aboutsummaryrefslogtreecommitdiff
path: root/webrtc/base/taskrunner.cc
blob: e7278f10a196dcafa9be07ab3d16ee2ebb970158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
 *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <algorithm>

#include "webrtc/base/taskrunner.h"

#include "webrtc/base/common.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/task.h"
#include "webrtc/base/logging.h"

namespace rtc {

TaskRunner::TaskRunner()
  : TaskParent(this),
    next_timeout_task_(NULL),
    tasks_running_(false)
#ifdef _DEBUG
    , abort_count_(0),
    deleting_task_(NULL)
#endif
{
}

TaskRunner::~TaskRunner() {
  // this kills and deletes children silently!
  AbortAllChildren();
  InternalRunTasks(true);
}

void TaskRunner::StartTask(Task * task) {
  tasks_.push_back(task);

  // the task we just started could be about to timeout --
  // make sure our "next timeout task" is correct
  UpdateTaskTimeout(task, 0);

  WakeTasks();
}

void TaskRunner::RunTasks() {
  InternalRunTasks(false);
}

void TaskRunner::InternalRunTasks(bool in_destructor) {
  // This shouldn't run while an abort is happening.
  // If that occurs, then tasks may be deleted in this method,
  // but pointers to them will still be in the
  // "ChildSet copy" in TaskParent::AbortAllChildren.
  // Subsequent use of those task may cause data corruption or crashes.  
  ASSERT(!abort_count_);
  // Running continues until all tasks are Blocked (ok for a small # of tasks)
  if (tasks_running_) {
    return;  // don't reenter
  }

  tasks_running_ = true;

  int64_t previous_timeout_time = next_task_timeout();

  int did_run = true;
  while (did_run) {
    did_run = false;
    // use indexing instead of iterators because tasks_ may grow
    for (size_t i = 0; i < tasks_.size(); ++i) {
      while (!tasks_[i]->Blocked()) {
        tasks_[i]->Step();
        did_run = true;
      }
    }
  }
  // Tasks are deleted when running has paused
  bool need_timeout_recalc = false;
  for (size_t i = 0; i < tasks_.size(); ++i) {
    if (tasks_[i]->IsDone()) {
      Task* task = tasks_[i];
      if (next_timeout_task_ &&
          task->unique_id() == next_timeout_task_->unique_id()) {
        next_timeout_task_ = NULL;
        need_timeout_recalc = true;
      }

#ifdef _DEBUG
      deleting_task_ = task;
#endif
      delete task;
#ifdef _DEBUG
      deleting_task_ = NULL;
#endif
      tasks_[i] = NULL;
    }
  }
  // Finally, remove nulls
  std::vector<Task *>::iterator it;
  it = std::remove(tasks_.begin(),
                   tasks_.end(),
                   reinterpret_cast<Task *>(NULL));

  tasks_.erase(it, tasks_.end());

  if (need_timeout_recalc)
    RecalcNextTimeout(NULL);

  // Make sure that adjustments are done to account
  // for any timeout changes (but don't call this
  // while being destroyed since it calls a pure virtual function).
  if (!in_destructor)
    CheckForTimeoutChange(previous_timeout_time);

  tasks_running_ = false;
}

void TaskRunner::PollTasks() {
  // see if our "next potentially timed-out task" has indeed timed out.
  // If it has, wake it up, then queue up the next task in line
  // Repeat while we have new timed-out tasks.
  // TODO: We need to guard against WakeTasks not updating
  // next_timeout_task_. Maybe also add documentation in the header file once
  // we understand this code better.
  Task* old_timeout_task = NULL;
  while (next_timeout_task_ &&
      old_timeout_task != next_timeout_task_ &&
      next_timeout_task_->TimedOut()) {
    old_timeout_task = next_timeout_task_;
    next_timeout_task_->Wake();
    WakeTasks();
  }
}

int64_t TaskRunner::next_task_timeout() const {
  if (next_timeout_task_) {
    return next_timeout_task_->timeout_time();
  }
  return 0;
}

// this function gets called frequently -- when each task changes
// state to something other than DONE, ERROR or BLOCKED, it calls
// ResetTimeout(), which will call this function to make sure that
// the next timeout-able task hasn't changed.  The logic in this function
// prevents RecalcNextTimeout() from getting called in most cases,
// effectively making the task scheduler O-1 instead of O-N

void TaskRunner::UpdateTaskTimeout(Task* task,
                                   int64_t previous_task_timeout_time) {
  ASSERT(task != NULL);
  int64_t previous_timeout_time = next_task_timeout();
  bool task_is_timeout_task = next_timeout_task_ != NULL &&
      task->unique_id() == next_timeout_task_->unique_id();
  if (task_is_timeout_task) {
    previous_timeout_time = previous_task_timeout_time;
  }

  // if the relevant task has a timeout, then
  // check to see if it's closer than the current
  // "about to timeout" task
  if (task->timeout_time()) {
    if (next_timeout_task_ == NULL ||
        (task->timeout_time() <= next_timeout_task_->timeout_time())) {
      next_timeout_task_ = task;
    }
  } else if (task_is_timeout_task) {
    // otherwise, if the task doesn't have a timeout,
    // and it used to be our "about to timeout" task,
    // walk through all the tasks looking for the real
    // "about to timeout" task
    RecalcNextTimeout(task);
  }

  // Note when task_running_, then the running routine
  // (TaskRunner::InternalRunTasks) is responsible for calling
  // CheckForTimeoutChange.
  if (!tasks_running_) {
    CheckForTimeoutChange(previous_timeout_time);
  }
}

void TaskRunner::RecalcNextTimeout(Task *exclude_task) {
  // walk through all the tasks looking for the one
  // which satisfies the following:
  //   it's not finished already
  //   we're not excluding it
  //   it has the closest timeout time

  int64_t next_timeout_time = 0;
  next_timeout_task_ = NULL;

  for (size_t i = 0; i < tasks_.size(); ++i) {
    Task *task = tasks_[i];
    // if the task isn't complete, and it actually has a timeout time
    if (!task->IsDone() && (task->timeout_time() > 0))
      // if it doesn't match our "exclude" task
      if (exclude_task == NULL ||
          exclude_task->unique_id() != task->unique_id())
        // if its timeout time is sooner than our current timeout time
        if (next_timeout_time == 0 ||
            task->timeout_time() <= next_timeout_time) {
          // set this task as our next-to-timeout
          next_timeout_time = task->timeout_time();
          next_timeout_task_ = task;
        }
  }
}

void TaskRunner::CheckForTimeoutChange(int64_t previous_timeout_time) {
  int64_t next_timeout = next_task_timeout();
  bool timeout_change = (previous_timeout_time == 0 && next_timeout != 0) ||
      next_timeout < previous_timeout_time ||
      (previous_timeout_time <= CurrentTime() &&
       previous_timeout_time != next_timeout);
  if (timeout_change) {
    OnTimeoutChange();
  }
}

} // namespace rtc