aboutsummaryrefslogtreecommitdiff
path: root/webrtc/base/linux.cc
blob: 1586b27b07eac8bd54e2f1f90fabb12a057f1680 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 *  Copyright 2008 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#if defined(WEBRTC_LINUX)
#include "webrtc/base/linux.h"

#include <ctype.h>

#include <errno.h>
#include <sys/utsname.h>
#include <sys/wait.h>

#include <cstdio>
#include <set>

#include "webrtc/base/stringencode.h"

namespace rtc {

static const char kCpuInfoFile[] = "/proc/cpuinfo";
static const char kCpuMaxFreqFile[] =
    "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";

ProcCpuInfo::ProcCpuInfo() {
}

ProcCpuInfo::~ProcCpuInfo() {
}

bool ProcCpuInfo::LoadFromSystem() {
  ConfigParser procfs;
  if (!procfs.Open(kCpuInfoFile)) {
    return false;
  }
  return procfs.Parse(&sections_);
};

bool ProcCpuInfo::GetSectionCount(size_t* count) {
  if (sections_.empty()) {
    return false;
  }
  if (count) {
    *count = sections_.size();
  }
  return true;
}

bool ProcCpuInfo::GetNumCpus(int* num) {
  if (sections_.empty()) {
    return false;
  }
  int total_cpus = 0;
#if defined(__arm__)
  // Count the number of blocks that have a "processor" key defined. On ARM,
  // there may be extra blocks of information that aren't per-processor.
  size_t section_count = sections_.size();
  for (size_t i = 0; i < section_count; ++i) {
    int processor_id;
    if (GetSectionIntValue(i, "processor", &processor_id)) {
      ++total_cpus;
    }
  }
  // Single core ARM systems don't include "processor" keys at all, so return
  // that we have a single core if we didn't find any explicitly above.
  if (total_cpus == 0) {
    total_cpus = 1;
  }
#else
  // On X86, there is exactly one info section per processor.
  total_cpus = static_cast<int>(sections_.size());
#endif
  if (num) {
    *num = total_cpus;
  }
  return true;
}

bool ProcCpuInfo::GetNumPhysicalCpus(int* num) {
  if (sections_.empty()) {
    return false;
  }
  // TODO: /proc/cpuinfo only reports cores that are currently
  // _online_, so this may underreport the number of physical cores.
#if defined(__arm__)
  // ARM (currently) has no hyperthreading, so just return the same value
  // as GetNumCpus.
  return GetNumCpus(num);
#else
  int total_cores = 0;
  std::set<int> physical_ids;
  size_t section_count = sections_.size();
  for (size_t i = 0; i < section_count; ++i) {
    int physical_id;
    int cores;
    // Count the cores for the physical id only if we have not counted the id.
    if (GetSectionIntValue(i, "physical id", &physical_id) &&
        GetSectionIntValue(i, "cpu cores", &cores) &&
        physical_ids.find(physical_id) == physical_ids.end()) {
      physical_ids.insert(physical_id);
      total_cores += cores;
    }
  }

  if (num) {
    *num = total_cores;
  }
  return true;
#endif
}

bool ProcCpuInfo::GetCpuFamily(int* id) {
  int cpu_family = 0;

#if defined(__arm__)
  // On some ARM platforms, there is no 'cpu family' in '/proc/cpuinfo'. But
  // there is 'CPU Architecture' which can be used as 'cpu family'.
  // See http://en.wikipedia.org/wiki/ARM_architecture for a good list of
  // ARM cpu families, architectures, and their mappings.
  // There may be multiple sessions that aren't per-processor. We need to scan
  // through each session until we find the first 'CPU architecture'.
  size_t section_count = sections_.size();
  for (size_t i = 0; i < section_count; ++i) {
    if (GetSectionIntValue(i, "CPU architecture", &cpu_family)) {
      // We returns the first one (if there are multiple entries).
      break;
    };
  }
#else
  GetSectionIntValue(0, "cpu family", &cpu_family);
#endif
  if (id) {
    *id = cpu_family;
  }
  return true;
}

bool ProcCpuInfo::GetSectionStringValue(size_t section_num,
                                        const std::string& key,
                                        std::string* result) {
  if (section_num >= sections_.size()) {
    return false;
  }
  ConfigParser::SimpleMap::iterator iter = sections_[section_num].find(key);
  if (iter == sections_[section_num].end()) {
    return false;
  }
  *result = iter->second;
  return true;
}

bool ProcCpuInfo::GetSectionIntValue(size_t section_num,
                                     const std::string& key,
                                     int* result) {
  if (section_num >= sections_.size()) {
    return false;
  }
  ConfigParser::SimpleMap::iterator iter = sections_[section_num].find(key);
  if (iter == sections_[section_num].end()) {
    return false;
  }
  return FromString(iter->second, result);
}

ConfigParser::ConfigParser() {}

ConfigParser::~ConfigParser() {}

bool ConfigParser::Open(const std::string& filename) {
  FileStream* fs = new FileStream();
  if (!fs->Open(filename, "r", NULL)) {
    return false;
  }
  instream_.reset(fs);
  return true;
}

void ConfigParser::Attach(StreamInterface* stream) {
  instream_.reset(stream);
}

bool ConfigParser::Parse(MapVector* key_val_pairs) {
  // Parses the file and places the found key-value pairs into key_val_pairs.
  SimpleMap section;
  while (ParseSection(&section)) {
    key_val_pairs->push_back(section);
    section.clear();
  }
  return (!key_val_pairs->empty());
}

bool ConfigParser::ParseSection(SimpleMap* key_val_pair) {
  // Parses the next section in the filestream and places the found key-value
  // pairs into key_val_pair.
  std::string key, value;
  while (ParseLine(&key, &value)) {
    (*key_val_pair)[key] = value;
  }
  return (!key_val_pair->empty());
}

bool ConfigParser::ParseLine(std::string* key, std::string* value) {
  // Parses the next line in the filestream and places the found key-value
  // pair into key and val.
  std::string line;
  if ((instream_->ReadLine(&line)) == SR_EOS) {
    return false;
  }
  std::vector<std::string> tokens;
  if (2 != split(line, ':', &tokens)) {
    return false;
  }
  // Removes whitespace at the end of Key name
  size_t pos = tokens[0].length() - 1;
  while ((pos > 0) && isspace(tokens[0][pos])) {
    pos--;
  }
  tokens[0].erase(pos + 1);
  // Removes whitespace at the start of value
  pos = 0;
  while (pos < tokens[1].length() && isspace(tokens[1][pos])) {
    pos++;
  }
  tokens[1].erase(0, pos);
  *key = tokens[0];
  *value = tokens[1];
  return true;
}

#if !defined(WEBRTC_CHROMIUM_BUILD)
static bool ExpectLineFromStream(FileStream* stream,
                                 std::string* out) {
  StreamResult res = stream->ReadLine(out);
  if (res != SR_SUCCESS) {
    if (res != SR_EOS) {
      LOG(LS_ERROR) << "Error when reading from stream";
    } else {
      LOG(LS_ERROR) << "Incorrect number of lines in stream";
    }
    return false;
  }
  return true;
}

static void ExpectEofFromStream(FileStream* stream) {
  std::string unused;
  StreamResult res = stream->ReadLine(&unused);
  if (res == SR_SUCCESS) {
    LOG(LS_WARNING) << "Ignoring unexpected extra lines from stream";
  } else if (res != SR_EOS) {
    LOG(LS_WARNING) << "Error when checking for extra lines from stream";
  }
}

#endif

std::string ReadLinuxUname() {
  struct utsname buf;
  if (uname(&buf) < 0) {
    LOG_ERR(LS_ERROR) << "Can't call uname()";
    return std::string();
  }
  std::ostringstream sstr;
  sstr << buf.sysname << " "
       << buf.release << " "
       << buf.version << " "
       << buf.machine;
  return sstr.str();
}

int ReadCpuMaxFreq() {
  FileStream fs;
  std::string str;
  int freq = -1;
  if (!fs.Open(kCpuMaxFreqFile, "r", NULL) ||
      SR_SUCCESS != fs.ReadLine(&str) ||
      !FromString(str, &freq)) {
    return -1;
  }
  return freq;
}

}  // namespace rtc

#endif  // defined(WEBRTC_LINUX)