aboutsummaryrefslogtreecommitdiff
path: root/third_party/pffft/pffft_unittest.cc
blob: c2bf1841916fc1c2142f9beb35eea15be43dcf56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>
#include <cmath>

#include "testing/gtest/include/gtest/gtest-death-test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/pffft/src/fftpack.h"
#include "third_party/pffft/src/pffft.h"

namespace pffft {
namespace test {
namespace {

static constexpr int kFftSizes[] = {
    16,  32,      64,  96,  128,  160,  192,  256,  288,  384,   5 * 96, 512,
    576, 5 * 128, 800, 864, 1024, 2048, 2592, 4000, 4096, 12000, 36864};

double frand() {
  return rand() / (double)RAND_MAX;
}

void PffftValidate(int fft_size, bool complex_fft) {
  PFFFT_Setup* pffft_status =
      pffft_new_setup(fft_size, complex_fft ? PFFFT_COMPLEX : PFFFT_REAL);
  ASSERT_TRUE(pffft_status) << "FFT size (" << fft_size << ") not supported.";

  int num_floats = fft_size * (complex_fft ? 2 : 1);
  int num_bytes = num_floats * sizeof(float);
  float* ref = static_cast<float*>(pffft_aligned_malloc(num_bytes));
  float* in = static_cast<float*>(pffft_aligned_malloc(num_bytes));
  float* out = static_cast<float*>(pffft_aligned_malloc(num_bytes));
  float* tmp = static_cast<float*>(pffft_aligned_malloc(num_bytes));
  float* tmp2 = static_cast<float*>(pffft_aligned_malloc(num_bytes));

  for (int pass = 0; pass < 2; ++pass) {
    SCOPED_TRACE(pass);
    float ref_max = 0;
    int k;

    // Compute reference solution with FFTPACK.
    if (pass == 0) {
      float* fftpack_buff =
          static_cast<float*>(malloc(2 * num_bytes + 15 * sizeof(float)));
      for (k = 0; k < num_floats; ++k) {
        ref[k] = in[k] = frand() * 2 - 1;
        out[k] = 1e30;
      }

      if (!complex_fft) {
        rffti(fft_size, fftpack_buff);
        rfftf(fft_size, ref, fftpack_buff);
        // Use our ordering for real FFTs instead of the one of fftpack.
        {
          float refN = ref[fft_size - 1];
          for (k = fft_size - 2; k >= 1; --k)
            ref[k + 1] = ref[k];
          ref[1] = refN;
        }
      } else {
        cffti(fft_size, fftpack_buff);
        cfftf(fft_size, ref, fftpack_buff);
      }

      free(fftpack_buff);
    }

    for (k = 0; k < num_floats; ++k) {
      ref_max = std::max<float>(ref_max, (float) fabs(ref[k]));
    }

    // Pass 0: non canonical ordering of transform coefficients.
    if (pass == 0) {
      // Test forward transform, with different input / output.
      pffft_transform(pffft_status, in, tmp, nullptr, PFFFT_FORWARD);
      memcpy(tmp2, tmp, num_bytes);
      memcpy(tmp, in, num_bytes);
      pffft_transform(pffft_status, tmp, tmp, nullptr, PFFFT_FORWARD);
      for (k = 0; k < num_floats; ++k) {
        SCOPED_TRACE(k);
        EXPECT_EQ(tmp2[k], tmp[k]);
      }

      // Test reordering.
      pffft_zreorder(pffft_status, tmp, out, PFFFT_FORWARD);
      pffft_zreorder(pffft_status, out, tmp, PFFFT_BACKWARD);
      for (k = 0; k < num_floats; ++k) {
        SCOPED_TRACE(k);
        EXPECT_EQ(tmp2[k], tmp[k]);
      }
      pffft_zreorder(pffft_status, tmp, out, PFFFT_FORWARD);
    } else {
      // Pass 1: canonical ordering of transform coefficients.
      pffft_transform_ordered(pffft_status, in, tmp, nullptr, PFFFT_FORWARD);
      memcpy(tmp2, tmp, num_bytes);
      memcpy(tmp, in, num_bytes);
      pffft_transform_ordered(pffft_status, tmp, tmp, nullptr, PFFFT_FORWARD);
      for (k = 0; k < num_floats; ++k) {
        SCOPED_TRACE(k);
        EXPECT_EQ(tmp2[k], tmp[k]);
      }
      memcpy(out, tmp, num_bytes);
    }

    {
      for (k = 0; k < num_floats; ++k) {
        SCOPED_TRACE(k);
        EXPECT_NEAR(ref[k], out[k], 1e-3 * ref_max) << "Forward FFT mismatch";
      }

      if (pass == 0) {
        pffft_transform(pffft_status, tmp, out, nullptr, PFFFT_BACKWARD);
      } else {
        pffft_transform_ordered(pffft_status, tmp, out, nullptr,
                                PFFFT_BACKWARD);
      }
      memcpy(tmp2, out, num_bytes);
      memcpy(out, tmp, num_bytes);
      if (pass == 0) {
        pffft_transform(pffft_status, out, out, nullptr, PFFFT_BACKWARD);
      } else {
        pffft_transform_ordered(pffft_status, out, out, nullptr,
                                PFFFT_BACKWARD);
      }
      for (k = 0; k < num_floats; ++k) {
        assert(tmp2[k] == out[k]);
        out[k] *= 1.f / fft_size;
      }
      for (k = 0; k < num_floats; ++k) {
        SCOPED_TRACE(k);
        EXPECT_NEAR(in[k], out[k], 1e-3 * ref_max) << "Reverse FFT mismatch";
      }
    }

    // Quick test of the circular convolution in FFT domain.
    {
      float conv_err = 0, conv_max = 0;

      pffft_zreorder(pffft_status, ref, tmp, PFFFT_FORWARD);
      memset(out, 0, num_bytes);
      pffft_zconvolve_accumulate(pffft_status, ref, ref, out, 1.0);
      pffft_zreorder(pffft_status, out, tmp2, PFFFT_FORWARD);

      for (k = 0; k < num_floats; k += 2) {
        float ar = tmp[k], ai = tmp[k + 1];
        if (complex_fft || k > 0) {
          tmp[k] = ar * ar - ai * ai;
          tmp[k + 1] = 2 * ar * ai;
        } else {
          tmp[0] = ar * ar;
          tmp[1] = ai * ai;
        }
      }

      for (k = 0; k < num_floats; ++k) {
        float d = fabs(tmp[k] - tmp2[k]), e = fabs(tmp[k]);
        if (d > conv_err)
          conv_err = d;
        if (e > conv_max)
          conv_max = e;
      }
      EXPECT_LT(conv_err, 1e-5 * conv_max) << "zconvolve error";
    }
  }

  pffft_destroy_setup(pffft_status);
  pffft_aligned_free(ref);
  pffft_aligned_free(in);
  pffft_aligned_free(out);
  pffft_aligned_free(tmp);
  pffft_aligned_free(tmp2);
}

}  // namespace

TEST(PffftTest, ValidateReal) {
  for (int fft_size : kFftSizes) {
    SCOPED_TRACE(fft_size);
    if (fft_size == 16) {
      continue;
    }
    PffftValidate(fft_size, /*complex_fft=*/false);
  }
}

TEST(PffftTest, ValidateComplex) {
  for (int fft_size : kFftSizes) {
    SCOPED_TRACE(fft_size);
    PffftValidate(fft_size, /*complex_fft=*/true);
  }
}

}  // namespace test
}  // namespace pffft