aboutsummaryrefslogtreecommitdiff
path: root/third_party/libaom/source/libaom/test/warp_filter_test_util.cc
blob: 0e6e8b1324253ea6a331a7b3287483cb250af2b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include "aom_ports/aom_timer.h"
#include "test/warp_filter_test_util.h"

using std::make_tuple;
using std::tuple;

namespace libaom_test {

int32_t random_warped_param(libaom_test::ACMRandom *rnd, int bits) {
  // 1 in 8 chance of generating zero (arbitrarily chosen)
  if (((rnd->Rand8()) & 7) == 0) return 0;
  // Otherwise, enerate uniform values in the range
  // [-(1 << bits), 1] U [1, 1<<bits]
  int32_t v = 1 + (rnd->Rand16() & ((1 << bits) - 1));
  if ((rnd->Rand8()) & 1) return -v;
  return v;
}

void generate_warped_model(libaom_test::ACMRandom *rnd, int32_t *mat,
                           int16_t *alpha, int16_t *beta, int16_t *gamma,
                           int16_t *delta, const int is_alpha_zero,
                           const int is_beta_zero, const int is_gamma_zero,
                           const int is_delta_zero) {
  while (1) {
    int rnd8 = rnd->Rand8() & 3;
    mat[0] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS + 6);
    mat[1] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS + 6);
    mat[2] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) +
             (1 << WARPEDMODEL_PREC_BITS);
    mat[3] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3);

    if (rnd8 <= 1) {
      // AFFINE
      mat[4] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3);
      mat[5] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) +
               (1 << WARPEDMODEL_PREC_BITS);
    } else if (rnd8 == 2) {
      mat[4] = -mat[3];
      mat[5] = mat[2];
    } else {
      mat[4] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3);
      mat[5] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) +
               (1 << WARPEDMODEL_PREC_BITS);
      if (is_alpha_zero == 1) mat[2] = 1 << WARPEDMODEL_PREC_BITS;
      if (is_beta_zero == 1) mat[3] = 0;
      if (is_gamma_zero == 1) mat[4] = 0;
      if (is_delta_zero == 1)
        mat[5] = static_cast<int32_t>(
            ((static_cast<int64_t>(mat[3]) * mat[4] + (mat[2] / 2)) / mat[2]) +
            (1 << WARPEDMODEL_PREC_BITS));
    }

    // Calculate the derived parameters and check that they are suitable
    // for the warp filter.
    assert(mat[2] != 0);

    *alpha = clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
    *beta = clamp(mat[3], INT16_MIN, INT16_MAX);
    *gamma = static_cast<int16_t>(clamp64(
        (static_cast<int64_t>(mat[4]) * (1 << WARPEDMODEL_PREC_BITS)) / mat[2],
        INT16_MIN, INT16_MAX));
    *delta = static_cast<int16_t>(clamp64(
        mat[5] -
            ((static_cast<int64_t>(mat[3]) * mat[4] + (mat[2] / 2)) / mat[2]) -
            (1 << WARPEDMODEL_PREC_BITS),
        INT16_MIN, INT16_MAX));

    if ((4 * abs(*alpha) + 7 * abs(*beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
        (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS)))
      continue;

    *alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) *
             (1 << WARP_PARAM_REDUCE_BITS);
    *beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) *
            (1 << WARP_PARAM_REDUCE_BITS);
    *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) *
             (1 << WARP_PARAM_REDUCE_BITS);
    *delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) *
             (1 << WARP_PARAM_REDUCE_BITS);

    // We have a valid model, so finish
    return;
  }
}

namespace AV1WarpFilter {
::testing::internal::ParamGenerator<WarpTestParams> BuildParams(
    warp_affine_func filter) {
  WarpTestParam params[] = {
    make_tuple(4, 4, 5000, filter),  make_tuple(8, 8, 5000, filter),
    make_tuple(64, 64, 100, filter), make_tuple(4, 16, 2000, filter),
    make_tuple(32, 8, 1000, filter),
  };
  return ::testing::Combine(::testing::ValuesIn(params),
                            ::testing::Values(0, 1), ::testing::Values(0, 1),
                            ::testing::Values(0, 1), ::testing::Values(0, 1));
}

AV1WarpFilterTest::~AV1WarpFilterTest() {}
void AV1WarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); }

void AV1WarpFilterTest::TearDown() { libaom_test::ClearSystemState(); }

void AV1WarpFilterTest::RunSpeedTest(warp_affine_func test_impl) {
  const int w = 128, h = 128;
  const int border = 16;
  const int stride = w + 2 * border;
  WarpTestParam params = GET_PARAM(0);
  const int out_w = std::get<0>(params), out_h = std::get<1>(params);
  const int is_alpha_zero = GET_PARAM(1);
  const int is_beta_zero = GET_PARAM(2);
  const int is_gamma_zero = GET_PARAM(3);
  const int is_delta_zero = GET_PARAM(4);
  int sub_x, sub_y;
  const int bd = 8;

  uint8_t *input_ = new uint8_t[h * stride];
  uint8_t *input = input_ + border;

  // The warp functions always write rows with widths that are multiples of 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint8_t *output = new uint8_t[output_n];
  int32_t mat[8];
  int16_t alpha, beta, gamma, delta;
  ConvolveParams conv_params = get_conv_params(0, 0, bd);
  CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n];
  generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta,
                        is_alpha_zero, is_beta_zero, is_gamma_zero,
                        is_delta_zero);

  for (int r = 0; r < h; ++r)
    for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8();
  for (int r = 0; r < h; ++r) {
    memset(input + r * stride - border, input[r * stride], border);
    memset(input + r * stride + w, input[r * stride + (w - 1)], border);
  }

  sub_x = 0;
  sub_y = 0;
  int do_average = 0;

  conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd);
  conv_params.use_dist_wtd_comp_avg = 0;

  const int num_loops = 1000000000 / (out_w + out_h);
  aom_usec_timer timer;
  aom_usec_timer_start(&timer);
  for (int i = 0; i < num_loops; ++i)
    test_impl(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w,
              sub_x, sub_y, &conv_params, alpha, beta, gamma, delta);

  aom_usec_timer_mark(&timer);
  const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
  printf("warp %3dx%-3d: %7.2f ns\n", out_w, out_h,
         1000.0 * elapsed_time / num_loops);

  delete[] input_;
  delete[] output;
  delete[] dsta;
}

void AV1WarpFilterTest::RunCheckOutput(warp_affine_func test_impl) {
  const int w = 128, h = 128;
  const int border = 16;
  const int stride = w + 2 * border;
  WarpTestParam params = GET_PARAM(0);
  const int is_alpha_zero = GET_PARAM(1);
  const int is_beta_zero = GET_PARAM(2);
  const int is_gamma_zero = GET_PARAM(3);
  const int is_delta_zero = GET_PARAM(4);
  const int out_w = std::get<0>(params), out_h = std::get<1>(params);
  const int num_iters = std::get<2>(params);
  int i, j, sub_x, sub_y;
  const int bd = 8;

  // The warp functions always write rows with widths that are multiples of 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint8_t *input_ = new uint8_t[h * stride];
  uint8_t *input = input_ + border;
  uint8_t *output = new uint8_t[output_n];
  uint8_t *output2 = new uint8_t[output_n];
  int32_t mat[8];
  int16_t alpha, beta, gamma, delta;
  ConvolveParams conv_params = get_conv_params(0, 0, bd);
  CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n];
  CONV_BUF_TYPE *dstb = new CONV_BUF_TYPE[output_n];
  for (int i = 0; i < output_n; ++i) output[i] = output2[i] = rnd_.Rand8();

  for (i = 0; i < num_iters; ++i) {
    // Generate an input block and extend its borders horizontally
    for (int r = 0; r < h; ++r)
      for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8();
    for (int r = 0; r < h; ++r) {
      memset(input + r * stride - border, input[r * stride], border);
      memset(input + r * stride + w, input[r * stride + (w - 1)], border);
    }
    const int use_no_round = rnd_.Rand8() & 1;
    for (sub_x = 0; sub_x < 2; ++sub_x)
      for (sub_y = 0; sub_y < 2; ++sub_y) {
        generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta,
                              is_alpha_zero, is_beta_zero, is_gamma_zero,
                              is_delta_zero);

        for (int ii = 0; ii < 2; ++ii) {
          for (int jj = 0; jj < 5; ++jj) {
            for (int do_average = 0; do_average <= 1; ++do_average) {
              if (use_no_round) {
                conv_params =
                    get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd);
              } else {
                conv_params = get_conv_params(0, 0, bd);
              }
              if (jj >= 4) {
                conv_params.use_dist_wtd_comp_avg = 0;
              } else {
                conv_params.use_dist_wtd_comp_avg = 1;
                conv_params.fwd_offset = quant_dist_lookup_table[jj][ii];
                conv_params.bck_offset = quant_dist_lookup_table[jj][1 - ii];
              }
              av1_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w,
                                out_h, out_w, sub_x, sub_y, &conv_params, alpha,
                                beta, gamma, delta);
              if (use_no_round) {
                conv_params =
                    get_conv_params_no_round(do_average, 0, dstb, out_w, 1, bd);
              }
              if (jj >= 4) {
                conv_params.use_dist_wtd_comp_avg = 0;
              } else {
                conv_params.use_dist_wtd_comp_avg = 1;
                conv_params.fwd_offset = quant_dist_lookup_table[jj][ii];
                conv_params.bck_offset = quant_dist_lookup_table[jj][1 - ii];
              }
              test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h,
                        out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma,
                        delta);
              if (use_no_round) {
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(dsta[j], dstb[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(output[j], output2[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
              } else {
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(output[j], output2[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
              }
            }
          }
        }
      }
  }
  delete[] input_;
  delete[] output;
  delete[] output2;
  delete[] dsta;
  delete[] dstb;
}
}  // namespace AV1WarpFilter

#if CONFIG_AV1_HIGHBITDEPTH
namespace AV1HighbdWarpFilter {
::testing::internal::ParamGenerator<HighbdWarpTestParams> BuildParams(
    highbd_warp_affine_func filter) {
  const HighbdWarpTestParam params[] = {
    make_tuple(4, 4, 100, 8, filter),    make_tuple(8, 8, 100, 8, filter),
    make_tuple(64, 64, 100, 8, filter),  make_tuple(4, 16, 100, 8, filter),
    make_tuple(32, 8, 100, 8, filter),   make_tuple(4, 4, 100, 10, filter),
    make_tuple(8, 8, 100, 10, filter),   make_tuple(64, 64, 100, 10, filter),
    make_tuple(4, 16, 100, 10, filter),  make_tuple(32, 8, 100, 10, filter),
    make_tuple(4, 4, 100, 12, filter),   make_tuple(8, 8, 100, 12, filter),
    make_tuple(64, 64, 100, 12, filter), make_tuple(4, 16, 100, 12, filter),
    make_tuple(32, 8, 100, 12, filter),
  };
  return ::testing::Combine(::testing::ValuesIn(params),
                            ::testing::Values(0, 1), ::testing::Values(0, 1),
                            ::testing::Values(0, 1), ::testing::Values(0, 1));
}

AV1HighbdWarpFilterTest::~AV1HighbdWarpFilterTest() {}
void AV1HighbdWarpFilterTest::SetUp() {
  rnd_.Reset(ACMRandom::DeterministicSeed());
}

void AV1HighbdWarpFilterTest::TearDown() { libaom_test::ClearSystemState(); }

void AV1HighbdWarpFilterTest::RunSpeedTest(highbd_warp_affine_func test_impl) {
  const int w = 128, h = 128;
  const int border = 16;
  const int stride = w + 2 * border;
  HighbdWarpTestParam param = GET_PARAM(0);
  const int is_alpha_zero = GET_PARAM(1);
  const int is_beta_zero = GET_PARAM(2);
  const int is_gamma_zero = GET_PARAM(3);
  const int is_delta_zero = GET_PARAM(4);
  const int out_w = std::get<0>(param), out_h = std::get<1>(param);
  const int bd = std::get<3>(param);
  const int mask = (1 << bd) - 1;
  int sub_x, sub_y;

  // The warp functions always write rows with widths that are multiples of 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint16_t *input_ = new uint16_t[h * stride];
  uint16_t *input = input_ + border;
  uint16_t *output = new uint16_t[output_n];
  int32_t mat[8];
  int16_t alpha, beta, gamma, delta;
  ConvolveParams conv_params = get_conv_params(0, 0, bd);
  CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n];

  generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta,
                        is_alpha_zero, is_beta_zero, is_gamma_zero,
                        is_delta_zero);
  // Generate an input block and extend its borders horizontally
  for (int r = 0; r < h; ++r)
    for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask;
  for (int r = 0; r < h; ++r) {
    for (int c = 0; c < border; ++c) {
      input[r * stride - border + c] = input[r * stride];
      input[r * stride + w + c] = input[r * stride + (w - 1)];
    }
  }

  sub_x = 0;
  sub_y = 0;
  int do_average = 0;
  conv_params.use_dist_wtd_comp_avg = 0;
  conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd);

  const int num_loops = 1000000000 / (out_w + out_h);
  aom_usec_timer timer;
  aom_usec_timer_start(&timer);

  for (int i = 0; i < num_loops; ++i)
    test_impl(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w,
              sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta);

  aom_usec_timer_mark(&timer);
  const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
  printf("highbd warp %3dx%-3d: %7.2f ns\n", out_w, out_h,
         1000.0 * elapsed_time / num_loops);

  delete[] input_;
  delete[] output;
  delete[] dsta;
}

void AV1HighbdWarpFilterTest::RunCheckOutput(
    highbd_warp_affine_func test_impl) {
  const int w = 128, h = 128;
  const int border = 16;
  const int stride = w + 2 * border;
  HighbdWarpTestParam param = GET_PARAM(0);
  const int is_alpha_zero = GET_PARAM(1);
  const int is_beta_zero = GET_PARAM(2);
  const int is_gamma_zero = GET_PARAM(3);
  const int is_delta_zero = GET_PARAM(4);
  const int out_w = std::get<0>(param), out_h = std::get<1>(param);
  const int bd = std::get<3>(param);
  const int num_iters = std::get<2>(param);
  const int mask = (1 << bd) - 1;
  int i, j, sub_x, sub_y;

  // The warp functions always write rows with widths that are multiples of 8.
  // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8.
  int output_n = ((out_w + 7) & ~7) * out_h;
  uint16_t *input_ = new uint16_t[h * stride];
  uint16_t *input = input_ + border;
  uint16_t *output = new uint16_t[output_n];
  uint16_t *output2 = new uint16_t[output_n];
  int32_t mat[8];
  int16_t alpha, beta, gamma, delta;
  ConvolveParams conv_params = get_conv_params(0, 0, bd);
  CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n];
  CONV_BUF_TYPE *dstb = new CONV_BUF_TYPE[output_n];
  for (int i = 0; i < output_n; ++i) output[i] = output2[i] = rnd_.Rand16();

  for (i = 0; i < num_iters; ++i) {
    // Generate an input block and extend its borders horizontally
    for (int r = 0; r < h; ++r)
      for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask;
    for (int r = 0; r < h; ++r) {
      for (int c = 0; c < border; ++c) {
        input[r * stride - border + c] = input[r * stride];
        input[r * stride + w + c] = input[r * stride + (w - 1)];
      }
    }
    const int use_no_round = rnd_.Rand8() & 1;
    for (sub_x = 0; sub_x < 2; ++sub_x)
      for (sub_y = 0; sub_y < 2; ++sub_y) {
        generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta,
                              is_alpha_zero, is_beta_zero, is_gamma_zero,
                              is_delta_zero);
        for (int ii = 0; ii < 2; ++ii) {
          for (int jj = 0; jj < 5; ++jj) {
            for (int do_average = 0; do_average <= 1; ++do_average) {
              if (use_no_round) {
                conv_params =
                    get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd);
              } else {
                conv_params = get_conv_params(0, 0, bd);
              }
              if (jj >= 4) {
                conv_params.use_dist_wtd_comp_avg = 0;
              } else {
                conv_params.use_dist_wtd_comp_avg = 1;
                conv_params.fwd_offset = quant_dist_lookup_table[jj][ii];
                conv_params.bck_offset = quant_dist_lookup_table[jj][1 - ii];
              }

              av1_highbd_warp_affine_c(mat, input, w, h, stride, output, 32, 32,
                                       out_w, out_h, out_w, sub_x, sub_y, bd,
                                       &conv_params, alpha, beta, gamma, delta);
              if (use_no_round) {
                // TODO(angiebird): Change this to test_impl once we have SIMD
                // implementation
                conv_params =
                    get_conv_params_no_round(do_average, 0, dstb, out_w, 1, bd);
              }
              if (jj >= 4) {
                conv_params.use_dist_wtd_comp_avg = 0;
              } else {
                conv_params.use_dist_wtd_comp_avg = 1;
                conv_params.fwd_offset = quant_dist_lookup_table[jj][ii];
                conv_params.bck_offset = quant_dist_lookup_table[jj][1 - ii];
              }
              test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h,
                        out_w, sub_x, sub_y, bd, &conv_params, alpha, beta,
                        gamma, delta);

              if (use_no_round) {
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(dsta[j], dstb[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(output[j], output2[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
              } else {
                for (j = 0; j < out_w * out_h; ++j)
                  ASSERT_EQ(output[j], output2[j])
                      << "Pixel mismatch at index " << j << " = ("
                      << (j % out_w) << ", " << (j / out_w) << ") on iteration "
                      << i;
              }
            }
          }
        }
      }
  }

  delete[] input_;
  delete[] output;
  delete[] output2;
  delete[] dsta;
  delete[] dstb;
}
}  // namespace AV1HighbdWarpFilter
#endif  // CONFIG_AV1_HIGHBITDEPTH
}  // namespace libaom_test