aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/av1/encoder/x86/temporal_filter_sse2.c
blob: 26c3926dcaac6c1b69edd8d335409743cd3e1481 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <emmintrin.h>

#include "config/av1_rtcd.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"

// For the squared error buffer, keep a padding for 4 samples
#define SSE_STRIDE (BW + 4)

DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask_2x4[4][2][4]) = {
  { { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
    { 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000 } },
  { { 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
    { 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000 } },
  { { 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF },
    { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 } },
  { { 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF },
    { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF } }
};

static void get_squared_error(const uint8_t *frame1, const unsigned int stride,
                              const uint8_t *frame2, const unsigned int stride2,
                              const int block_width, const int block_height,
                              uint16_t *frame_sse,
                              const unsigned int dst_stride) {
  const uint8_t *src1 = frame1;
  const uint8_t *src2 = frame2;
  uint16_t *dst = frame_sse;

  for (int i = 0; i < block_height; i++) {
    for (int j = 0; j < block_width; j += 16) {
      // Set zero to uninitialized memory to avoid uninitialized loads later
      *(uint32_t *)(dst) = _mm_cvtsi128_si32(_mm_setzero_si128());

      __m128i vsrc1 = _mm_loadu_si128((__m128i *)(src1 + j));
      __m128i vsrc2 = _mm_loadu_si128((__m128i *)(src2 + j));

      __m128i vmax = _mm_max_epu8(vsrc1, vsrc2);
      __m128i vmin = _mm_min_epu8(vsrc1, vsrc2);
      __m128i vdiff = _mm_subs_epu8(vmax, vmin);

      __m128i vzero = _mm_setzero_si128();
      __m128i vdiff1 = _mm_unpacklo_epi8(vdiff, vzero);
      __m128i vdiff2 = _mm_unpackhi_epi8(vdiff, vzero);

      __m128i vres1 = _mm_mullo_epi16(vdiff1, vdiff1);
      __m128i vres2 = _mm_mullo_epi16(vdiff2, vdiff2);

      _mm_storeu_si128((__m128i *)(dst + j + 2), vres1);
      _mm_storeu_si128((__m128i *)(dst + j + 10), vres2);
    }

    // Set zero to uninitialized memory to avoid uninitialized loads later
    *(uint32_t *)(dst + block_width + 2) =
        _mm_cvtsi128_si32(_mm_setzero_si128());

    src1 += stride;
    src2 += stride2;
    dst += dst_stride;
  }
}

static void xx_load_and_pad(uint16_t *src, __m128i *dstvec, int col,
                            int block_width) {
  __m128i vtmp = _mm_loadu_si128((__m128i *)src);
  __m128i vzero = _mm_setzero_si128();
  __m128i vtmp1 = _mm_unpacklo_epi16(vtmp, vzero);
  __m128i vtmp2 = _mm_unpackhi_epi16(vtmp, vzero);
  // For the first column, replicate the first element twice to the left
  dstvec[0] = (col) ? vtmp1 : _mm_shuffle_epi32(vtmp1, 0xEA);
  // For the last column, replicate the last element twice to the right
  dstvec[1] = (col < block_width - 4) ? vtmp2 : _mm_shuffle_epi32(vtmp2, 0x54);
}

static int32_t xx_mask_and_hadd(__m128i vsum1, __m128i vsum2, int i) {
  __m128i veca, vecb;
  // Mask and obtain the required 5 values inside the vector
  veca = _mm_and_si128(vsum1, *(__m128i *)sse_bytemask_2x4[i][0]);
  vecb = _mm_and_si128(vsum2, *(__m128i *)sse_bytemask_2x4[i][1]);
  // A = [A0+B0, A1+B1, A2+B2, A3+B3]
  veca = _mm_add_epi32(veca, vecb);
  // B = [A2+B2, A3+B3, 0, 0]
  vecb = _mm_srli_si128(veca, 8);
  // A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X]
  veca = _mm_add_epi32(veca, vecb);
  // B = [A1+B1+A3+B3, 0, 0, 0]
  vecb = _mm_srli_si128(veca, 4);
  // A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X]
  veca = _mm_add_epi32(veca, vecb);
  return _mm_cvtsi128_si32(veca);
}

static void apply_temporal_filter(
    const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2,
    const unsigned int stride2, const int block_width, const int block_height,
    const int *subblock_mses, unsigned int *accumulator, uint16_t *count,
    uint16_t *frame_sse, uint32_t *luma_sse_sum,
    const double inv_num_ref_pixels, const double decay_factor,
    const double inv_factor, const double weight_factor, double *d_factor) {
  assert(((block_width == 16) || (block_width == 32)) &&
         ((block_height == 16) || (block_height == 32)));

  uint32_t acc_5x5_sse[BH][BW];

  get_squared_error(frame1, stride, frame2, stride2, block_width, block_height,
                    frame_sse, SSE_STRIDE);

  __m128i vsrc[5][2];

  // Traverse 4 columns at a time
  // First and last columns will require padding
  for (int col = 0; col < block_width; col += 4) {
    uint16_t *src = frame_sse + col;

    // Load and pad(for first and last col) 3 rows from the top
    for (int i = 2; i < 5; i++) {
      xx_load_and_pad(src, vsrc[i], col, block_width);
      src += SSE_STRIDE;
    }

    // Padding for top 2 rows
    vsrc[0][0] = vsrc[2][0];
    vsrc[0][1] = vsrc[2][1];
    vsrc[1][0] = vsrc[2][0];
    vsrc[1][1] = vsrc[2][1];

    for (int row = 0; row < block_height; row++) {
      __m128i vsum1 = _mm_setzero_si128();
      __m128i vsum2 = _mm_setzero_si128();

      // Add 5 consecutive rows
      for (int i = 0; i < 5; i++) {
        vsum1 = _mm_add_epi32(vsrc[i][0], vsum1);
        vsum2 = _mm_add_epi32(vsrc[i][1], vsum2);
      }

      // Push all elements by one element to the top
      for (int i = 0; i < 4; i++) {
        vsrc[i][0] = vsrc[i + 1][0];
        vsrc[i][1] = vsrc[i + 1][1];
      }

      if (row <= block_height - 4) {
        // Load next row
        xx_load_and_pad(src, vsrc[4], col, block_width);
        src += SSE_STRIDE;
      } else {
        // Padding for bottom 2 rows
        vsrc[4][0] = vsrc[3][0];
        vsrc[4][1] = vsrc[3][1];
      }

      // Accumulate the sum horizontally
      for (int i = 0; i < 4; i++) {
        acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum1, vsum2, i);
      }
    }
  }

  for (int i = 0, k = 0; i < block_height; i++) {
    for (int j = 0; j < block_width; j++, k++) {
      const int pixel_value = frame2[i * stride2 + j];
      uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j];

      const double window_error = diff_sse * inv_num_ref_pixels;
      const int subblock_idx =
          (i >= block_height / 2) * 2 + (j >= block_width / 2);
      const double block_error = (double)subblock_mses[subblock_idx];
      const double combined_error =
          weight_factor * window_error + block_error * inv_factor;

      double scaled_error =
          combined_error * d_factor[subblock_idx] * decay_factor;
      scaled_error = AOMMIN(scaled_error, 7);
      const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);

      count[k] += weight;
      accumulator[k] += weight * pixel_value;
    }
  }
}

void av1_apply_temporal_filter_sse2(
    const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
    const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
    const int num_planes, const double *noise_levels, const MV *subblock_mvs,
    const int *subblock_mses, const int q_factor, const int filter_strength,
    const uint8_t *pred, uint32_t *accum, uint16_t *count) {
  const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
  assert(block_size == BLOCK_32X32 && "Only support 32x32 block with sse2!");
  assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with sse2!");
  assert(!is_high_bitdepth && "Only support low bit-depth with sse2!");
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
  (void)is_high_bitdepth;

  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  const int min_frame_size = AOMMIN(frame_height, frame_width);
  // Variables to simplify combined error calculation.
  const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
                                   TF_SEARCH_ERROR_NORM_WEIGHT);
  const double weight_factor =
      (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
  // Adjust filtering based on q.
  // Larger q -> stronger filtering -> larger weight.
  // Smaller q -> weaker filtering -> smaller weight.
  double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
  q_decay = CLIP(q_decay, 1e-5, 1);
  if (q_factor >= TF_QINDEX_CUTOFF) {
    // Max q_factor is 255, therefore the upper bound of q_decay is 8.
    // We do not need a clip here.
    q_decay = 0.5 * pow((double)q_factor / 64, 2);
  }
  // Smaller strength -> smaller filtering weight.
  double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
  s_decay = CLIP(s_decay, 1e-5, 1);
  double d_factor[4] = { 0 };
  uint16_t frame_sse[SSE_STRIDE * BH] = { 0 };
  uint32_t luma_sse_sum[BW * BH] = { 0 };

  for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
    // Larger motion vector -> smaller filtering weight.
    const MV mv = subblock_mvs[subblock_idx];
    const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
    double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
    distance_threshold = AOMMAX(distance_threshold, 1);
    d_factor[subblock_idx] = distance / distance_threshold;
    d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
  }

  // Handle planes in sequence.
  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
    const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
    const uint32_t frame_stride = frame_to_filter->strides[plane == 0 ? 0 : 1];
    const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;

    const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset;
    const int ss_x_shift =
        mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
    const int ss_y_shift =
        mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
    const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
                               ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
    const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
    // Larger noise -> larger filtering weight.
    const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
    // Decay factors for non-local mean approach.
    const double decay_factor = 1 / (n_decay * q_decay * s_decay);

    // Filter U-plane and V-plane using Y-plane. This is because motion
    // search is only done on Y-plane, so the information from Y-plane
    // will be more accurate. The luma sse sum is reused in both chroma
    // planes.
    if (plane == AOM_PLANE_U) {
      for (unsigned int i = 0, k = 0; i < plane_h; i++) {
        for (unsigned int j = 0; j < plane_w; j++, k++) {
          for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
            for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
              const int yy = (i << ss_y_shift) + ii;  // Y-coord on Y-plane.
              const int xx = (j << ss_x_shift) + jj;  // X-coord on Y-plane.
              luma_sse_sum[i * BW + j] += frame_sse[yy * SSE_STRIDE + xx + 2];
            }
          }
        }
      }
    }

    apply_temporal_filter(ref, frame_stride, pred + plane_offset, plane_w,
                          plane_w, plane_h, subblock_mses, accum + plane_offset,
                          count + plane_offset, frame_sse, luma_sse_sum,
                          inv_num_ref_pixels, decay_factor, inv_factor,
                          weight_factor, d_factor);
    plane_offset += plane_h * plane_w;
  }
}