BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);

  assert(bsize >= BLOCK_8X8);

  if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
    return;

  switch (partition) {
    case PARTITION_NONE:
      set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row,
                            mi_col);
      *(xd->mi[0]) = pc_tree->none->mic;
      copy_mbmi_ext_frame_to_mbmi_ext(
          &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME);
      duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
      break;
    case PARTITION_SPLIT: {
      fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]);
      fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize,
                        pc_tree->split[1]);
      fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize,
                        pc_tree->split[2]);
      fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize,
                        pc_tree->split[3]);
      break;
    }
    default: break;
  }
}

void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td,
                              TileDataEnc *tile_data, TokenExtra **tp,
                              int mi_row, int mi_col, BLOCK_SIZE bsize,
                              RD_STATS *rd_cost, int do_recon, int64_t best_rd,
                              PC_TREE *pc_tree) {
  AV1_COMMON *const cm = &cpi->common;
  TileInfo *const tile_info = &tile_data->tile_info;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int hbs = mi_size_wide[bsize] >> 1;
  TokenExtra *tp_orig = *tp;
  const ModeCosts *mode_costs = &x->mode_costs;
  RD_STATS this_rdc, best_rdc;
  RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
  int do_split = bsize > BLOCK_8X8;
  // Override skipping rectangular partition operations for edge blocks
  const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows);
  const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols);

  int partition_none_allowed = !force_horz_split && !force_vert_split;

  assert(mi_size_wide[bsize] == mi_size_high[bsize]);  // Square partition only
  assert(cm->seq_params->sb_size == BLOCK_64X64);      // Small SB so far

  (void)*tp_orig;

  av1_invalid_rd_stats(&best_rdc);
  best_rdc.rdcost = best_rd;
#ifndef _COLLECT_GROUND_TRUTH_
  if (partition_none_allowed && do_split) {
    const int ml_predicted_partition =
        ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col);
    if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
    if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
  }
#endif

  xd->above_txfm_context =
      cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
  xd->left_txfm_context =
      xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
  av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

  // PARTITION_NONE
  if (partition_none_allowed) {
    pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf);
    PICK_MODE_CONTEXT *ctx = pc_tree->none;

// Flip for RDO based pick mode
#if 0
    RD_STATS dummy;
    av1_invalid_rd_stats(&dummy);
    pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
                  PARTITION_NONE, bsize, ctx, dummy);
#else
    pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
                        ctx);
#endif
    if (this_rdc.rate != INT_MAX) {
      const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);

      this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE];
      this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
      if (this_rdc.rdcost < best_rdc.rdcost) {
        best_rdc = this_rdc;
        if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
      }
    }
  }

  // PARTITION_SPLIT
  if (do_split) {
    RD_STATS sum_rdc;
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);

    av1_init_rd_stats(&sum_rdc);

    for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
      pc_tree->split[i] = av1_alloc_pc_tree_node(subsize);
      pc_tree->split[i]->index = i;
    }

    int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
    sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT];
    sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
    for (int i = 0;
         i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
      const int x_idx = (i & 1) * hbs;
      const int y_idx = (i >> 1) * hbs;

      if (mi_row + y_idx >= cm->mi_params.mi_rows ||
          mi_col + x_idx >= cm->mi_params.mi_cols)
        continue;
      av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
                               mi_col + x_idx, subsize, &this_rdc, i < 3,
                               best_rdc.rdcost - sum_rdc.rdcost,
                               pc_tree->split[i]);

      if (this_rdc.rate == INT_MAX) {
        av1_invalid_rd_stats(&sum_rdc);
      } else {
        sum_rdc.rate += this_rdc.rate;
        sum_rdc.dist += this_rdc.dist;
        sum_rdc.rdcost += this_rdc.rdcost;
      }
    }
    if (sum_rdc.rdcost < best_rdc.rdcost) {
      best_rdc = sum_rdc;
      pc_tree->partitioning = PARTITION_SPLIT;
    }
  }

#ifdef _COLLECT_GROUND_TRUTH_
  store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning);
#endif

  *rd_cost = best_rdc;

  av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3);

  if (best_rdc.rate == INT_MAX) {
    av1_invalid_rd_stats(rd_cost);
    return;
  }

  // update mode info array
  fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree);

  if (do_recon) {
    if (bsize == cm->seq_params->sb_size) {
      // NOTE: To get estimate for rate due to the tokens, use:
      // int rate_coeffs = 0;
      // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
      //           bsize, pc_tree, &rate_coeffs);
      set_cb_offsets(x->cb_offset, 0, 0);
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
                pc_tree, NULL);
    } else {
      encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
                pc_tree, NULL);
    }
  }

  if (bsize == BLOCK_64X64 && do_recon) {
    assert(best_rdc.rate < INT_MAX);
    assert(best_rdc.dist < INT64_MAX);
  } else {
    assert(tp_orig == *tp);
  }
}
#endif  // CONFIG_RT_ML_PARTITIONING