aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/tpl_model.c
blob: e07ab3e311917c1b6ceabc9ede10d14c2ed52141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdint.h>
#include <float.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"

#include "aom/aom_codec.h"
#include "aom_ports/system_state.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/reconintra.h"

#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tpl_model.h"

static INLINE double exp_bounded(double v) {
  // When v > 700 or <-700, the exp function will be close to overflow
  // For details, see the "Notes" in the following link.
  // https://en.cppreference.com/w/c/numeric/math/exp
  if (v > 700) {
    return DBL_MAX;
  } else if (v < -700) {
    return 0;
  }
  return exp(v);
}

void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) {
  tpl_txfm_stats->coeff_num = 256;
  tpl_txfm_stats->txfm_block_count = 0;
  memset(tpl_txfm_stats->abs_coeff_sum, 0,
         sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num);
}

void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats,
                                   TplTxfmStats *accumulated_stats) {
  accumulated_stats->txfm_block_count += sub_stats->txfm_block_count;
  for (int i = 0; i < accumulated_stats->coeff_num; ++i) {
    accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i];
  }
}

void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats,
                               const tran_low_t *coeff) {
  // For transform larger than 16x16, the scale of coeff need to be adjusted.
  // It's not LOSSLESS_Q_STEP.
  assert(tpl_txfm_stats->coeff_num <= 256);
  for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) {
    tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP;
  }
  ++tpl_txfm_stats->txfm_block_count;
}

static AOM_INLINE void av1_tpl_store_txfm_stats(
    TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats,
    const int frame_index) {
  tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats;
}

static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane,
                                          const tran_low_t *coeff,
                                          tran_low_t *qcoeff,
                                          tran_low_t *dqcoeff, TX_SIZE tx_size,
                                          uint16_t *eob, int64_t *recon_error,
                                          int64_t *sse) {
  const struct macroblock_plane *const p = &x->plane[plane];
  const MACROBLOCKD *xd = &x->e_mbd;
  const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
  int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
  const int shift = tx_size == TX_32X32 ? 0 : 2;

  QUANT_PARAM quant_param;
  av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);

#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob,
                                  scan_order, &quant_param);
    *recon_error =
        av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift;
  } else {
    av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
                           &quant_param);
    *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
  }
#else
  (void)xd;
  av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order,
                         &quant_param);
  *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
#endif  // CONFIG_AV1_HIGHBITDEPTH

  *recon_error = AOMMAX(*recon_error, 1);

  *sse = (*sse) >> shift;
  *sse = AOMMAX(*sse, 1);
}

static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2,
                                                uint8_t *tpl_bsize_1d) {
  // tpl stats bsize: 2 means 16x16
  *block_mis_log2 = 2;
  // Block size used in tpl motion estimation
  *tpl_bsize_1d = 16;
  // MIN_TPL_BSIZE_1D = 16;
  assert(*tpl_bsize_1d >= 16);
}

void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi,
                           CommonModeInfoParams *const mi_params, int width,
                           int height, int byte_alignment, int lag_in_frames) {
  SequenceHeader *const seq_params = &ppi->seq_params;
  TplParams *const tpl_data = &ppi->tpl_data;
  set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
                           &tpl_data->tpl_bsize_1d);
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  tpl_data->border_in_pixels =
      ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5);

  for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) {
    const int mi_cols =
        ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2);
    const int mi_rows =
        ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2);
    TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame];
    tpl_frame->is_valid = 0;
    tpl_frame->width = mi_cols >> block_mis_log2;
    tpl_frame->height = mi_rows >> block_mis_log2;
    tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width;
    tpl_frame->mi_rows = mi_params->mi_rows;
    tpl_frame->mi_cols = mi_params->mi_cols;
  }
  tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1];

  // If lag_in_frames <= 1, TPL module is not invoked. Hence tpl recon and
  // stats buffers are not allocated.
  if (lag_in_frames <= 1) return;

  // TODO(aomedia:2873): Explore the allocation of tpl buffers based on
  // lag_in_frames.
  for (int frame = 0; frame < MAX_LAG_BUFFERS; ++frame) {
    AOM_CHECK_MEM_ERROR(
        &ppi->error, tpl_data->tpl_stats_pool[frame],
        aom_calloc(tpl_data->tpl_stats_buffer[frame].width *
                       tpl_data->tpl_stats_buffer[frame].height,
                   sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr)));

    if (aom_alloc_frame_buffer(&tpl_data->tpl_rec_pool[frame], width, height,
                               seq_params->subsampling_x,
                               seq_params->subsampling_y,
                               seq_params->use_highbitdepth,
                               tpl_data->border_in_pixels, byte_alignment))
      aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate frame buffer");
  }
}

static AOM_INLINE int64_t tpl_get_satd_cost(BitDepthInfo bd_info,
                                            int16_t *src_diff, int diff_stride,
                                            const uint8_t *src, int src_stride,
                                            const uint8_t *dst, int dst_stride,
                                            tran_low_t *coeff, int bw, int bh,
                                            TX_SIZE tx_size) {
  const int pix_num = bw * bh;

  av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
                     dst, dst_stride);
  av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);
  return aom_satd(coeff, pix_num);
}

static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
  const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];

  assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
  int rate_cost = 1;

  for (int idx = 0; idx < eob; ++idx) {
    int abs_level = abs(qcoeff[scan_order->scan[idx]]);
    rate_cost += (int)(log(abs_level + 1.0) / log(2.0)) + 1;
  }

  return (rate_cost << AV1_PROB_COST_SHIFT);
}

static AOM_INLINE void txfm_quant_rdcost(
    const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src,
    int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff,
    tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size,
    int *rate_cost, int64_t *recon_error, int64_t *sse) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
  uint16_t eob;
  av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride,
                     dst, dst_stride);
  av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff);

  get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error,
                     sse);

  *rate_cost = rate_estimator(qcoeff, eob, tx_size);

  av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst, dst_stride,
                              eob, 0);
}

static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
                                  uint8_t *cur_frame_buf,
                                  uint8_t *ref_frame_buf, int stride,
                                  int stride_ref, BLOCK_SIZE bsize,
                                  MV center_mv, int_mv *best_mv) {
  AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf;
  int step_param;
  uint32_t bestsme = UINT_MAX;
  int distortion;
  uint32_t sse;
  int cost_list[5];
  FULLPEL_MV start_mv = get_fullmv_from_mv(&center_mv);

  // Setup frame pointers
  x->plane[0].src.buf = cur_frame_buf;
  x->plane[0].src.stride = stride;
  xd->plane[0].pre[0].buf = ref_frame_buf;
  xd->plane[0].pre[0].stride = stride_ref;

  step_param = tpl_sf->reduce_first_step_size;
  step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);

  const search_site_config *search_site_cfg =
      cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
  if (search_site_cfg->stride != stride_ref)
    search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
  assert(search_site_cfg->stride == stride_ref);

  FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
  av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
                                     search_site_cfg,
                                     /*fine_search_interval=*/0);
  av1_set_mv_search_method(&full_ms_params, search_site_cfg,
                           tpl_sf->search_method);

  av1_full_pixel_search(start_mv, &full_ms_params, step_param,
                        cond_cost_list(cpi, cost_list), &best_mv->as_fullmv,
                        NULL);

  SUBPEL_MOTION_SEARCH_PARAMS ms_params;
  av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &center_mv,
                                    cost_list);
  ms_params.forced_stop = tpl_sf->subpel_force_stop;
  ms_params.var_params.subpel_search_type = USE_2_TAPS;
  ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
  MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv);
  bestsme = cpi->mv_search_params.find_fractional_mv_step(
      xd, cm, &ms_params, subpel_start_mv, &best_mv->as_mv, &distortion, &sse,
      NULL);

  return bestsme;
}

typedef struct {
  int_mv mv;
  int sad;
} center_mv_t;

static int compare_sad(const void *a, const void *b) {
  const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad;
  if (diff < 0)
    return -1;
  else if (diff > 0)
    return 1;
  return 0;
}

static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs,
                       int center_mvs_count, int skip_alike_starting_mv) {
  // MV difference threshold is in 1/8 precision.
  const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) };
  int thr = mv_diff_thr[skip_alike_starting_mv];
  int i;

  for (i = 0; i < center_mvs_count; i++) {
    if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr &&
        abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr)
      return 1;
  }

  return 0;
}

static void get_rate_distortion(
    int *rate_cost, int64_t *recon_error, int64_t *pred_error,
    int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff,
    tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x,
    const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3],
    const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode,
    int mi_row, int mi_col, int use_y_only_rate_distortion) {
  const SequenceHeader *seq_params = cm->seq_params;
  *rate_cost = 0;
  *recon_error = 1;
  *pred_error = 1;

  MACROBLOCKD *xd = &x->e_mbd;
  int is_compound = (best_mode == NEW_NEWMV);
  int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE;

  uint8_t *src_buffer_pool[MAX_MB_PLANE] = {
    xd->cur_buf->y_buffer,
    xd->cur_buf->u_buffer,
    xd->cur_buf->v_buffer,
  };
  const int src_stride_pool[MAX_MB_PLANE] = {
    xd->cur_buf->y_stride,
    xd->cur_buf->uv_stride,
    xd->cur_buf->uv_stride,
  };

  const int_interpfilters kernel =
      av1_broadcast_interp_filter(EIGHTTAP_REGULAR);

  for (int plane = 0; plane < num_planes; ++plane) {
    struct macroblockd_plane *pd = &xd->plane[plane];
    BLOCK_SIZE bsize_plane =
        ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x]
                      [pd->subsampling_y];

    int dst_buffer_stride = rec_stride_pool[plane];
    int dst_mb_offset =
        ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) +
        ((mi_col * MI_SIZE) >> pd->subsampling_x);
    uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset;
    for (int ref = 0; ref < 1 + is_compound; ++ref) {
      if (!is_inter_mode(best_mode)) {
        av1_predict_intra_block(
            xd, seq_params->sb_size, seq_params->enable_intra_edge_filter,
            block_size_wide[bsize_plane], block_size_high[bsize_plane],
            max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0,
            FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer,
            dst_buffer_stride, 0, 0, plane);
      } else {
        int_mv best_mv = xd->mi[0]->mv[ref];
        uint8_t *ref_buffer_pool[MAX_MB_PLANE] = {
          ref_frame_ptr[ref]->y_buffer,
          ref_frame_ptr[ref]->u_buffer,
          ref_frame_ptr[ref]->v_buffer,
        };
        InterPredParams inter_pred_params;
        struct buf_2d ref_buf = {
          NULL, ref_buffer_pool[plane],
          plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width,
          plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height,
          plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride
        };
        av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane],
                              block_size_high[bsize_plane],
                              (mi_row * MI_SIZE) >> pd->subsampling_y,
                              (mi_col * MI_SIZE) >> pd->subsampling_x,
                              pd->subsampling_x, pd->subsampling_y, xd->bd,
                              is_cur_buf_hbd(xd), 0,
                              xd->block_ref_scale_factors[0], &ref_buf, kernel);
        if (is_compound) av1_init_comp_mode(&inter_pred_params);
        inter_pred_params.conv_params = get_conv_params_no_round(
            ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);

        av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride,
                                          &best_mv.as_mv, &inter_pred_params);
      }
    }

    int src_stride = src_stride_pool[plane];
    int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) +
                        ((mi_col * MI_SIZE) >> pd->subsampling_x);

    int this_rate = 1;
    int64_t this_recon_error = 1;
    int64_t sse;
    txfm_quant_rdcost(
        x, src_diff, block_size_wide[bsize_plane],
        src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer,
        dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane],
        block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane],
        &this_rate, &this_recon_error, &sse);

    *recon_error += this_recon_error;
    *pred_error += sse;
    *rate_cost += this_rate;
  }
}

static AOM_INLINE void mode_estimation(AV1_COMP *cpi,
                                       TplTxfmStats *tpl_txfm_stats,
                                       MACROBLOCK *x, int mi_row, int mi_col,
                                       BLOCK_SIZE bsize, TX_SIZE tx_size,
                                       TplDepStats *tpl_stats) {
  AV1_COMMON *cm = &cpi->common;
  const GF_GROUP *gf_group = &cpi->ppi->gf_group;

  (void)gf_group;

  MACROBLOCKD *xd = &x->e_mbd;
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
  TplParams *tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;

  const int bw = 4 << mi_size_wide_log2[bsize];
  const int bh = 4 << mi_size_high_log2[bsize];
  const int_interpfilters kernel =
      av1_broadcast_interp_filter(EIGHTTAP_REGULAR);

  int64_t best_intra_cost = INT64_MAX;
  int64_t intra_cost;
  PREDICTION_MODE best_mode = DC_PRED;

  int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
  uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset;
  int src_stride = xd->cur_buf->y_stride;

  int dst_mb_offset =
      mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE;
  uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset;
  int dst_buffer_stride = tpl_frame->rec_picture->y_stride;
  int use_y_only_rate_distortion = cpi->sf.tpl_sf.use_y_only_rate_distortion;

  uint8_t *rec_buffer_pool[3] = {
    tpl_frame->rec_picture->y_buffer,
    tpl_frame->rec_picture->u_buffer,
    tpl_frame->rec_picture->v_buffer,
  };

  const int rec_stride_pool[3] = {
    tpl_frame->rec_picture->y_stride,
    tpl_frame->rec_picture->uv_stride,
    tpl_frame->rec_picture->uv_stride,
  };

  for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
    struct macroblockd_plane *pd = &xd->plane[plane];
    pd->subsampling_x = xd->cur_buf->subsampling_x;
    pd->subsampling_y = xd->cur_buf->subsampling_y;
  }

  // Number of pixels in a tpl block
  const int tpl_block_pels = tpl_data->tpl_bsize_1d * tpl_data->tpl_bsize_1d;
  // Allocate temporary buffers used in motion estimation.
  uint8_t *predictor8 = aom_memalign(32, tpl_block_pels * 2 * sizeof(uint8_t));
  int16_t *src_diff = aom_memalign(32, tpl_block_pels * sizeof(int16_t));
  tran_low_t *coeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
  tran_low_t *qcoeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
  tran_low_t *dqcoeff = aom_memalign(32, tpl_block_pels * sizeof(tran_low_t));
  uint8_t *predictor =
      is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8;
  int64_t recon_error = 1;
  int64_t pred_error = 1;

  memset(tpl_stats, 0, sizeof(*tpl_stats));
  tpl_stats->ref_frame_index[0] = -1;
  tpl_stats->ref_frame_index[1] = -1;

  const int mi_width = mi_size_wide[bsize];
  const int mi_height = mi_size_high[bsize];
  set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
                        mi_row, mi_col);
  set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
                 cm->mi_params.mi_rows, cm->mi_params.mi_cols);
  set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
               av1_num_planes(cm));
  xd->mi[0]->bsize = bsize;
  xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;

  // Intra prediction search
  xd->mi[0]->ref_frame[0] = INTRA_FRAME;

  // Pre-load the bottom left line.
  if (xd->left_available &&
      mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) {
    if (is_cur_buf_hbd(xd)) {
      uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer);
      for (int i = 0; i < bw; ++i)
        dst[(bw + i) * dst_buffer_stride - 1] =
            dst[(bw - 1) * dst_buffer_stride - 1];
    } else {
      for (int i = 0; i < bw; ++i)
        dst_buffer[(bw + i) * dst_buffer_stride - 1] =
            dst_buffer[(bw - 1) * dst_buffer_stride - 1];
    }
  }

  // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED,
  // H_PRED, and V_PRED
  const PREDICTION_MODE last_intra_mode =
      cpi->sf.tpl_sf.prune_intra_modes ? D45_PRED : INTRA_MODE_END;
  const SequenceHeader *seq_params = cm->seq_params;
  for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode;
       ++mode) {
    av1_predict_intra_block(xd, seq_params->sb_size,
                            seq_params->enable_intra_edge_filter,
                            block_size_wide[bsize], block_size_high[bsize],
                            tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer,
                            dst_buffer_stride, predictor, bw, 0, 0, 0);

    intra_cost =
        tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
                          predictor, bw, coeff, bw, bh, tx_size);

    if (intra_cost < best_intra_cost) {
      best_intra_cost = intra_cost;
      best_mode = mode;
    }
  }

  // Motion compensated prediction
  xd->mi[0]->ref_frame[0] = INTRA_FRAME;
  xd->mi[0]->ref_frame[1] = NONE_FRAME;
  xd->mi[0]->compound_idx = 1;

  int best_rf_idx = -1;
  int_mv best_mv[2];
  int64_t inter_cost;
  int64_t best_inter_cost = INT64_MAX;
  int rf_idx;
  int_mv single_mv[INTER_REFS_PER_FRAME];

  best_mv[0].as_int = INVALID_MV;
  best_mv[1].as_int = INVALID_MV;

  for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) {
    single_mv[rf_idx].as_int = INVALID_MV;
    if (tpl_data->ref_frame[rf_idx] == NULL ||
        tpl_data->src_ref_frame[rf_idx] == NULL) {
      tpl_stats->mv[rf_idx].as_int = INVALID_MV;
      continue;
    }

    const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx];
    int ref_mb_offset =
        mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE;
    uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset;
    int ref_stride = ref_frame_ptr->y_stride;

    int_mv best_rfidx_mv = { 0 };
    uint32_t bestsme = UINT32_MAX;

    center_mv_t center_mvs[4] = { { { 0 }, INT_MAX },
                                  { { 0 }, INT_MAX },
                                  { { 0 }, INT_MAX },
                                  { { 0 }, INT_MAX } };
    int refmv_count = 1;
    int idx;

    if (xd->up_available) {
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
          mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)];
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
                       cpi->sf.tpl_sf.skip_alike_starting_mv)) {
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
        ++refmv_count;
      }
    }

    if (xd->left_available) {
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
          mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)];
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
                       cpi->sf.tpl_sf.skip_alike_starting_mv)) {
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
        ++refmv_count;
      }
    }

    if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) {
      TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos(
          mi_row - mi_height, mi_col + mi_width, tpl_frame->stride,
          block_mis_log2)];
      if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count,
                       cpi->sf.tpl_sf.skip_alike_starting_mv)) {
        center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int;
        ++refmv_count;
      }
    }

    // Prune starting mvs
    if (cpi->sf.tpl_sf.prune_starting_mv) {
      // Get each center mv's sad.
      for (idx = 0; idx < refmv_count; ++idx) {
        FULLPEL_MV mv = get_fullmv_from_mv(&center_mvs[idx].mv.as_mv);
        clamp_fullmv(&mv, &x->mv_limits);
        center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf(
            src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col],
            ref_stride);
      }

      // Rank center_mv using sad.
      if (refmv_count > 1) {
        qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad);
      }
      refmv_count = AOMMIN(4 - cpi->sf.tpl_sf.prune_starting_mv, refmv_count);
      // Further reduce number of refmv based on sad difference.
      if (refmv_count > 1) {
        int last_sad = center_mvs[refmv_count - 1].sad;
        int second_to_last_sad = center_mvs[refmv_count - 2].sad;
        if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad)
          refmv_count--;
      }
    }

    for (idx = 0; idx < refmv_count; ++idx) {
      int_mv this_mv;
      uint32_t thissme = motion_estimation(cpi, x, src_mb_buffer, ref_mb,
                                           src_stride, ref_stride, bsize,
                                           center_mvs[idx].mv.as_mv, &this_mv);

      if (thissme < bestsme) {
        bestsme = thissme;
        best_rfidx_mv = this_mv;
      }
    }

    tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int;
    single_mv[rf_idx] = best_rfidx_mv;

    struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer,
                              ref_frame_ptr->y_width, ref_frame_ptr->y_height,
                              ref_frame_ptr->y_stride };
    InterPredParams inter_pred_params;
    av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
                          mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0,
                          &tpl_data->sf, &ref_buf, kernel);
    inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd);

    av1_enc_build_one_inter_predictor(predictor, bw, &best_rfidx_mv.as_mv,
                                      &inter_pred_params);

    inter_cost =
        tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
                          predictor, bw, coeff, bw, bh, tx_size);
    // Store inter cost for each ref frame
    tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost);

    if (inter_cost < best_inter_cost) {
      best_rf_idx = rf_idx;

      best_inter_cost = inter_cost;
      best_mv[0].as_int = best_rfidx_mv.as_int;
      if (best_inter_cost < best_intra_cost) {
        best_mode = NEWMV;
        xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME;
        xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
      }
    }
  }

  int comp_ref_frames[3][2] = {
    { 0, 4 },
    { 0, 6 },
    { 3, 6 },
  };

  xd->mi_row = mi_row;
  xd->mi_col = mi_col;
  int best_cmp_rf_idx = -1;
  for (int cmp_rf_idx = 0; cmp_rf_idx < 3 && cpi->sf.tpl_sf.allow_compound_pred;
       ++cmp_rf_idx) {
    int rf_idx0 = comp_ref_frames[cmp_rf_idx][0];
    int rf_idx1 = comp_ref_frames[cmp_rf_idx][1];

    if (tpl_data->ref_frame[rf_idx0] == NULL ||
        tpl_data->src_ref_frame[rf_idx0] == NULL ||
        tpl_data->ref_frame[rf_idx1] == NULL ||
        tpl_data->src_ref_frame[rf_idx1] == NULL) {
      continue;
    }

    const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
      tpl_data->src_ref_frame[rf_idx0],
      tpl_data->src_ref_frame[rf_idx1],
    };

    xd->mi[0]->ref_frame[0] = LAST_FRAME;
    xd->mi[0]->ref_frame[1] = ALTREF_FRAME;

    struct buf_2d yv12_mb[2][MAX_MB_PLANE];
    for (int i = 0; i < 2; ++i) {
      av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i],
                           xd->block_ref_scale_factors[i],
                           xd->block_ref_scale_factors[i], MAX_MB_PLANE);
      for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
        xd->plane[plane].pre[i] = yv12_mb[i][plane];
      }
    }

    int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] };
    int rate_mv;
    av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv,
                            !cpi->sf.mv_sf.disable_second_mv);

    for (int ref = 0; ref < 2; ++ref) {
      struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer,
                                ref_frame_ptr[ref]->y_width,
                                ref_frame_ptr[ref]->y_height,
                                ref_frame_ptr[ref]->y_stride };
      InterPredParams inter_pred_params;
      av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE,
                            mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd),
                            0, &tpl_data->sf, &ref_buf, kernel);
      av1_init_comp_mode(&inter_pred_params);

      inter_pred_params.conv_params = get_conv_params_no_round(
          ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd);

      av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv,
                                        &inter_pred_params);
    }
    inter_cost =
        tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride,
                          predictor, bw, coeff, bw, bh, tx_size);
    if (inter_cost < best_inter_cost) {
      best_cmp_rf_idx = cmp_rf_idx;
      best_inter_cost = inter_cost;
      best_mv[0] = tmp_mv[0];
      best_mv[1] = tmp_mv[1];

      if (best_inter_cost < best_intra_cost) {
        best_mode = NEW_NEWMV;
        xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME;
        xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME;
      }
    }
  }

  if (best_inter_cost < INT64_MAX) {
    xd->mi[0]->mv[0].as_int = best_mv[0].as_int;
    xd->mi[0]->mv[1].as_int = best_mv[1].as_int;
    const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = {
      best_cmp_rf_idx >= 0
          ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
          : tpl_data->src_ref_frame[best_rf_idx],
      best_cmp_rf_idx >= 0
          ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
          : NULL,
    };
    int rate_cost = 1;
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
                        use_y_only_rate_distortion);
    tpl_stats->srcrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
  }

  best_intra_cost = AOMMAX(best_intra_cost, 1);
  best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
  tpl_stats->inter_cost = best_inter_cost << TPL_DEP_COST_SCALE_LOG2;
  tpl_stats->intra_cost = best_intra_cost << TPL_DEP_COST_SCALE_LOG2;

  tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2;
  tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;

  // Final encode
  int rate_cost = 0;
  const YV12_BUFFER_CONFIG *ref_frame_ptr[2];

  ref_frame_ptr[0] =
      best_mode == NEW_NEWMV
          ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]
          : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx] : NULL;
  ref_frame_ptr[1] =
      best_mode == NEW_NEWMV
          ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]
          : NULL;
  get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
                      qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
                      rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
                      use_y_only_rate_distortion);

  av1_record_tpl_txfm_block(tpl_txfm_stats, coeff);

  tpl_stats->recrf_dist = recon_error << (TPL_DEP_COST_SCALE_LOG2);
  tpl_stats->recrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
  if (!is_inter_mode(best_mode)) {
    tpl_stats->srcrf_dist = recon_error << (TPL_DEP_COST_SCALE_LOG2);
    tpl_stats->srcrf_rate = rate_cost << TPL_DEP_COST_SCALE_LOG2;
    tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2;
  }

  tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist);
  tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate);

  if (best_mode == NEW_NEWMV) {
    ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
    ref_frame_ptr[1] =
        tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
                        use_y_only_rate_distortion);
    tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2;
    tpl_stats->cmp_recrf_rate[0] = rate_cost << TPL_DEP_COST_SCALE_LOG2;

    tpl_stats->cmp_recrf_dist[0] =
        AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]);
    tpl_stats->cmp_recrf_rate[0] =
        AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]);

    tpl_stats->cmp_recrf_dist[0] =
        AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]);
    tpl_stats->cmp_recrf_rate[0] =
        AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]);

    rate_cost = 0;
    ref_frame_ptr[0] =
        tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]];
    ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]];
    get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff,
                        qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool,
                        rec_stride_pool, tx_size, best_mode, mi_row, mi_col,
                        use_y_only_rate_distortion);
    tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2;
    tpl_stats->cmp_recrf_rate[1] = rate_cost << TPL_DEP_COST_SCALE_LOG2;

    tpl_stats->cmp_recrf_dist[1] =
        AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]);
    tpl_stats->cmp_recrf_rate[1] =
        AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]);

    tpl_stats->cmp_recrf_dist[1] =
        AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]);
    tpl_stats->cmp_recrf_rate[1] =
        AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]);
  }

  if (best_mode == NEWMV) {
    tpl_stats->mv[best_rf_idx] = best_mv[0];
    tpl_stats->ref_frame_index[0] = best_rf_idx;
    tpl_stats->ref_frame_index[1] = NONE_FRAME;
  } else if (best_mode == NEW_NEWMV) {
    tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0];
    tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1];
    tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0];
    tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1];
  }

  for (int idy = 0; idy < mi_height; ++idy) {
    for (int idx = 0; idx < mi_width; ++idx) {
      if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx &&
          (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) {
        xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0];
      }
    }
  }

  // Free temporary buffers.
  aom_free(predictor8);
  aom_free(src_diff);
  aom_free(coeff);
  aom_free(qcoeff);
  aom_free(dqcoeff);
}

static int round_floor(int ref_pos, int bsize_pix) {
  int round;
  if (ref_pos < 0)
    round = -(1 + (-ref_pos - 1) / bsize_pix);
  else
    round = ref_pos / bsize_pix;

  return round;
}

int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width,
                         int height) {
  int min_row = AOMMAX(row_a, row_b);
  int max_row = AOMMIN(row_a + height, row_b + height);
  int min_col = AOMMAX(col_a, col_b);
  int max_col = AOMMIN(col_a + width, col_b + width);
  if (min_row < max_row && min_col < max_col) {
    return (max_row - min_row) * (max_col - min_col);
  }
  return 0;
}

int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) {
  return (mi_row >> right_shift) * stride + (mi_col >> right_shift);
}

int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist,
                            int64_t srcrf_dist, int pix_num) {
  double beta = (double)srcrf_dist / recrf_dist;
  int64_t rate_cost = delta_rate;

  if (srcrf_dist <= 128) return rate_cost;

  double dr =
      (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) /
      pix_num;

  double log_den = log(beta) / log(2.0) + 2.0 * dr;

  if (log_den > log(10.0) / log(2.0)) {
    rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0);
    rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);
    return rate_cost;
  }

  double num = pow(2.0, log_den);
  double den = num * beta + (1 - beta) * beta;

  rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0);

  rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT);

  return rate_cost;
}

static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row,
                                          int mi_col, const BLOCK_SIZE bsize,
                                          int frame_idx, int ref) {
  TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx];
  TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr;
  TplDepFrame *tpl_frame = tpl_data->tpl_frame;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
  TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos(
      mi_row, mi_col, tpl_frame->stride, block_mis_log2)];

  int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0;

  if (tpl_stats_ptr->ref_frame_index[ref] < 0) return;
  const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref];
  TplDepFrame *ref_tpl_frame =
      &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]];
  TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr;

  if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return;

  const FULLPEL_MV full_mv =
      get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv);
  const int ref_pos_row = mi_row * MI_SIZE + full_mv.row;
  const int ref_pos_col = mi_col * MI_SIZE + full_mv.col;

  const int bw = 4 << mi_size_wide_log2[bsize];
  const int bh = 4 << mi_size_high_log2[bsize];
  const int mi_height = mi_size_high[bsize];
  const int mi_width = mi_size_wide[bsize];
  const int pix_num = bw * bh;

  // top-left on grid block location in pixel
  int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
  int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
  int block;

  int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref]
                                   : tpl_stats_ptr->srcrf_dist;
  int64_t srcrf_rate = is_compound ? tpl_stats_ptr->cmp_recrf_rate[!ref]
                                   : tpl_stats_ptr->srcrf_rate;

  int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist;
  int64_t mc_dep_dist =
      (int64_t)(tpl_stats_ptr->mc_dep_dist *
                ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) /
                 tpl_stats_ptr->recrf_dist));
  int64_t delta_rate = tpl_stats_ptr->recrf_rate - srcrf_rate;
  int64_t mc_dep_rate =
      av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist,
                          srcrf_dist, pix_num);

  for (block = 0; block < 4; ++block) {
    int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
    int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);

    if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
        grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
      int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col,
                                              ref_pos_row, ref_pos_col, bw, bh);
      int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
      int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
      assert((1 << block_mis_log2) == mi_height);
      assert((1 << block_mis_log2) == mi_width);
      TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos(
          ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)];
      des_stats->mc_dep_dist +=
          ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num;
      des_stats->mc_dep_rate +=
          ((delta_rate + mc_dep_rate) * overlap_area) / pix_num;
    }
  }
}

static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row,
                                        int mi_col, int frame_idx) {
  const BLOCK_SIZE tpl_stats_block_size =
      convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2);
  tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
                     0);
  tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx,
                     1);
}

static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row,
                                       int mi_col, int stride,
                                       const TplDepStats *src_stats,
                                       uint8_t block_mis_log2) {
  int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2);
  TplDepStats *tpl_ptr = &tpl_stats_ptr[index];
  *tpl_ptr = *src_stats;
  tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost);
  tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost);
  tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist);
  tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse);
  tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist);
  tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate);
  tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate);
  tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]);
  tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]);
  tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]);
  tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]);
}

// Reset the ref and source frame pointers of tpl_data.
static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) {
  for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
    tpl_data->ref_frame[i] = NULL;
    tpl_data->src_ref_frame[i] = NULL;
  }
}

static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) {
  int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1);
  return gop_length;
}

// Initialize the mc_flow parameters used in computing tpl data.
static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx,
                                              int pframe_qindex) {
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
  const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture;
  const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME];
  uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME];
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  int ref_pruning_enabled = is_frame_eligible_for_ref_pruning(
      gf_group, cpi->sf.inter_sf.selective_ref_frame,
      cpi->sf.tpl_sf.prune_ref_frames_in_tpl, frame_idx);
  int gop_length = get_gop_length(gf_group);
  int ref_frame_flags;
  AV1_COMMON *cm = &cpi->common;
  int rdmult, idx;
  ThreadData *td = &cpi->td;
  MACROBLOCK *x = &td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
  tpl_data->frame_idx = frame_idx;
  tpl_reset_src_ref_frames(tpl_data);
  av1_tile_init(&xd->tile, cm, 0, 0);

  // Setup scaling factor
  av1_setup_scale_factors_for_frame(
      &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height,
      this_frame->y_crop_width, this_frame->y_crop_height);

  xd->cur_buf = this_frame;

  for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
    TplDepFrame *tpl_ref_frame =
        &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]];
    tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture;
    tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture;
    ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index;
  }

  // Store the reference frames based on priority order
  for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
    ref_frames_ordered[i] =
        tpl_data->ref_frame[ref_frame_priority_order[i] - 1];
  }

  // Work out which reference frame slots may be used.
  ref_frame_flags = get_ref_frame_flags(&cpi->sf, ref_frames_ordered,
                                        cpi->ext_flags.ref_frame_flags);

  enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices,
                         tpl_frame->frame_display_index);

  // Prune reference frames
  for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
    if ((ref_frame_flags & (1 << idx)) == 0) {
      tpl_data->ref_frame[idx] = NULL;
    }
  }

  // Skip motion estimation w.r.t. reference frames which are not
  // considered in RD search, using "selective_ref_frame" speed feature.
  // The reference frame pruning is not enabled for frames beyond the gop
  // length, as there are fewer reference frames and the reference frames
  // differ from the frames considered during RD search.
  if (ref_pruning_enabled && (frame_idx < gop_length)) {
    for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) {
      const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME };
      if (prune_ref_by_selective_ref_frame(cpi, NULL, refs,
                                           ref_frame_display_indices)) {
        tpl_data->ref_frame[idx] = NULL;
      }
    }
  }

  // Make a temporary mbmi for tpl model
  MB_MODE_INFO mbmi;
  memset(&mbmi, 0, sizeof(mbmi));
  MB_MODE_INFO *mbmi_ptr = &mbmi;
  xd->mi = &mbmi_ptr;

  xd->block_ref_scale_factors[0] = &tpl_data->sf;
  xd->block_ref_scale_factors[1] = &tpl_data->sf;

  const int base_qindex = pframe_qindex;
  // Get rd multiplier set up.
  rdmult = (int)av1_compute_rd_mult(cpi, base_qindex);
  if (rdmult < 1) rdmult = 1;
  av1_set_error_per_bit(&x->errorperbit, rdmult);
  av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex);

  tpl_frame->is_valid = 1;

  cm->quant_params.base_qindex = base_qindex;
  av1_frame_init_quantizer(cpi);

  tpl_frame->base_rdmult =
      av1_compute_rd_mult_based_on_qindex(cpi, pframe_qindex) / 6;

  av1_init_tpl_txfm_stats(tpl_txfm_stats);
}

// This function stores the motion estimation dependencies of all the blocks in
// a row
void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats,
                               MACROBLOCK *x, int mi_row, BLOCK_SIZE bsize,
                               TX_SIZE tx_size) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const int mi_width = mi_size_wide[bsize];
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx];
  MACROBLOCKD *xd = &x->e_mbd;

  const int tplb_cols_in_tile =
      ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]);
  const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]);
  assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));
  assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2));

  for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols;
       mi_col += mi_width, tplb_col_in_tile++) {
    (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
                                 tplb_col_in_tile);
    TplDepStats tpl_stats;

    // Motion estimation column boundary
    av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width,
                          tpl_data->border_in_pixels);
    xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
    xd->mb_to_right_edge =
        GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col);
    mode_estimation(cpi, tpl_txfm_stats, x, mi_row, mi_col, bsize, tx_size,
                    &tpl_stats);

    // Motion flow dependency dispenser.
    tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride,
                    &tpl_stats, tpl_data->tpl_stats_block_mis_log2);
    (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row,
                                  tplb_col_in_tile, tplb_cols_in_tile);
  }
}

static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  ThreadData *td = &cpi->td;
  MACROBLOCK *x = &td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  const BLOCK_SIZE bsize =
      convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
  const TX_SIZE tx_size = max_txsize_lookup[bsize];
  const int mi_height = mi_size_high[bsize];
  for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) {
    // Motion estimation row boundary
    av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
                          cpi->ppi->tpl_data.border_in_pixels);
    xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
    xd->mb_to_bottom_edge =
        GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
    av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, x, mi_row, bsize,
                              tx_size);
  }
}

static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows,
                                int mi_cols) {
  if (!frame_idx) {
    return;
  }
  const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
  const int mi_height = mi_size_high[bsize];
  const int mi_width = mi_size_wide[bsize];
  assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2));
  assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2));

  for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) {
    for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) {
      tpl_model_update(tpl_data, mi_row, mi_col, frame_idx);
    }
  }
}

static AOM_INLINE void init_gop_frames_for_tpl(
    AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params,
    GF_GROUP *gf_group, int gop_eval, int *tpl_group_frames,
    const EncodeFrameInput *const frame_input, int *pframe_qindex) {
  AV1_COMMON *cm = &cpi->common;
  int cur_frame_idx = cpi->gf_frame_index;
  *pframe_qindex = 0;

#if CONFIG_FRAME_PARALLEL_ENCODE
  RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
  init_ref_map_pair(cpi, ref_frame_map_pairs);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

  RefBufferStack ref_buffer_stack = cpi->ref_buffer_stack;
  EncodeFrameParams frame_params = *init_frame_params;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;

  int ref_picture_map[REF_FRAMES];

  for (int i = 0; i < REF_FRAMES; ++i) {
    if (frame_params.frame_type == KEY_FRAME) {
      tpl_data->tpl_frame[-i - 1].gf_picture = NULL;
      tpl_data->tpl_frame[-1 - 1].rec_picture = NULL;
      tpl_data->tpl_frame[-i - 1].frame_display_index = 0;
    } else {
      tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf;
      tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf;
      tpl_data->tpl_frame[-i - 1].frame_display_index =
          cm->ref_frame_map[i]->display_order_hint;
    }

    ref_picture_map[i] = -i - 1;
  }

  *tpl_group_frames = cur_frame_idx;

  int gf_index;
  int anc_frame_offset = gop_eval ? 0 : gf_group->cur_frame_idx[cur_frame_idx];
  int process_frame_count = 0;
  const int gop_length = get_gop_length(gf_group);

  for (gf_index = cur_frame_idx; gf_index < gop_length; ++gf_index) {
    TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
    FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index];
    int frame_display_index = gf_index == gf_group->size
                                  ? cpi->ppi->p_rc.baseline_gf_interval
                                  : gf_group->cur_frame_idx[gf_index] +
                                        gf_group->arf_src_offset[gf_index];

    int lookahead_index = frame_display_index - anc_frame_offset;

    frame_params.show_frame = frame_update_type != ARF_UPDATE &&
                              frame_update_type != INTNL_ARF_UPDATE;
    frame_params.show_existing_frame =
        frame_update_type == INTNL_OVERLAY_UPDATE ||
        frame_update_type == OVERLAY_UPDATE;
    frame_params.frame_type = gf_group->frame_type[gf_index];

    if (frame_update_type == LF_UPDATE)
      *pframe_qindex = gf_group->q_val[gf_index];

    struct lookahead_entry *buf;
    if (gf_index == cur_frame_idx) {
      buf = av1_lookahead_peek(cpi->ppi->lookahead, lookahead_index,
                               cpi->compressor_stage);
      tpl_frame->gf_picture = gop_eval ? &buf->img : frame_input->source;
    } else {
      buf = av1_lookahead_peek(cpi->ppi->lookahead, lookahead_index,
                               cpi->compressor_stage);
      if (buf == NULL) break;
      tpl_frame->gf_picture = &buf->img;
    }
    if (gop_eval && cpi->rc.frames_since_key > 0 &&
        gf_group->arf_index == gf_index)
      tpl_frame->gf_picture = &cpi->ppi->alt_ref_buffer;

    // 'cm->current_frame.frame_number' is the display number
    // of the current frame.
    // 'anc_frame_offset' is the number of frames displayed so
    // far within the gf group. 'cm->current_frame.frame_number -
    // anc_frame_offset' is the offset of the first frame in the gf group.
    // 'frame display index' is frame offset within the gf group.
    // 'frame_display_index + cm->current_frame.frame_number - anc_frame_offset'
    // is the display index of the frame.
    tpl_frame->frame_display_index =
        frame_display_index + cm->current_frame.frame_number - anc_frame_offset;
    assert(buf->display_idx == cpi->frame_index_set.show_frame_count -
                                   anc_frame_offset + frame_display_index);

    if (frame_update_type != OVERLAY_UPDATE &&
        frame_update_type != INTNL_OVERLAY_UPDATE) {
      tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
      tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
      ++process_frame_count;
    }
#if CONFIG_FRAME_PARALLEL_ENCODE
    const int true_disp = (int)(tpl_frame->frame_display_index);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

    av1_get_ref_frames(&ref_buffer_stack,
#if CONFIG_FRAME_PARALLEL_ENCODE
                       cpi, ref_frame_map_pairs, true_disp,
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
                       cm->remapped_ref_idx);

    int refresh_mask =
        av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
#if CONFIG_FRAME_PARALLEL_ENCODE
                                    true_disp, ref_frame_map_pairs,
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
                                    &ref_buffer_stack);

#if CONFIG_FRAME_PARALLEL_ENCODE
    // Make the frames marked as is_frame_non_ref to non-reference frames.
    if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0;
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

    int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
#if !CONFIG_FRAME_PARALLEL_ENCODE
    av1_update_ref_frame_map(cpi, frame_update_type, frame_params.frame_type,
                             frame_params.show_existing_frame,
                             refresh_frame_map_index, &ref_buffer_stack);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

#if CONFIG_FRAME_PARALLEL_ENCODE
    if (refresh_frame_map_index < REF_FRAMES &&
        refresh_frame_map_index != INVALID_IDX) {
      ref_frame_map_pairs[refresh_frame_map_index].disp_order =
          AOMMAX(0, true_disp);
      ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
          get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
                             cpi->ppi->gf_group.max_layer_depth);
    }
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
      tpl_frame->ref_map_index[i - LAST_FRAME] =
          ref_picture_map[cm->remapped_ref_idx[i - LAST_FRAME]];

    if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;

    ++*tpl_group_frames;
  }

  if (cpi->rc.frames_since_key == 0) return;

  int extend_frame_count = 0;
  int extend_frame_length =
      AOMMIN(MAX_TPL_EXTEND,
             cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval);
  int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] +
                            gf_group->arf_src_offset[gop_length - 1] + 1;

  for (;
       gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length;
       ++gf_index) {
    TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index];
    FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE;
    frame_params.show_frame = frame_update_type != ARF_UPDATE &&
                              frame_update_type != INTNL_ARF_UPDATE;
    frame_params.show_existing_frame =
        frame_update_type == INTNL_OVERLAY_UPDATE;
    frame_params.frame_type = INTER_FRAME;

    int lookahead_index = frame_display_index - anc_frame_offset;
    struct lookahead_entry *buf = av1_lookahead_peek(
        cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage);

    if (buf == NULL) break;

    tpl_frame->gf_picture = &buf->img;
    tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count];
    tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count];
    // 'cm->current_frame.frame_number' is the display number
    // of the current frame.
    // 'anc_frame_offset' is the number of frames displayed so
    // far within the gf group. 'cm->current_frame.frame_number -
    // anc_frame_offset' is the offset of the first frame in the gf group.
    // 'frame display index' is frame offset within the gf group.
    // 'frame_display_index + cm->current_frame.frame_number - anc_frame_offset'
    // is the display index of the frame.
    tpl_frame->frame_display_index =
        frame_display_index + cm->current_frame.frame_number - anc_frame_offset;

    ++process_frame_count;

    gf_group->update_type[gf_index] = LF_UPDATE;
    gf_group->q_val[gf_index] = *pframe_qindex;
#if CONFIG_FRAME_PARALLEL_ENCODE
    const int true_disp = (int)(tpl_frame->frame_display_index);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
    av1_get_ref_frames(&ref_buffer_stack,
#if CONFIG_FRAME_PARALLEL_ENCODE
                       cpi, ref_frame_map_pairs, true_disp,
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
                       cm->remapped_ref_idx);
    int refresh_mask =
        av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type,
#if CONFIG_FRAME_PARALLEL_ENCODE
                                    true_disp, ref_frame_map_pairs,
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
                                    &ref_buffer_stack);
    int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask);
#if !CONFIG_FRAME_PARALLEL_ENCODE
    av1_update_ref_frame_map(cpi, frame_update_type, frame_params.frame_type,
                             frame_params.show_existing_frame,
                             refresh_frame_map_index, &ref_buffer_stack);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

#if CONFIG_FRAME_PARALLEL_ENCODE
    if (refresh_frame_map_index < REF_FRAMES &&
        refresh_frame_map_index != INVALID_IDX) {
      ref_frame_map_pairs[refresh_frame_map_index].disp_order =
          AOMMAX(0, true_disp);
      ref_frame_map_pairs[refresh_frame_map_index].pyr_level =
          get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp,
                             cpi->ppi->gf_group.max_layer_depth);
    }
#endif  // CONFIG_FRAME_PARALLEL_ENCODE

    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
      tpl_frame->ref_map_index[i - LAST_FRAME] =
          ref_picture_map[cm->remapped_ref_idx[i - LAST_FRAME]];

    tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1;
    tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1;
    tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1;
    tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1;

    if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index;

    ++*tpl_group_frames;
    ++extend_frame_count;
    ++frame_display_index;
  }
#if CONFIG_FRAME_PARALLEL_ENCODE
  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cur_frame_idx];
  const int true_disp = (int)(tpl_frame->frame_display_index);
  init_ref_map_pair(cpi, ref_frame_map_pairs);
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
  av1_get_ref_frames(&cpi->ref_buffer_stack,
#if CONFIG_FRAME_PARALLEL_ENCODE
                     cpi, ref_frame_map_pairs, true_disp,
#endif  // CONFIG_FRAME_PARALLEL_ENCODE
                     cm->remapped_ref_idx);
}

void av1_init_tpl_stats(TplParams *const tpl_data) {
  int frame_idx;
  set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2,
                           &tpl_data->tpl_bsize_1d);
  for (frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
    TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx];
    if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue;
    memset(tpl_data->tpl_stats_pool[frame_idx], 0,
           tpl_frame->height * tpl_frame->width *
               sizeof(*tpl_frame->tpl_stats_ptr));
    tpl_frame->is_valid = 0;
  }
#if CONFIG_BITRATE_ACCURACY
  tpl_data->estimated_gop_bitrate = 0;
  tpl_data->actual_gop_bitrate = 0;
#endif
}

static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) {
  switch (gop_eval) {
    case 1:
      // Allow larger GOP size if the base layer ARF has higher dependency
      // factor than the intermediate ARF and both ARFs have reasonably high
      // dependency factors.
      return (beta[0] >= beta[1] + 0.7) && beta[0] > 8.0;
    case 2:
      if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6)
        return 1;  // Don't shorten the gf interval
      else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4)
        return 0;  // Shorten the gf interval
      else
        return 2;  // Cannot decide the gf interval, so redo the
                   // tpl stats calculation.
    case 3: return beta[0] > 1.1;
    default: return 2;
  }
}

// TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down
// the scope of input arguments.
void av1_tpl_preload_rc_estimate(AV1_COMP *cpi,
                                 const EncodeFrameParams *const frame_params) {
  AV1_COMMON *cm = &cpi->common;
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  int bottom_index, top_index;
  cm->current_frame.frame_type = frame_params->frame_type;
  for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
       ++gf_index) {
    cm->current_frame.frame_type = gf_group->frame_type[gf_index];
    cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE &&
                     gf_group->update_type[gf_index] != INTNL_ARF_UPDATE;
    gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds(
        cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index);
  }
}

int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval,
                        const EncodeFrameParams *const frame_params,
                        const EncodeFrameInput *const frame_input) {
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, av1_tpl_setup_stats_time);
#endif
  AV1_COMMON *cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt;
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  EncodeFrameParams this_frame_params = *frame_params;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  int approx_gop_eval = (gop_eval > 1);
  int num_arf_layers = MAX_ARF_LAYERS;

  // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base
  // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3,
  // tpl stats calculation is limited to ARFs from base layer and (base+1)
  // layer.
  if (approx_gop_eval) num_arf_layers = (gop_eval == 2) ? 3 : 2;

  if (cpi->superres_mode != AOM_SUPERRES_NONE) {
    assert(cpi->superres_mode != AOM_SUPERRES_AUTO);
    av1_init_tpl_stats(tpl_data);
    return 0;
  }

  cm->current_frame.frame_type = frame_params->frame_type;
  for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size;
       ++gf_index) {
    cm->current_frame.frame_type = gf_group->frame_type[gf_index];
    av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
                                 gf_group->update_type[gf_index],
                                 cm->current_frame.frame_type, 0);

    memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame,
           sizeof(cpi->refresh_frame));
  }

  int pframe_qindex;
  int tpl_gf_group_frames;
  init_gop_frames_for_tpl(cpi, frame_params, gf_group, gop_eval,
                          &tpl_gf_group_frames, frame_input, &pframe_qindex);

  cpi->ppi->p_rc.base_layer_qp = pframe_qindex;

  av1_init_tpl_stats(tpl_data);

  tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy;
  tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy;

  av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
                                    cm->width, cm->height);

  if (frame_params->frame_type == KEY_FRAME) {
    av1_init_mv_probs(cm);
  }
  av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
                    cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs);

  const int gop_length = get_gop_length(gf_group);
  // Backward propagation from tpl_group_frames to 1.
  for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames;
       ++frame_idx) {
    if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
        gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
      continue;

    // When approx_gop_eval = 1, skip tpl stats calculation for higher layer
    // frames and for frames beyond gop length.
    if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
                            frame_idx >= gop_length))
      continue;

    init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex);
    if (mt_info->num_workers > 1) {
      tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read;
      tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write;
      av1_mc_flow_dispenser_mt(cpi);
    } else {
      mc_flow_dispenser(cpi);
    }
    av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx);

    aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture,
                             av1_num_planes(cm));
  }

#if CONFIG_BITRATE_ACCURACY
  tpl_data->estimated_gop_bitrate = av1_estimate_gop_bitrate(
      gf_group->q_val, gf_group->size, tpl_data->txfm_stats_list);
  if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE &&
      gop_eval == 0) {
    printf("\nestimated bitrate: %f\n", tpl_data->estimated_gop_bitrate);
  }
#endif

  for (int frame_idx = tpl_gf_group_frames - 1;
       frame_idx >= cpi->gf_frame_index; --frame_idx) {
    if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE ||
        gf_group->update_type[frame_idx] == OVERLAY_UPDATE)
      continue;

    if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers ||
                            frame_idx >= gop_length))
      continue;

    mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows,
                        cm->mi_params.mi_cols);
  }

  av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame,
                               gf_group->update_type[cpi->gf_frame_index],
                               frame_params->frame_type, 0);
  cm->current_frame.frame_type = frame_params->frame_type;
  cm->show_frame = frame_params->show_frame;

#if CONFIG_COLLECT_COMPONENT_TIMING
  // Record the time if the function returns.
  if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 ||
      !gop_eval)
    end_timing(cpi, av1_tpl_setup_stats_time);
#endif

  if (cpi->common.tiles.large_scale) return 0;
  if (gf_group->max_layer_depth_allowed == 0) return 1;
  if (!gop_eval) return 0;
  assert(gf_group->arf_index >= 0);

  double beta[2] = { 0.0 };
  for (int frame_idx = gf_group->arf_index;
       frame_idx <= AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1);
       ++frame_idx) {
    TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
    TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
    int tpl_stride = tpl_frame->stride;
    int64_t intra_cost_base = 0;
    int64_t mc_dep_cost_base = 0;
    const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
    const int row_step = step;
    const int col_step_sr =
        coded_to_superres_mi(step, cm->superres_scale_denominator);
    const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);

    for (int row = 0; row < cm->mi_params.mi_rows; row += row_step) {
      for (int col = 0; col < mi_cols_sr; col += col_step_sr) {
        TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
            row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
        int64_t mc_dep_delta =
            RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                   this_stats->mc_dep_dist);
        intra_cost_base += (this_stats->recrf_dist << RDDIV_BITS);
        mc_dep_cost_base +=
            (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
      }
    }
    if (intra_cost_base == 0) {
      // This should happen very rarely and if it happens, assign a dummy value
      // to it since it probably wouldn't influence things much
      beta[frame_idx - gf_group->arf_index] = 0;
    } else {
      beta[frame_idx - gf_group->arf_index] =
          (double)mc_dep_cost_base / intra_cost_base;
    }
  }

#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, av1_tpl_setup_stats_time);
#endif
  return eval_gop_length(beta, gop_eval);
}

void av1_tpl_rdmult_setup(AV1_COMP *cpi) {
  const AV1_COMMON *const cm = &cpi->common;
  const int tpl_idx = cpi->gf_frame_index;

  assert(
      IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size));

  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx];

  if (!tpl_frame->is_valid) return;

  const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr;
  const int tpl_stride = tpl_frame->stride;
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);

  const int block_size = BLOCK_16X16;
  const int num_mi_w = mi_size_wide[block_size];
  const int num_mi_h = mi_size_high[block_size];
  const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
  const double c = 1.2;
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;

  // Loop through each 'block_size' X 'block_size' block.
  for (int row = 0; row < num_rows; row++) {
    for (int col = 0; col < num_cols; col++) {
      double intra_cost = 0.0, mc_dep_cost = 0.0;
      // Loop through each mi block.
      for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h;
           mi_row += step) {
        for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w;
             mi_col += step) {
          if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue;
          const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
              mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
          int64_t mc_dep_delta =
              RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
                     this_stats->mc_dep_dist);
          intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS);
          mc_dep_cost +=
              (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
        }
      }
      const double rk = intra_cost / mc_dep_cost;
      const int index = row * num_cols + col;
      cpi->ppi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c;
    }
  }
}

void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x,
                             BLOCK_SIZE sb_size, int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  GF_GROUP *gf_group = &cpi->ppi->gf_group;
  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;

  if (tpl_idx >= MAX_TPL_FRAME_IDX) return;
  TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx];
  if (!tpl_frame->is_valid) return;
  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;

  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int sb_mi_width_sr = coded_to_superres_mi(
      mi_size_wide[sb_size], cm->superres_scale_denominator);

  const int bsize_base = BLOCK_16X16;
  const int num_mi_w = mi_size_wide[bsize_base];
  const int num_mi_h = mi_size_high[bsize_base];
  const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
  const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w;
  const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h;
  int row, col;

  double base_block_count = 0.0;
  double log_sum = 0.0;

  for (row = mi_row / num_mi_w;
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
    for (col = mi_col_sr / num_mi_h;
         col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
      const int index = row * num_cols + col;
      log_sum += log(cpi->ppi->tpl_rdmult_scaling_factors[index]);
      base_block_count += 1.0;
    }
  }

  const CommonQuantParams *quant_params = &cm->quant_params;
  const int orig_rdmult = av1_compute_rd_mult(
      cpi, quant_params->base_qindex + quant_params->y_dc_delta_q);
  const int new_rdmult =
      av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
                                   quant_params->y_dc_delta_q);
  const double scaling_factor = (double)new_rdmult / (double)orig_rdmult;

  double scale_adj = log(scaling_factor) - log_sum / base_block_count;
  scale_adj = exp_bounded(scale_adj);

  for (row = mi_row / num_mi_w;
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
    for (col = mi_col_sr / num_mi_h;
         col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) {
      const int index = row * num_cols + col;
      cpi->ppi->tpl_sb_rdmult_scaling_factors[index] =
          scale_adj * cpi->ppi->tpl_rdmult_scaling_factors[index];
    }
  }
}

double av1_exponential_entropy(double q_step, double b) {
  b = AOMMAX(b, TPL_EPSILON);
  double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
  return -log2(1 - z) - z * log2(z) / (1 - z);
}

double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) {
  // zero bin's size is zero_bin_ratio * q_step
  // non-zero bin's size is q_step
  b = AOMMAX(b, TPL_EPSILON);
  double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
  double h = av1_exponential_entropy(q_step, b);
  double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1);
  return r;
}

double av1_laplace_estimate_frame_rate(int q_index, int block_count,
                                       const double *abs_coeff_mean,
                                       int coeff_num) {
  double zero_bin_ratio = 2;
  double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
  double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
  double est_rate = 0;
  // dc coeff
  est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio);
  // ac coeff
  for (int i = 1; i < coeff_num; ++i) {
    est_rate +=
        av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio);
  }
  est_rate *= block_count;
  return est_rate;
}

double av1_estimate_gop_bitrate(const unsigned char *q_index_list,
                                const int frame_count,
                                const TplTxfmStats *stats_list) {
  double gop_bitrate = 0;
  for (int frame_index = 0; frame_index < frame_count; frame_index++) {
    int q_index = q_index_list[frame_index];
    TplTxfmStats frame_stats = stats_list[frame_index];

    /* Convert to mean absolute deviation */
    double abs_coeff_mean[256] = { 0 };
    for (int i = 0; i < 256; i++) {
      abs_coeff_mean[i] =
          frame_stats.abs_coeff_sum[i] / frame_stats.txfm_block_count;
    }

    double frame_bitrate = av1_laplace_estimate_frame_rate(
        q_index, frame_stats.txfm_block_count, abs_coeff_mean, 256);
    gop_bitrate += frame_bitrate;
  }
  return gop_bitrate;
}

double av1_estimate_coeff_entropy(double q_step, double b,
                                  double zero_bin_ratio, int qcoeff) {
  b = AOMMAX(b, TPL_EPSILON);
  int abs_qcoeff = abs(qcoeff);
  double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
  if (abs_qcoeff == 0) {
    double r = -log2(1 - z0);
    return r;
  } else {
    double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON);
    double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z);
    return r;
  }
}

double av1_estimate_txfm_block_entropy(int q_index,
                                       const double *abs_coeff_mean,
                                       int *qcoeff_arr, int coeff_num) {
  double zero_bin_ratio = 2;
  double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
  double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.;
  double est_rate = 0;
  // dc coeff
  est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0],
                                         zero_bin_ratio, qcoeff_arr[0]);
  // ac coeff
  for (int i = 1; i < coeff_num; ++i) {
    est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i],
                                           zero_bin_ratio, qcoeff_arr[i]);
  }
  return est_rate;
}