aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/var_based_part.c
blob: a42be4553fa87b8a65fe5cac5143a3121564219e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"

#include "av1/common/reconinter.h"
#include "av1/common/blockd.h"

#include "av1/encoder/encodeframe.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/reconinter_enc.h"

extern const uint8_t AV1_VAR_OFFS[];

typedef struct {
  VPVariance *part_variances;
  VPartVar *split[4];
} variance_node;

static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize,
                                    variance_node *node) {
  int i;
  node->part_variances = NULL;
  switch (bsize) {
    case BLOCK_128X128: {
      VP128x128 *vt = (VP128x128 *)data;
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++)
        node->split[i] = &vt->split[i].part_variances.none;
      break;
    }
    case BLOCK_64X64: {
      VP64x64 *vt = (VP64x64 *)data;
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++)
        node->split[i] = &vt->split[i].part_variances.none;
      break;
    }
    case BLOCK_32X32: {
      VP32x32 *vt = (VP32x32 *)data;
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++)
        node->split[i] = &vt->split[i].part_variances.none;
      break;
    }
    case BLOCK_16X16: {
      VP16x16 *vt = (VP16x16 *)data;
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++)
        node->split[i] = &vt->split[i].part_variances.none;
      break;
    }
    case BLOCK_8X8: {
      VP8x8 *vt = (VP8x8 *)data;
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++)
        node->split[i] = &vt->split[i].part_variances.none;
      break;
    }
    default: {
      VP4x4 *vt = (VP4x4 *)data;
      assert(bsize == BLOCK_4X4);
      node->part_variances = &vt->part_variances;
      for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
      break;
    }
  }
}

// Set variance values given sum square error, sum error, count.
static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c,
                                     VPartVar *v) {
  v->sum_square_error = s2;
  v->sum_error = s;
  v->log2_count = c;
}

static AOM_INLINE void get_variance(VPartVar *v) {
  v->variance =
      (int)(256 * (v->sum_square_error -
                   (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
                              v->log2_count)) >>
            v->log2_count);
}

static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b,
                                       VPartVar *r) {
  assert(a->log2_count == b->log2_count);
  fill_variance(a->sum_square_error + b->sum_square_error,
                a->sum_error + b->sum_error, a->log2_count + 1, r);
}

static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
  variance_node node;
  memset(&node, 0, sizeof(node));
  tree_to_node(data, bsize, &node);
  sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
  sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
  sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
  sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
  sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
                  &node.part_variances->none);
}

static AOM_INLINE void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
                                      MACROBLOCKD *const xd, int mi_row,
                                      int mi_col, BLOCK_SIZE bsize) {
  if (cpi->common.mi_params.mi_cols > mi_col &&
      cpi->common.mi_params.mi_rows > mi_row) {
    set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
                          mi_row, mi_col);
    xd->mi[0]->bsize = bsize;
  }
}

static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
                               MACROBLOCKD *const xd,
                               const TileInfo *const tile, void *data,
                               BLOCK_SIZE bsize, int mi_row, int mi_col,
                               int64_t threshold, BLOCK_SIZE bsize_min,
                               int force_split) {
  AV1_COMMON *const cm = &cpi->common;
  variance_node vt;
  const int block_width = mi_size_wide[bsize];
  const int block_height = mi_size_high[bsize];

  assert(block_height == block_width);
  tree_to_node(data, bsize, &vt);

  if (force_split == 1) return 0;

  // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
  // variance is below threshold, otherwise split will be selected.
  // No check for vert/horiz split as too few samples for variance.
  if (bsize == bsize_min) {
    // Variance already computed to set the force_split.
    if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
    if (mi_col + block_width <= tile->mi_col_end &&
        mi_row + block_height <= tile->mi_row_end &&
        vt.part_variances->none.variance < threshold) {
      set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
      return 1;
    }
    return 0;
  } else if (bsize > bsize_min) {
    // Variance already computed to set the force_split.
    if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
    // For key frame: take split for bsize above 32X32 or very high variance.
    if (frame_is_intra_only(cm) &&
        (bsize > BLOCK_32X32 ||
         vt.part_variances->none.variance > (threshold << 4))) {
      return 0;
    }
    // If variance is low, take the bsize (no split).
    if (mi_col + block_width <= tile->mi_col_end &&
        mi_row + block_height <= tile->mi_row_end &&
        vt.part_variances->none.variance < threshold) {
      set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
      return 1;
    }
    // Check vertical split.
    if (mi_row + block_height <= tile->mi_row_end &&
        mi_col + block_width / 2 <= tile->mi_col_end) {
      BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
      get_variance(&vt.part_variances->vert[0]);
      get_variance(&vt.part_variances->vert[1]);
      if (vt.part_variances->vert[0].variance < threshold &&
          vt.part_variances->vert[1].variance < threshold &&
          get_plane_block_size(subsize, xd->plane[1].subsampling_x,
                               xd->plane[1].subsampling_y) < BLOCK_INVALID) {
        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
        set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
        return 1;
      }
    }
    // Check horizontal split.
    if (mi_col + block_width <= tile->mi_col_end &&
        mi_row + block_height / 2 <= tile->mi_row_end) {
      BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
      get_variance(&vt.part_variances->horz[0]);
      get_variance(&vt.part_variances->horz[1]);
      if (vt.part_variances->horz[0].variance < threshold &&
          vt.part_variances->horz[1].variance < threshold &&
          get_plane_block_size(subsize, xd->plane[1].subsampling_x,
                               xd->plane[1].subsampling_y) < BLOCK_INVALID) {
        set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
        set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
        return 1;
      }
    }
    return 0;
  }
  return 0;
}

static AOM_INLINE void fill_variance_8x8avg(const uint8_t *s, int sp,
                                            const uint8_t *d, int dp,
                                            int x16_idx, int y16_idx,
                                            VP16x16 *vst,
#if CONFIG_AV1_HIGHBITDEPTH
                                            int highbd_flag,
#endif
                                            int pixels_wide, int pixels_high,
                                            int is_key_frame) {
  int k;
  for (k = 0; k < 4; k++) {
    int x8_idx = x16_idx + ((k & 1) << 3);
    int y8_idx = y16_idx + ((k >> 1) << 3);
    unsigned int sse = 0;
    int sum = 0;
    if (x8_idx < pixels_wide && y8_idx < pixels_high) {
      int s_avg;
      int d_avg = 128;
#if CONFIG_AV1_HIGHBITDEPTH
      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
        s_avg = aom_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
        if (!is_key_frame)
          d_avg = aom_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
      } else {
        s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp);
        if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp);
      }
#else
      s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp);
      if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp);
#endif
      sum = s_avg - d_avg;
      sse = sum * sum;
    }
    fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
  }
}

static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
                              int dp, int x16_idx, int y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
                              int highbd_flag,
#endif
                              int pixels_wide, int pixels_high) {
  int k;
  int minmax_max = 0;
  int minmax_min = 255;
  // Loop over the 4 8x8 subblocks.
  for (k = 0; k < 4; k++) {
    int x8_idx = x16_idx + ((k & 1) << 3);
    int y8_idx = y16_idx + ((k >> 1) << 3);
    int min = 0;
    int max = 0;
    if (x8_idx < pixels_wide && y8_idx < pixels_high) {
#if CONFIG_AV1_HIGHBITDEPTH
      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
        aom_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
                              d + y8_idx * dp + x8_idx, dp, &min, &max);
      } else {
        aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
                       dp, &min, &max);
      }
#else
      aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
                     &min, &max);
#endif
      if ((max - min) > minmax_max) minmax_max = (max - min);
      if ((max - min) < minmax_min) minmax_min = (max - min);
    }
  }
  return (minmax_max - minmax_min);
}

static AOM_INLINE void fill_variance_4x4avg(const uint8_t *s, int sp,
                                            const uint8_t *d, int dp,
                                            int x8_idx, int y8_idx, VP8x8 *vst,
#if CONFIG_AV1_HIGHBITDEPTH
                                            int highbd_flag,
#endif
                                            int pixels_wide, int pixels_high,
                                            int is_key_frame) {
  int k;
  for (k = 0; k < 4; k++) {
    int x4_idx = x8_idx + ((k & 1) << 2);
    int y4_idx = y8_idx + ((k >> 1) << 2);
    unsigned int sse = 0;
    int sum = 0;
    if (x4_idx < pixels_wide && y4_idx < pixels_high) {
      int s_avg;
      int d_avg = 128;
#if CONFIG_AV1_HIGHBITDEPTH
      if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
        s_avg = aom_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
        if (!is_key_frame)
          d_avg = aom_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
      } else {
        s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
        if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp);
      }
#else
      s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp);
      if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp);
#endif

      sum = s_avg - d_avg;
      sse = sum * sum;
    }
    fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
  }
}

// TODO(kyslov) Bring back threshold adjustment based on content state
static int64_t scale_part_thresh_content(int64_t threshold_base, int speed,
                                         int width, int height,
                                         int non_reference_frame) {
  (void)width;
  (void)height;
  int64_t threshold = threshold_base;
  if (non_reference_frame) threshold = (3 * threshold) >> 1;
  if (speed >= 8) {
    return (5 * threshold) >> 2;
  }
  return threshold;
}

static AOM_INLINE void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[],
                                          int q, int content_lowsumdiff,
                                          int segment_id) {
  AV1_COMMON *const cm = &cpi->common;
  const int is_key_frame = frame_is_intra_only(cm);
  const int threshold_multiplier = is_key_frame ? 120 : 1;
  int64_t threshold_base =
      (int64_t)(threshold_multiplier *
                cpi->enc_quant_dequant_params.dequants.y_dequant_QTX[q][1]);
  const int current_qindex = cm->quant_params.base_qindex;

  if (is_key_frame) {
    thresholds[0] = threshold_base;
    thresholds[1] = threshold_base;
    if (cm->width * cm->height < 1280 * 720) {
      thresholds[2] = threshold_base / 3;
      thresholds[3] = threshold_base >> 1;
    } else {
      thresholds[2] = threshold_base >> 2;
      thresholds[3] = threshold_base >> 2;
    }
    thresholds[4] = threshold_base << 2;
  } else {
    // Increase partition thresholds for noisy content. Apply it only for
    // superblocks where sumdiff is low, as we assume the sumdiff of superblock
    // whose only change is due to noise will be low (i.e, noise will average
    // out over large block).
    if (cpi->noise_estimate.enabled && content_lowsumdiff &&
        (cm->width * cm->height > 640 * 480) &&
        cm->current_frame.frame_number > 60) {
      NOISE_LEVEL noise_level =
          av1_noise_estimate_extract_level(&cpi->noise_estimate);
      if (noise_level == kHigh)
        threshold_base = (5 * threshold_base) >> 1;
      else if (noise_level == kMedium &&
               !cpi->sf.rt_sf.force_large_partition_blocks)
        threshold_base = (5 * threshold_base) >> 2;
    }
    // TODO(kyslov) Enable var based partition adjusment on temporal denoising
#if 0  // CONFIG_AV1_TEMPORAL_DENOISING
    if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
        cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
      threshold_base =
          av1_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
                                content_state, cpi->svc.temporal_layer_id);
    else
      threshold_base =
        scale_part_thresh_content(threshold_base, cpi->oxcf.speed, cm->width,
                                  cm->height, cpi->svc.non_reference_frame);
#else
    // Increase base variance threshold based on content_state/sum_diff level.
    threshold_base =
        scale_part_thresh_content(threshold_base, cpi->oxcf.speed, cm->width,
                                  cm->height, cpi->svc.non_reference_frame);
#endif

    thresholds[0] = threshold_base >> 1;
    thresholds[1] = threshold_base;
    thresholds[3] = threshold_base << cpi->oxcf.speed;
    if (cm->width >= 1280 && cm->height >= 720)
      thresholds[3] = thresholds[3] << 1;
    if (cm->width * cm->height <= 352 * 288) {
      if (current_qindex >= QINDEX_HIGH_THR) {
        threshold_base = (5 * threshold_base) >> 1;
        thresholds[1] = threshold_base >> 3;
        thresholds[2] = threshold_base << 2;
        thresholds[3] = threshold_base << 5;
      } else if (current_qindex < QINDEX_LOW_THR) {
        thresholds[1] = threshold_base >> 3;
        thresholds[2] = threshold_base >> 1;
        thresholds[3] = threshold_base << 3;
      } else {
        int64_t qi_diff_low = current_qindex - QINDEX_LOW_THR;
        int64_t qi_diff_high = QINDEX_HIGH_THR - current_qindex;
        int64_t threshold_diff = QINDEX_HIGH_THR - QINDEX_LOW_THR;
        int64_t threshold_base_high = (5 * threshold_base) >> 1;

        threshold_diff = threshold_diff > 0 ? threshold_diff : 1;
        threshold_base = (qi_diff_low * threshold_base_high +
                          qi_diff_high * threshold_base) /
                         threshold_diff;
        thresholds[1] = threshold_base >> 3;
        thresholds[2] = ((qi_diff_low * threshold_base) +
                         qi_diff_high * (threshold_base >> 1)) /
                        threshold_diff;
        thresholds[3] = ((qi_diff_low * (threshold_base << 5)) +
                         qi_diff_high * (threshold_base << 3)) /
                        threshold_diff;
      }
    } else if (cm->width < 1280 && cm->height < 720) {
      thresholds[2] = (5 * threshold_base) >> 2;
    } else if (cm->width < 1920 && cm->height < 1080) {
      thresholds[2] = threshold_base << 1;
    } else {
      thresholds[2] = (5 * threshold_base) >> 1;
    }
    if (cpi->sf.rt_sf.force_large_partition_blocks) {
      if (cm->width * cm->height <= 352 * 288) {
        thresholds[1] <<= 2;
        thresholds[2] <<= 5;
        thresholds[3] = INT32_MAX;
      } else if (cm->width * cm->height > 640 * 480 && segment_id == 0) {
        thresholds[0] = (3 * thresholds[0]) >> 1;
        thresholds[3] = INT32_MAX;
        if (current_qindex >= QINDEX_LARGE_BLOCK_THR) {
          thresholds[1] <<= 1;
          thresholds[2] <<= 1;
        }
      } else if (current_qindex > QINDEX_LARGE_BLOCK_THR && segment_id == 0) {
        thresholds[1] <<= 2;
        thresholds[2] <<= 5;
        thresholds[3] = INT32_MAX;
      }
    }
  }
}

// Set temporal variance low flag for superblock 64x64.
// Only first 25 in the array are used in this case.
static AOM_INLINE void set_low_temp_var_flag_64x64(
    CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
    MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col,
    int mi_row) {
  if (xd->mi[0]->bsize == BLOCK_64X64) {
    if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
      part_info->variance_low[0] = 1;
  } else if (xd->mi[0]->bsize == BLOCK_64X32) {
    for (int i = 0; i < 2; i++) {
      if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
        part_info->variance_low[i + 1] = 1;
    }
  } else if (xd->mi[0]->bsize == BLOCK_32X64) {
    for (int i = 0; i < 2; i++) {
      if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
        part_info->variance_low[i + 3] = 1;
    }
  } else {
    static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
    for (int i = 0; i < 4; i++) {
      const int idx_str =
          mi_params->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
      MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str;

      if (mi_params->mi_cols <= mi_col + idx[i][1] ||
          mi_params->mi_rows <= mi_row + idx[i][0])
        continue;

      if (*this_mi == NULL) continue;

      if ((*this_mi)->bsize == BLOCK_32X32) {
        int64_t threshold_32x32 = (5 * thresholds[1]) >> 3;
        if (vt->split[i].part_variances.none.variance < threshold_32x32)
          part_info->variance_low[i + 5] = 1;
      } else {
        // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
        // inside.
        if ((*this_mi)->bsize == BLOCK_16X16 ||
            (*this_mi)->bsize == BLOCK_32X16 ||
            (*this_mi)->bsize == BLOCK_16X32) {
          for (int j = 0; j < 4; j++) {
            if (vt->split[i].split[j].part_variances.none.variance <
                (thresholds[2] >> 8))
              part_info->variance_low[(i << 2) + j + 9] = 1;
          }
        }
      }
    }
  }
}

static AOM_INLINE void set_low_temp_var_flag_128x128(
    CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
    MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col,
    int mi_row) {
  if (xd->mi[0]->bsize == BLOCK_128X128) {
    if (vt->part_variances.none.variance < (thresholds[0] >> 1))
      part_info->variance_low[0] = 1;
  } else if (xd->mi[0]->bsize == BLOCK_128X64) {
    for (int i = 0; i < 2; i++) {
      if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
        part_info->variance_low[i + 1] = 1;
    }
  } else if (xd->mi[0]->bsize == BLOCK_64X128) {
    for (int i = 0; i < 2; i++) {
      if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
        part_info->variance_low[i + 3] = 1;
    }
  } else {
    static const int idx64[4][2] = {
      { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 }
    };
    static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
    for (int i = 0; i < 4; i++) {
      const int idx_str =
          mi_params->mi_stride * (mi_row + idx64[i][0]) + mi_col + idx64[i][1];
      MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str;
      if (*mi_64 == NULL) continue;
      if (mi_params->mi_cols <= mi_col + idx64[i][1] ||
          mi_params->mi_rows <= mi_row + idx64[i][0])
        continue;
      const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3;
      if ((*mi_64)->bsize == BLOCK_64X64) {
        if (vt->split[i].part_variances.none.variance < threshold_64x64)
          part_info->variance_low[5 + i] = 1;
      } else if ((*mi_64)->bsize == BLOCK_64X32) {
        for (int j = 0; j < 2; j++)
          if (vt->split[i].part_variances.horz[j].variance <
              (threshold_64x64 >> 1))
            part_info->variance_low[9 + (i << 1) + j] = 1;
      } else if ((*mi_64)->bsize == BLOCK_32X64) {
        for (int j = 0; j < 2; j++)
          if (vt->split[i].part_variances.vert[j].variance <
              (threshold_64x64 >> 1))
            part_info->variance_low[17 + (i << 1) + j] = 1;
      } else {
        for (int k = 0; k < 4; k++) {
          const int idx_str1 = mi_params->mi_stride * idx32[k][0] + idx32[k][1];
          MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1;
          if (*mi_32 == NULL) continue;

          if (mi_params->mi_cols <= mi_col + idx64[i][1] + idx32[k][1] ||
              mi_params->mi_rows <= mi_row + idx64[i][0] + idx32[k][0])
            continue;
          const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3;
          if ((*mi_32)->bsize == BLOCK_32X32) {
            if (vt->split[i].split[k].part_variances.none.variance <
                threshold_32x32)
              part_info->variance_low[25 + (i << 2) + k] = 1;
          } else {
            // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
            // inside.
            if ((*mi_32)->bsize == BLOCK_16X16 ||
                (*mi_32)->bsize == BLOCK_32X16 ||
                (*mi_32)->bsize == BLOCK_16X32) {
              for (int j = 0; j < 4; j++) {
                if (vt->split[i]
                        .split[k]
                        .split[j]
                        .part_variances.none.variance < (thresholds[3] >> 8))
                  part_info->variance_low[41 + (i << 4) + (k << 2) + j] = 1;
              }
            }
          }
        }
      }
    }
  }
}

static AOM_INLINE void set_low_temp_var_flag(
    AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd,
    VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition,
    int mi_col, int mi_row) {
  AV1_COMMON *const cm = &cpi->common;
  const int mv_thr = cm->width > 640 ? 8 : 4;
  // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
  // int_pro mv is small. If the temporal variance is small set the flag
  // variance_low for the block. The variance threshold can be adjusted, the
  // higher the more aggressive.
  if (ref_frame_partition == LAST_FRAME &&
      (cpi->sf.rt_sf.short_circuit_low_temp_var == 1 ||
       (cpi->sf.rt_sf.estimate_motion_for_var_based_partition &&
        xd->mi[0]->mv[0].as_mv.col < mv_thr &&
        xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
        xd->mi[0]->mv[0].as_mv.row < mv_thr &&
        xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
    const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
    if (is_small_sb)
      set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd,
                                  &(vt->split[0]), thresholds, mi_col, mi_row);
    else
      set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt,
                                    thresholds, mi_col, mi_row);
  }
}

void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q,
                                           int content_lowsumdiff) {
  SPEED_FEATURES *const sf = &cpi->sf;
  if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) {
    return;
  } else {
    set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, q, content_lowsumdiff, 0);
    // The threshold below is not changed locally.
    cpi->vbp_info.threshold_minmax = 15 + (q >> 3);
  }
}

static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize, unsigned int y_sad,
                                    int is_key_frame) {
  int i;
  MACROBLOCKD *xd = &x->e_mbd;

  if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return;

  for (i = 1; i <= 2; ++i) {
    unsigned int uv_sad = UINT_MAX;
    struct macroblock_plane *p = &x->plane[i];
    struct macroblockd_plane *pd = &xd->plane[i];
    const BLOCK_SIZE bs =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);

    if (bs != BLOCK_INVALID)
      uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
                                   pd->dst.stride);

    x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
  }
}

static void fill_variance_tree_leaves(
    AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, VP16x16 *vt2,
    unsigned char *force_split, int avg_16x16[][4], int maxvar_16x16[][4],
    int minvar_16x16[][4], int *variance4x4downsample, int64_t *thresholds,
    uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride) {
  AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  const int is_key_frame = frame_is_intra_only(cm);
  const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
  const int num_64x64_blocks = is_small_sb ? 1 : 4;
  // TODO(kyslov) Bring back compute_minmax_variance with content type detection
  const int compute_minmax_variance = 0;
  const int segment_id = xd->mi[0]->segment_id;
  int pixels_wide = 128, pixels_high = 128;

  if (is_small_sb) {
    pixels_wide = 64;
    pixels_high = 64;
  }
  if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
  if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
  for (int m = 0; m < num_64x64_blocks; m++) {
    const int x64_idx = ((m & 1) << 6);
    const int y64_idx = ((m >> 1) << 6);
    const int m2 = m << 2;
    force_split[m + 1] = 0;

    for (int i = 0; i < 4; i++) {
      const int x32_idx = x64_idx + ((i & 1) << 5);
      const int y32_idx = y64_idx + ((i >> 1) << 5);
      const int i2 = (m2 + i) << 2;
      force_split[5 + m2 + i] = 0;
      avg_16x16[m][i] = 0;
      maxvar_16x16[m][i] = 0;
      minvar_16x16[m][i] = INT_MAX;
      for (int j = 0; j < 4; j++) {
        const int x16_idx = x32_idx + ((j & 1) << 4);
        const int y16_idx = y32_idx + ((j >> 1) << 4);
        const int split_index = 21 + i2 + j;
        VP16x16 *vst = &vt->split[m].split[i].split[j];
        force_split[split_index] = 0;
        variance4x4downsample[i2 + j] = 0;
        if (!is_key_frame) {
          fill_variance_8x8avg(src, src_stride, dst, dst_stride, x16_idx,
                               y16_idx, vst,
#if CONFIG_AV1_HIGHBITDEPTH
                               xd->cur_buf->flags,
#endif
                               pixels_wide, pixels_high, is_key_frame);
          fill_variance_tree(&vt->split[m].split[i].split[j], BLOCK_16X16);
          get_variance(&vt->split[m].split[i].split[j].part_variances.none);
          avg_16x16[m][i] +=
              vt->split[m].split[i].split[j].part_variances.none.variance;
          if (vt->split[m].split[i].split[j].part_variances.none.variance <
              minvar_16x16[m][i])
            minvar_16x16[m][i] =
                vt->split[m].split[i].split[j].part_variances.none.variance;
          if (vt->split[m].split[i].split[j].part_variances.none.variance >
              maxvar_16x16[m][i])
            maxvar_16x16[m][i] =
                vt->split[m].split[i].split[j].part_variances.none.variance;
          if (vt->split[m].split[i].split[j].part_variances.none.variance >
              thresholds[3]) {
            // 16X16 variance is above threshold for split, so force split to
            // 8x8 for this 16x16 block (this also forces splits for upper
            // levels).
            force_split[split_index] = 1;
            force_split[5 + m2 + i] = 1;
            force_split[m + 1] = 1;
            force_split[0] = 1;
          } else if (!cyclic_refresh_segment_id_boosted(segment_id) &&
                     compute_minmax_variance &&
                     vt->split[m]
                             .split[i]
                             .split[j]
                             .part_variances.none.variance > thresholds[2]) {
            // We have some nominal amount of 16x16 variance (based on average),
            // compute the minmax over the 8x8 sub-blocks, and if above
            // threshold, force split to 8x8 block for this 16x16 block.
            int minmax = compute_minmax_8x8(src, src_stride, dst, dst_stride,
                                            x16_idx, y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
                                            xd->cur_buf->flags,
#endif
                                            pixels_wide, pixels_high);
            int thresh_minmax = (int)cpi->vbp_info.threshold_minmax;
            if (minmax > thresh_minmax) {
              force_split[split_index] = 1;
              force_split[5 + m2 + i] = 1;
              force_split[m + 1] = 1;
              force_split[0] = 1;
            }
          }
        }
        if (is_key_frame) {
          force_split[split_index] = 0;
          // Go down to 4x4 down-sampling for variance.
          variance4x4downsample[i2 + j] = 1;
          for (int k = 0; k < 4; k++) {
            int x8_idx = x16_idx + ((k & 1) << 3);
            int y8_idx = y16_idx + ((k >> 1) << 3);
            VP8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
            fill_variance_4x4avg(src, src_stride, dst, dst_stride, x8_idx,
                                 y8_idx, vst2,
#if CONFIG_AV1_HIGHBITDEPTH
                                 xd->cur_buf->flags,
#endif
                                 pixels_wide, pixels_high, is_key_frame);
          }
        }
      }
    }
  }
}

static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad,
                         unsigned int *y_sad_g,
                         MV_REFERENCE_FRAME *ref_frame_partition, int mi_row,
                         int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  const int num_planes = av1_num_planes(cm);
  const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
  BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
  // TODO(kyslov): we are assuming that the ref is LAST_FRAME! Check if it
  // is!!
  MB_MODE_INFO *mi = xd->mi[0];
  const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
  assert(yv12 != NULL);
  const YV12_BUFFER_CONFIG *yv12_g = NULL;

  // For non-SVC GOLDEN is another temporal reference. Check if it should be
  // used as reference for partitioning.
  if (!cpi->use_svc && (cpi->ref_frame_flags & AOM_GOLD_FLAG) &&
      cpi->sf.rt_sf.use_nonrd_pick_mode) {
    yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
    if (yv12_g && yv12_g != yv12) {
      av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
                           get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
      *y_sad_g = cpi->fn_ptr[bsize].sdf(
          x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
          xd->plane[0].pre[0].stride);
    }
  }

  av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
                       get_ref_scale_factors(cm, LAST_FRAME), num_planes);
  mi->ref_frame[0] = LAST_FRAME;
  mi->ref_frame[1] = NONE_FRAME;
  mi->bsize = cm->seq_params.sb_size;
  mi->mv[0].as_int = 0;
  mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
  if (cpi->sf.rt_sf.estimate_motion_for_var_based_partition) {
    if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) {
      const MV dummy_mv = { 0, 0 };
      *y_sad = av1_int_pro_motion_estimation(cpi, x, cm->seq_params.sb_size,
                                             mi_row, mi_col, &dummy_mv);
    }
  }
  if (*y_sad == UINT_MAX) {
    *y_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, x->plane[0].src.stride,
                                    xd->plane[0].pre[0].buf,
                                    xd->plane[0].pre[0].stride);
  }

  // Pick the ref frame for partitioning, use golden frame only if its
  // lower sad.
  aom_clear_system_state();
  if (*y_sad_g < 0.9 * *y_sad) {
    av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
                         get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
    mi->ref_frame[0] = GOLDEN_FRAME;
    mi->mv[0].as_int = 0;
    *y_sad = *y_sad_g;
    *ref_frame_partition = GOLDEN_FRAME;
    x->nonrd_prune_ref_frame_search = 0;
  } else {
    *ref_frame_partition = LAST_FRAME;
    x->nonrd_prune_ref_frame_search =
        cpi->sf.rt_sf.nonrd_prune_ref_frame_search;
  }

  set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
  av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL,
                                cm->seq_params.sb_size, AOM_PLANE_Y,
                                AOM_PLANE_Y);
}

int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
                                      ThreadData *td, MACROBLOCK *x, int mi_row,
                                      int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds;

  int i, j, k, m;
  VP128x128 *vt;
  VP16x16 *vt2 = NULL;
  unsigned char force_split[85];
  int avg_32x32;
  int avg_64x64;
  int max_var_32x32[4];
  int min_var_32x32[4];
  int var_32x32;
  int var_64x64;
  int min_var_64x64 = INT_MAX;
  int max_var_64x64 = 0;
  int avg_16x16[4][4];
  int maxvar_16x16[4][4];
  int minvar_16x16[4][4];
  int64_t threshold_4x4avg;
  uint8_t *s;
  const uint8_t *d;
  int sp;
  int dp;
  NOISE_LEVEL noise_level = kLow;

  int is_key_frame =
      (frame_is_intra_only(cm) ||
       (cpi->use_svc &&
        cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));

  assert(cm->seq_params.sb_size == BLOCK_64X64 ||
         cm->seq_params.sb_size == BLOCK_128X128);
  const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
  const int num_64x64_blocks = is_small_sb ? 1 : 4;

  unsigned int y_sad = UINT_MAX;
  unsigned int y_sad_g = UINT_MAX;
  BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;

  // Ref frame used in partitioning.
  MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;

  CHECK_MEM_ERROR(cm, vt, aom_malloc(sizeof(*vt)));

  vt->split = td->vt64x64;

  int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1],
                            vbp_thresholds[2], vbp_thresholds[3],
                            vbp_thresholds[4] };

  const int low_res = (cm->width <= 352 && cm->height <= 288);
  int variance4x4downsample[64];
  const int segment_id = xd->mi[0]->segment_id;

  if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
      cyclic_refresh_segment_id_boosted(segment_id) &&
      cpi->sf.rt_sf.use_nonrd_pick_mode) {
    int q = av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex);
    set_vbp_thresholds(cpi, thresholds, q, x->content_state_sb.low_sumdiff, 1);
  } else {
    set_vbp_thresholds(cpi, thresholds, cm->quant_params.base_qindex,
                       x->content_state_sb.low_sumdiff, 0);
  }

  // For non keyframes, disable 4x4 average for low resolution when speed = 8
  threshold_4x4avg = INT64_MAX;

  s = x->plane[0].src.buf;
  sp = x->plane[0].src.stride;

  // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
  // 5-20 for the 16x16 blocks.
  force_split[0] = 0;
  memset(x->part_search_info.variance_low, 0,
         sizeof(x->part_search_info.variance_low));

  // Check if LAST frame is NULL or if the resolution of LAST is
  // different than the current frame resolution, and if so, treat this frame
  // as a key frame, for the purpose of the superblock partitioning.
  // LAST == NULL can happen in cases where enhancement spatial layers are
  // enabled dyanmically and the only reference is the spatial(GOLDEN).
  // TODO(marpan): Check se of scaled references for the different resoln.
  if (!frame_is_intra_only(cm)) {
    const YV12_BUFFER_CONFIG *const ref =
        get_ref_frame_yv12_buf(cm, LAST_FRAME);
    if (ref == NULL || ref->y_crop_height != cm->height ||
        ref->y_crop_width != cm->width) {
      is_key_frame = 1;
    }
  }

  if (!is_key_frame) {
    setup_planes(cpi, x, &y_sad, &y_sad_g, &ref_frame_partition, mi_row,
                 mi_col);
    d = xd->plane[0].dst.buf;
    dp = xd->plane[0].dst.stride;
  } else {
    d = AV1_VAR_OFFS;
    dp = 0;
  }
  if (cpi->noise_estimate.enabled)
    noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);

  if (low_res && threshold_4x4avg < INT64_MAX)
    CHECK_MEM_ERROR(cm, vt2, aom_malloc(sizeof(*vt2)));
  // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
  // for splits.
  fill_variance_tree_leaves(cpi, x, vt, vt2, force_split, avg_16x16,
                            maxvar_16x16, minvar_16x16, variance4x4downsample,
                            thresholds, s, sp, d, dp);

  avg_64x64 = 0;
  for (m = 0; m < num_64x64_blocks; ++m) {
    avg_32x32 = 0;
    max_var_32x32[m] = 0;
    min_var_32x32[m] = INT_MAX;
    const int m2 = m << 2;
    for (i = 0; i < 4; i++) {
      const int i2 = (m2 + i) << 2;
      for (j = 0; j < 4; j++) {
        const int split_index = 21 + i2 + j;
        if (variance4x4downsample[i2 + j] == 1) {
          VP16x16 *vtemp =
              (!is_key_frame) ? &vt2[i2 + j] : &vt->split[m].split[i].split[j];
          for (k = 0; k < 4; k++)
            fill_variance_tree(&vtemp->split[k], BLOCK_8X8);
          fill_variance_tree(vtemp, BLOCK_16X16);
          // If variance of this 16x16 block is above the threshold, force block
          // to split. This also forces a split on the upper levels.
          get_variance(&vtemp->part_variances.none);
          if (vtemp->part_variances.none.variance > thresholds[3]) {
            force_split[split_index] = 1;
            force_split[5 + m2 + i] = 1;
            force_split[m + 1] = 1;
            force_split[0] = 1;
          }
        }
      }
      fill_variance_tree(&vt->split[m].split[i], BLOCK_32X32);
      // If variance of this 32x32 block is above the threshold, or if its above
      // (some threshold of) the average variance over the sub-16x16 blocks,
      // then force this block to split. This also forces a split on the upper
      // (64x64) level.
      if (!force_split[5 + m2 + i]) {
        get_variance(&vt->split[m].split[i].part_variances.none);
        var_32x32 = vt->split[m].split[i].part_variances.none.variance;
        max_var_32x32[m] = AOMMAX(var_32x32, max_var_32x32[m]);
        min_var_32x32[m] = AOMMIN(var_32x32, min_var_32x32[m]);
        if (vt->split[m].split[i].part_variances.none.variance >
                thresholds[2] ||
            (!is_key_frame &&
             vt->split[m].split[i].part_variances.none.variance >
                 (thresholds[2] >> 1) &&
             vt->split[m].split[i].part_variances.none.variance >
                 (avg_16x16[m][i] >> 1))) {
          force_split[5 + m2 + i] = 1;
          force_split[m + 1] = 1;
          force_split[0] = 1;
        } else if (!is_key_frame && cm->height <= 360 &&
                   (maxvar_16x16[m][i] - minvar_16x16[m][i]) >
                       (thresholds[2] >> 1) &&
                   maxvar_16x16[m][i] > thresholds[2]) {
          force_split[5 + m2 + i] = 1;
          force_split[m + 1] = 1;
          force_split[0] = 1;
        }
        avg_32x32 += var_32x32;
      }
    }
    if (!force_split[1 + m]) {
      fill_variance_tree(&vt->split[m], BLOCK_64X64);
      get_variance(&vt->split[m].part_variances.none);
      var_64x64 = vt->split[m].part_variances.none.variance;
      max_var_64x64 = AOMMAX(var_64x64, max_var_64x64);
      min_var_64x64 = AOMMIN(var_64x64, min_var_64x64);
      // If the difference of the max-min variances of sub-blocks or max
      // variance of a sub-block is above some threshold of then force this
      // block to split. Only checking this for noise level >= medium, if
      // encoder is in SVC or if we already forced large blocks.

      if (!is_key_frame &&
          (max_var_32x32[m] - min_var_32x32[m]) > 3 * (thresholds[1] >> 3) &&
          max_var_32x32[m] > thresholds[1] >> 1 &&
          (noise_level >= kMedium || cpi->use_svc ||
           cpi->sf.rt_sf.force_large_partition_blocks ||
           !cpi->sf.rt_sf.use_nonrd_pick_mode)) {
        force_split[1 + m] = 1;
        force_split[0] = 1;
      }
      avg_64x64 += var_64x64;
    }
    if (is_small_sb) force_split[0] = 1;
  }

  if (!force_split[0]) {
    fill_variance_tree(vt, BLOCK_128X128);
    get_variance(&vt->part_variances.none);
    if (!is_key_frame &&
        vt->part_variances.none.variance > (9 * avg_64x64) >> 5)
      force_split[0] = 1;

    if (!is_key_frame &&
        (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) &&
        max_var_64x64 > thresholds[0] >> 1)
      force_split[0] = 1;
  }

  if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end ||
      !set_vt_partitioning(cpi, x, xd, tile, vt, BLOCK_128X128, mi_row, mi_col,
                           thresholds[0], BLOCK_16X16, force_split[0])) {
    for (m = 0; m < num_64x64_blocks; ++m) {
      const int x64_idx = ((m & 1) << 4);
      const int y64_idx = ((m >> 1) << 4);
      const int m2 = m << 2;

      // Now go through the entire structure, splitting every block size until
      // we get to one that's got a variance lower than our threshold.
      if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m], BLOCK_64X64,
                               mi_row + y64_idx, mi_col + x64_idx,
                               thresholds[1], BLOCK_16X16,
                               force_split[1 + m])) {
        for (i = 0; i < 4; ++i) {
          const int x32_idx = ((i & 1) << 3);
          const int y32_idx = ((i >> 1) << 3);
          const int i2 = (m2 + i) << 2;
          if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m].split[i],
                                   BLOCK_32X32, (mi_row + y64_idx + y32_idx),
                                   (mi_col + x64_idx + x32_idx), thresholds[2],
                                   BLOCK_16X16, force_split[5 + m2 + i])) {
            for (j = 0; j < 4; ++j) {
              const int x16_idx = ((j & 1) << 2);
              const int y16_idx = ((j >> 1) << 2);
              const int split_index = 21 + i2 + j;
              // For inter frames: if variance4x4downsample[] == 1 for this
              // 16x16 block, then the variance is based on 4x4 down-sampling,
              // so use vt2 in set_vt_partioning(), otherwise use vt.
              VP16x16 *vtemp =
                  (!is_key_frame && variance4x4downsample[i2 + j] == 1)
                      ? &vt2[i2 + j]
                      : &vt->split[m].split[i].split[j];
              if (!set_vt_partitioning(cpi, x, xd, tile, vtemp, BLOCK_16X16,
                                       mi_row + y64_idx + y32_idx + y16_idx,
                                       mi_col + x64_idx + x32_idx + x16_idx,
                                       thresholds[3], BLOCK_8X8,
                                       force_split[split_index])) {
                for (k = 0; k < 4; ++k) {
                  const int x8_idx = (k & 1) << 1;
                  const int y8_idx = (k >> 1) << 1;
                  set_block_size(
                      cpi, x, xd,
                      (mi_row + y64_idx + y32_idx + y16_idx + y8_idx),
                      (mi_col + x64_idx + x32_idx + x16_idx + x8_idx),
                      BLOCK_8X8);
                }
              }
            }
          }
        }
      }
    }
  }

  if (cpi->sf.rt_sf.short_circuit_low_temp_var) {
    set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds,
                          ref_frame_partition, mi_col, mi_row);
  }
  chroma_check(cpi, x, bsize, y_sad, is_key_frame);

  if (vt2) aom_free(vt2);
  if (vt) aom_free(vt);
  return 0;
}