aboutsummaryrefslogtreecommitdiff
path: root/webrtc/base/virtualsocket_unittest.cc
blob: 2cd2b5e4de612a65e97eabdafdd81d55c5a8a1fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
/*
 *  Copyright 2006 The WebRTC Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <time.h>
#if defined(WEBRTC_POSIX)
#include <netinet/in.h>
#endif

#include "webrtc/base/arraysize.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/testclient.h"
#include "webrtc/base/testutils.h"
#include "webrtc/base/thread.h"
#include "webrtc/base/timeutils.h"
#include "webrtc/base/virtualsocketserver.h"

using namespace rtc;

// Sends at a constant rate but with random packet sizes.
struct Sender : public MessageHandler {
  Sender(Thread* th, AsyncSocket* s, uint32_t rt)
      : thread(th),
        socket(new AsyncUDPSocket(s)),
        done(false),
        rate(rt),
        count(0) {
    last_send = rtc::Time();
    thread->PostDelayed(NextDelay(), this, 1);
  }

  uint32_t NextDelay() {
    uint32_t size = (rand() % 4096) + 1;
    return 1000 * size / rate;
  }

  void OnMessage(Message* pmsg) {
    ASSERT_EQ(1u, pmsg->message_id);

    if (done)
      return;

    uint32_t cur_time = rtc::Time();
    uint32_t delay = cur_time - last_send;
    uint32_t size = rate * delay / 1000;
    size = std::min<uint32_t>(size, 4096);
    size = std::max<uint32_t>(size, sizeof(uint32_t));

    count += size;
    memcpy(dummy, &cur_time, sizeof(cur_time));
    socket->Send(dummy, size, options);

    last_send = cur_time;
    thread->PostDelayed(NextDelay(), this, 1);
  }

  Thread* thread;
  scoped_ptr<AsyncUDPSocket> socket;
  rtc::PacketOptions options;
  bool done;
  uint32_t rate;  // bytes per second
  uint32_t count;
  uint32_t last_send;
  char dummy[4096];
};

struct Receiver : public MessageHandler, public sigslot::has_slots<> {
  Receiver(Thread* th, AsyncSocket* s, uint32_t bw)
      : thread(th),
        socket(new AsyncUDPSocket(s)),
        bandwidth(bw),
        done(false),
        count(0),
        sec_count(0),
        sum(0),
        sum_sq(0),
        samples(0) {
    socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket);
    thread->PostDelayed(1000, this, 1);
  }

  ~Receiver() {
    thread->Clear(this);
  }

  void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size,
                    const SocketAddress& remote_addr,
                    const PacketTime& packet_time) {
    ASSERT_EQ(socket.get(), s);
    ASSERT_GE(size, 4U);

    count += size;
    sec_count += size;

    uint32_t send_time = *reinterpret_cast<const uint32_t*>(data);
    uint32_t recv_time = rtc::Time();
    uint32_t delay = recv_time - send_time;
    sum += delay;
    sum_sq += delay * delay;
    samples += 1;
  }

  void OnMessage(Message* pmsg) {
    ASSERT_EQ(1u, pmsg->message_id);

    if (done)
      return;

    // It is always possible for us to receive more than expected because
    // packets can be further delayed in delivery.
    if (bandwidth > 0)
      ASSERT_TRUE(sec_count <= 5 * bandwidth / 4);
    sec_count = 0;
    thread->PostDelayed(1000, this, 1);
  }

  Thread* thread;
  scoped_ptr<AsyncUDPSocket> socket;
  uint32_t bandwidth;
  bool done;
  size_t count;
  size_t sec_count;
  double sum;
  double sum_sq;
  uint32_t samples;
};

class VirtualSocketServerTest : public testing::Test {
 public:
  VirtualSocketServerTest() : ss_(new VirtualSocketServer(NULL)),
                              kIPv4AnyAddress(IPAddress(INADDR_ANY), 0),
                              kIPv6AnyAddress(IPAddress(in6addr_any), 0) {
  }

  void CheckPortIncrementalization(const SocketAddress& post,
                                   const SocketAddress& pre) {
    EXPECT_EQ(post.port(), pre.port() + 1);
    IPAddress post_ip = post.ipaddr();
    IPAddress pre_ip = pre.ipaddr();
    EXPECT_EQ(pre_ip.family(), post_ip.family());
    if (post_ip.family() == AF_INET) {
      in_addr pre_ipv4 = pre_ip.ipv4_address();
      in_addr post_ipv4 = post_ip.ipv4_address();
      EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr);
    } else if (post_ip.family() == AF_INET6) {
      in6_addr post_ip6 = post_ip.ipv6_address();
      in6_addr pre_ip6 = pre_ip.ipv6_address();
      uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr);
      uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr);
      EXPECT_EQ(post_as_ints[3], pre_as_ints[3]);
    }
  }

  // Test a client can bind to the any address, and all sent packets will have
  // the default route as the source address. Also, it can receive packets sent
  // to the default route.
  void TestDefaultRoute(const IPAddress& default_route) {
    ss_->SetDefaultRoute(default_route);

    // Create client1 bound to the any address.
    AsyncSocket* socket =
        ss_->CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
    socket->Bind(EmptySocketAddressWithFamily(default_route.family()));
    SocketAddress client1_any_addr = socket->GetLocalAddress();
    EXPECT_TRUE(client1_any_addr.IsAnyIP());
    TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));

    // Create client2 bound to the default route.
    AsyncSocket* socket2 =
        ss_->CreateAsyncSocket(default_route.family(), SOCK_DGRAM);
    socket2->Bind(SocketAddress(default_route, 0));
    SocketAddress client2_addr = socket2->GetLocalAddress();
    EXPECT_FALSE(client2_addr.IsAnyIP());
    TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));

    // Client1 sends to client2, client2 should see the default route as
    // client1's address.
    SocketAddress client1_addr;
    EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
    EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
    EXPECT_EQ(client1_addr,
              SocketAddress(default_route, client1_any_addr.port()));

    // Client2 can send back to client1's default route address.
    EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr));
    EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
  }

  void BasicTest(const SocketAddress& initial_addr) {
    AsyncSocket* socket = ss_->CreateAsyncSocket(initial_addr.family(),
                                                 SOCK_DGRAM);
    socket->Bind(initial_addr);
    SocketAddress server_addr = socket->GetLocalAddress();
    // Make sure VSS didn't switch families on us.
    EXPECT_EQ(server_addr.family(), initial_addr.family());

    TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));
    AsyncSocket* socket2 =
        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
    TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));

    SocketAddress client2_addr;
    EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
    EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));

    SocketAddress client1_addr;
    EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
    EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
    EXPECT_EQ(client1_addr, server_addr);

    SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family());
    for (int i = 0; i < 10; i++) {
      client2 = new TestClient(AsyncUDPSocket::Create(ss_, empty));

      SocketAddress next_client2_addr;
      EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr));
      EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr));
      CheckPortIncrementalization(next_client2_addr, client2_addr);
      // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1);

      SocketAddress server_addr2;
      EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr));
      EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2));
      EXPECT_EQ(server_addr2, server_addr);

      client2_addr = next_client2_addr;
    }
  }

  // initial_addr should be made from either INADDR_ANY or in6addr_any.
  void ConnectTest(const SocketAddress& initial_addr) {
    testing::StreamSink sink;
    SocketAddress accept_addr;
    const SocketAddress kEmptyAddr =
        EmptySocketAddressWithFamily(initial_addr.family());

    // Create client
    AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(client);
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_TRUE(client->GetLocalAddress().IsNil());

    // Create server
    AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(server);
    EXPECT_NE(0, server->Listen(5));  // Bind required
    EXPECT_EQ(0, server->Bind(initial_addr));
    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
    EXPECT_EQ(0, server->Listen(5));
    EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING);

    // No pending server connections
    EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
    EXPECT_TRUE(NULL == server->Accept(&accept_addr));
    EXPECT_EQ(AF_UNSPEC, accept_addr.family());

    // Attempt connect to listening socket
    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
    EXPECT_NE(client->GetLocalAddress(), kEmptyAddr);  // Implicit Bind
    EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family());  // Implicit Bind
    EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress());

    // Client is connecting
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));

    ss_->ProcessMessagesUntilIdle();

    // Client still connecting
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));

    // Server has pending connection
    EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
    Socket* accepted = server->Accept(&accept_addr);
    EXPECT_TRUE(NULL != accepted);
    EXPECT_NE(accept_addr, kEmptyAddr);
    EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr);

    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);
    EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress());
    EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress());

    ss_->ProcessMessagesUntilIdle();

    // Client has connected
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED);
    EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
    EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE));
    EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
    EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress());
  }

  void ConnectToNonListenerTest(const SocketAddress& initial_addr) {
    testing::StreamSink sink;
    SocketAddress accept_addr;
    const SocketAddress nil_addr;
    const SocketAddress empty_addr =
        EmptySocketAddressWithFamily(initial_addr.family());

    // Create client
    AsyncSocket* client = ss_->CreateAsyncSocket(initial_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(client);

    // Create server
    AsyncSocket* server = ss_->CreateAsyncSocket(initial_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(server);
    EXPECT_EQ(0, server->Bind(initial_addr));
    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());
    // Attempt connect to non-listening socket
    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));

    ss_->ProcessMessagesUntilIdle();

    // No pending server connections
    EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
    EXPECT_TRUE(NULL == server->Accept(&accept_addr));
    EXPECT_EQ(accept_addr, nil_addr);

    // Connection failed
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
    EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR));
    EXPECT_EQ(client->GetRemoteAddress(), nil_addr);
  }

  void CloseDuringConnectTest(const SocketAddress& initial_addr) {
    testing::StreamSink sink;
    SocketAddress accept_addr;
    const SocketAddress empty_addr =
        EmptySocketAddressWithFamily(initial_addr.family());

    // Create client and server
    scoped_ptr<AsyncSocket> client(ss_->CreateAsyncSocket(initial_addr.family(),
                                                          SOCK_STREAM));
    sink.Monitor(client.get());
    scoped_ptr<AsyncSocket> server(ss_->CreateAsyncSocket(initial_addr.family(),
                                                          SOCK_STREAM));
    sink.Monitor(server.get());

    // Initiate connect
    EXPECT_EQ(0, server->Bind(initial_addr));
    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, server->Listen(5));
    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));

    // Server close before socket enters accept queue
    EXPECT_FALSE(sink.Check(server.get(), testing::SSE_READ));
    server->Close();

    ss_->ProcessMessagesUntilIdle();

    // Result: connection failed
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR));

    server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
    sink.Monitor(server.get());

    // Initiate connect
    EXPECT_EQ(0, server->Bind(initial_addr));
    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, server->Listen(5));
    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));

    ss_->ProcessMessagesUntilIdle();

    // Server close while socket is in accept queue
    EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ));
    server->Close();

    ss_->ProcessMessagesUntilIdle();

    // Result: connection failed
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_TRUE(sink.Check(client.get(), testing::SSE_ERROR));

    // New server
    server.reset(ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM));
    sink.Monitor(server.get());

    // Initiate connect
    EXPECT_EQ(0, server->Bind(initial_addr));
    EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, server->Listen(5));
    EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));

    ss_->ProcessMessagesUntilIdle();

    // Server accepts connection
    EXPECT_TRUE(sink.Check(server.get(), testing::SSE_READ));
    scoped_ptr<AsyncSocket> accepted(server->Accept(&accept_addr));
    ASSERT_TRUE(NULL != accepted.get());
    sink.Monitor(accepted.get());

    // Client closes before connection complets
    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED);

    // Connected message has not been processed yet.
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING);
    client->Close();

    ss_->ProcessMessagesUntilIdle();

    // Result: accepted socket closes
    EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_TRUE(sink.Check(accepted.get(), testing::SSE_CLOSE));
    EXPECT_FALSE(sink.Check(client.get(), testing::SSE_CLOSE));
  }

  void CloseTest(const SocketAddress& initial_addr) {
    testing::StreamSink sink;
    const SocketAddress kEmptyAddr;

    // Create clients
    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
    sink.Monitor(a);
    a->Bind(initial_addr);
    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());


    scoped_ptr<AsyncSocket> b(ss_->CreateAsyncSocket(initial_addr.family(),
                                                     SOCK_STREAM));
    sink.Monitor(b.get());
    b->Bind(initial_addr);
    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));

    ss_->ProcessMessagesUntilIdle();

    EXPECT_TRUE(sink.Check(a, testing::SSE_OPEN));
    EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED);
    EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress());

    EXPECT_TRUE(sink.Check(b.get(), testing::SSE_OPEN));
    EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED);
    EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress());

    EXPECT_EQ(1, a->Send("a", 1));
    b->Close();
    EXPECT_EQ(1, a->Send("b", 1));

    ss_->ProcessMessagesUntilIdle();

    char buffer[10];
    EXPECT_FALSE(sink.Check(b.get(), testing::SSE_READ));
    EXPECT_EQ(-1, b->Recv(buffer, 10));

    EXPECT_TRUE(sink.Check(a, testing::SSE_CLOSE));
    EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr);

    // No signal for Closer
    EXPECT_FALSE(sink.Check(b.get(), testing::SSE_CLOSE));
    EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr);
  }

  void TcpSendTest(const SocketAddress& initial_addr) {
    testing::StreamSink sink;
    const SocketAddress kEmptyAddr;

    // Connect two sockets
    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
    sink.Monitor(a);
    a->Bind(initial_addr);
    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());

    AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(), SOCK_STREAM);
    sink.Monitor(b);
    b->Bind(initial_addr);
    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));

    ss_->ProcessMessagesUntilIdle();

    const size_t kBufferSize = 2000;
    ss_->set_send_buffer_capacity(kBufferSize);
    ss_->set_recv_buffer_capacity(kBufferSize);

    const size_t kDataSize = 5000;
    char send_buffer[kDataSize], recv_buffer[kDataSize];
    for (size_t i = 0; i < kDataSize; ++i)
      send_buffer[i] = static_cast<char>(i % 256);
    memset(recv_buffer, 0, sizeof(recv_buffer));
    size_t send_pos = 0, recv_pos = 0;

    // Can't send more than send buffer in one write
    int result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
    EXPECT_EQ(static_cast<int>(kBufferSize), result);
    send_pos += result;

    ss_->ProcessMessagesUntilIdle();
    EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));

    // Receive buffer is already filled, fill send buffer again
    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
    EXPECT_EQ(static_cast<int>(kBufferSize), result);
    send_pos += result;

    ss_->ProcessMessagesUntilIdle();
    EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE));
    EXPECT_FALSE(sink.Check(b, testing::SSE_READ));

    // No more room in send or receive buffer
    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
    EXPECT_EQ(-1, result);
    EXPECT_TRUE(a->IsBlocking());

    // Read a subset of the data
    result = b->Recv(recv_buffer + recv_pos, 500);
    EXPECT_EQ(500, result);
    recv_pos += result;

    ss_->ProcessMessagesUntilIdle();
    EXPECT_TRUE(sink.Check(a, testing::SSE_WRITE));
    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));

    // Room for more on the sending side
    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
    EXPECT_EQ(500, result);
    send_pos += result;

    // Empty the recv buffer
    while (true) {
      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
      if (result < 0) {
        EXPECT_EQ(-1, result);
        EXPECT_TRUE(b->IsBlocking());
        break;
      }
      recv_pos += result;
    }

    ss_->ProcessMessagesUntilIdle();
    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));

    // Continue to empty the recv buffer
    while (true) {
      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
      if (result < 0) {
        EXPECT_EQ(-1, result);
        EXPECT_TRUE(b->IsBlocking());
        break;
      }
      recv_pos += result;
    }

    // Send last of the data
    result = a->Send(send_buffer + send_pos, kDataSize - send_pos);
    EXPECT_EQ(500, result);
    send_pos += result;

    ss_->ProcessMessagesUntilIdle();
    EXPECT_TRUE(sink.Check(b, testing::SSE_READ));

    // Receive the last of the data
    while (true) {
      result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos);
      if (result < 0) {
        EXPECT_EQ(-1, result);
        EXPECT_TRUE(b->IsBlocking());
        break;
      }
      recv_pos += result;
    }

    ss_->ProcessMessagesUntilIdle();
    EXPECT_FALSE(sink.Check(b, testing::SSE_READ));

    // The received data matches the sent data
    EXPECT_EQ(kDataSize, send_pos);
    EXPECT_EQ(kDataSize, recv_pos);
    EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize));
  }

  void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) {
    const SocketAddress kEmptyAddr;

    // Connect two sockets
    AsyncSocket* a = ss_->CreateAsyncSocket(initial_addr.family(),
                                            SOCK_STREAM);
    AsyncSocket* b = ss_->CreateAsyncSocket(initial_addr.family(),
                                            SOCK_STREAM);
    a->Bind(initial_addr);
    EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family());

    b->Bind(initial_addr);
    EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family());

    EXPECT_EQ(0, a->Connect(b->GetLocalAddress()));
    EXPECT_EQ(0, b->Connect(a->GetLocalAddress()));
    ss_->ProcessMessagesUntilIdle();

    // First, deliver all packets in 0 ms.
    char buffer[2] = { 0, 0 };
    const char cNumPackets = 10;
    for (char i = 0; i < cNumPackets; ++i) {
      buffer[0] = '0' + i;
      EXPECT_EQ(1, a->Send(buffer, 1));
    }

    ss_->ProcessMessagesUntilIdle();

    for (char i = 0; i < cNumPackets; ++i) {
      EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer)));
      EXPECT_EQ(static_cast<char>('0' + i), buffer[0]);
    }

    // Next, deliver packets at random intervals
    const uint32_t mean = 50;
    const uint32_t stddev = 50;

    ss_->set_delay_mean(mean);
    ss_->set_delay_stddev(stddev);
    ss_->UpdateDelayDistribution();

    for (char i = 0; i < cNumPackets; ++i) {
      buffer[0] = 'A' + i;
      EXPECT_EQ(1, a->Send(buffer, 1));
    }

    ss_->ProcessMessagesUntilIdle();

    for (char i = 0; i < cNumPackets; ++i) {
      EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer)));
      EXPECT_EQ(static_cast<char>('A' + i), buffer[0]);
    }
  }

  // It is important that initial_addr's port has to be 0 such that the
  // incremental port behavior could ensure the 2 Binds result in different
  // address.
  void BandwidthTest(const SocketAddress& initial_addr) {
    AsyncSocket* send_socket =
        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
    AsyncSocket* recv_socket =
        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
    ASSERT_EQ(0, send_socket->Bind(initial_addr));
    ASSERT_EQ(0, recv_socket->Bind(initial_addr));
    EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
    EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
    ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));

    uint32_t bandwidth = 64 * 1024;
    ss_->set_bandwidth(bandwidth);

    Thread* pthMain = Thread::Current();
    Sender sender(pthMain, send_socket, 80 * 1024);
    Receiver receiver(pthMain, recv_socket, bandwidth);

    pthMain->ProcessMessages(5000);
    sender.done = true;
    pthMain->ProcessMessages(5000);

    ASSERT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4);
    ASSERT_TRUE(receiver.count <= 6 * bandwidth);  // queue could drain for 1s

    ss_->set_bandwidth(0);
  }

  // It is important that initial_addr's port has to be 0 such that the
  // incremental port behavior could ensure the 2 Binds result in different
  // address.
  void DelayTest(const SocketAddress& initial_addr) {
    time_t seed = ::time(NULL);
    LOG(LS_VERBOSE) << "seed = " << seed;
    srand(static_cast<unsigned int>(seed));

    const uint32_t mean = 2000;
    const uint32_t stddev = 500;

    ss_->set_delay_mean(mean);
    ss_->set_delay_stddev(stddev);
    ss_->UpdateDelayDistribution();

    AsyncSocket* send_socket =
        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
    AsyncSocket* recv_socket =
        ss_->CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM);
    ASSERT_EQ(0, send_socket->Bind(initial_addr));
    ASSERT_EQ(0, recv_socket->Bind(initial_addr));
    EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family());
    EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family());
    ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress()));

    Thread* pthMain = Thread::Current();
    // Avg packet size is 2K, so at 200KB/s for 10s, we should see about
    // 1000 packets, which is necessary to get a good distribution.
    Sender sender(pthMain, send_socket, 100 * 2 * 1024);
    Receiver receiver(pthMain, recv_socket, 0);

    pthMain->ProcessMessages(10000);
    sender.done = receiver.done = true;
    ss_->ProcessMessagesUntilIdle();

    const double sample_mean = receiver.sum / receiver.samples;
    double num =
        receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum;
    double den = receiver.samples * (receiver.samples - 1);
    const double sample_stddev = sqrt(num / den);
    LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev;

    EXPECT_LE(500u, receiver.samples);
    // We initially used a 0.1 fudge factor, but on the build machine, we
    // have seen the value differ by as much as 0.13.
    EXPECT_NEAR(mean, sample_mean, 0.15 * mean);
    EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev);

    ss_->set_delay_mean(0);
    ss_->set_delay_stddev(0);
    ss_->UpdateDelayDistribution();
  }

  // Test cross-family communication between a client bound to client_addr and a
  // server bound to server_addr. shouldSucceed indicates if communication is
  // expected to work or not.
  void CrossFamilyConnectionTest(const SocketAddress& client_addr,
                                 const SocketAddress& server_addr,
                                 bool shouldSucceed) {
    testing::StreamSink sink;
    SocketAddress accept_address;
    const SocketAddress kEmptyAddr;

    // Client gets a IPv4 address
    AsyncSocket* client = ss_->CreateAsyncSocket(client_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(client);
    EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
    EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr);
    client->Bind(client_addr);

    // Server gets a non-mapped non-any IPv6 address.
    // IPv4 sockets should not be able to connect to this.
    AsyncSocket* server = ss_->CreateAsyncSocket(server_addr.family(),
                                                 SOCK_STREAM);
    sink.Monitor(server);
    server->Bind(server_addr);
    server->Listen(5);

    if (shouldSucceed) {
      EXPECT_EQ(0, client->Connect(server->GetLocalAddress()));
      ss_->ProcessMessagesUntilIdle();
      EXPECT_TRUE(sink.Check(server, testing::SSE_READ));
      Socket* accepted = server->Accept(&accept_address);
      EXPECT_TRUE(NULL != accepted);
      EXPECT_NE(kEmptyAddr, accept_address);
      ss_->ProcessMessagesUntilIdle();
      EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN));
      EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress());
    } else {
      // Check that the connection failed.
      EXPECT_EQ(-1, client->Connect(server->GetLocalAddress()));
      ss_->ProcessMessagesUntilIdle();

      EXPECT_FALSE(sink.Check(server, testing::SSE_READ));
      EXPECT_TRUE(NULL == server->Accept(&accept_address));
      EXPECT_EQ(accept_address, kEmptyAddr);
      EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED);
      EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN));
      EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr);
    }
  }

  // Test cross-family datagram sending between a client bound to client_addr
  // and a server bound to server_addr. shouldSucceed indicates if sending is
  // expected to succeed or not.
  void CrossFamilyDatagramTest(const SocketAddress& client_addr,
                               const SocketAddress& server_addr,
                               bool shouldSucceed) {
    AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM);
    socket->Bind(server_addr);
    SocketAddress bound_server_addr = socket->GetLocalAddress();
    TestClient* client1 = new TestClient(new AsyncUDPSocket(socket));

    AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM);
    socket2->Bind(client_addr);
    TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2));
    SocketAddress client2_addr;

    if (shouldSucceed) {
      EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr));
      EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr));
      SocketAddress client1_addr;
      EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr));
      EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr));
      EXPECT_EQ(client1_addr, bound_server_addr);
    } else {
      EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr));
      EXPECT_TRUE(client1->CheckNoPacket());
    }
  }

 protected:
  virtual void SetUp() {
    Thread::Current()->set_socketserver(ss_);
  }
  virtual void TearDown() {
    Thread::Current()->set_socketserver(NULL);
  }

  VirtualSocketServer* ss_;
  const SocketAddress kIPv4AnyAddress;
  const SocketAddress kIPv6AnyAddress;
};

TEST_F(VirtualSocketServerTest, basic_v4) {
  SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000);
  BasicTest(ipv4_test_addr);
}

TEST_F(VirtualSocketServerTest, basic_v6) {
  SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000);
  BasicTest(ipv6_test_addr);
}

TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) {
  IPAddress ipv4_default_addr(0x01020304);
  TestDefaultRoute(ipv4_default_addr);
}

TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) {
  IPAddress ipv6_default_addr;
  EXPECT_TRUE(
      IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr));
  TestDefaultRoute(ipv6_default_addr);
}

TEST_F(VirtualSocketServerTest, connect_v4) {
  ConnectTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, connect_v6) {
  ConnectTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) {
  ConnectToNonListenerTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) {
  ConnectToNonListenerTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, close_during_connect_v4) {
  CloseDuringConnectTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, close_during_connect_v6) {
  CloseDuringConnectTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, close_v4) {
  CloseTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, close_v6) {
  CloseTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, tcp_send_v4) {
  TcpSendTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, tcp_send_v6) {
  TcpSendTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) {
  TcpSendsPacketsInOrderTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) {
  TcpSendsPacketsInOrderTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, bandwidth_v4) {
  BandwidthTest(kIPv4AnyAddress);
}

TEST_F(VirtualSocketServerTest, bandwidth_v6) {
  BandwidthTest(kIPv6AnyAddress);
}

TEST_F(VirtualSocketServerTest, delay_v4) {
  DelayTest(kIPv4AnyAddress);
}

// See: https://code.google.com/p/webrtc/issues/detail?id=2409
TEST_F(VirtualSocketServerTest, DISABLED_delay_v6) {
  DelayTest(kIPv6AnyAddress);
}

// Works, receiving socket sees 127.0.0.2.
TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) {
  CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0),
                            SocketAddress("0.0.0.0", 5000),
                            true);
}

// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) {
  CrossFamilyConnectionTest(SocketAddress("::2", 0),
                            SocketAddress("0.0.0.0", 5000),
                            false);
}

// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) {
  CrossFamilyConnectionTest(SocketAddress("::2", 0),
                            SocketAddress("::ffff:127.0.0.1", 5000),
                            false);
}

// Works. receiving socket sees ::ffff:127.0.0.2.
TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) {
  CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
                            SocketAddress("::", 5000),
                            true);
}

// Fails.
TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) {
  CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0),
                            SocketAddress("::1", 5000),
                            false);
}

// Works. Receiving socket sees ::ffff:127.0.0.1.
TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) {
  CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0),
                            SocketAddress("::ffff:127.0.0.2", 5000),
                            true);
}

// Works, receiving socket sees a result from GetNextIP.
TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) {
  CrossFamilyConnectionTest(SocketAddress("::", 0),
                            SocketAddress("0.0.0.0", 5000),
                            true);
}

// Works, receiving socket sees whatever GetNextIP gave the client.
TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) {
  CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0),
                            SocketAddress("::", 5000),
                            true);
}

TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) {
  CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0),
                          SocketAddress("::", 5000),
                          true);
}

TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) {
  CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0),
                          SocketAddress("0.0.0.0", 5000),
                          true);
}

TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) {
  CrossFamilyDatagramTest(SocketAddress("::2", 0),
                          SocketAddress("0.0.0.0", 5000),
                          false);
}

TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) {
  CrossFamilyDatagramTest(SocketAddress("::2", 0),
                          SocketAddress("::ffff:127.0.0.1", 5000),
                          false);
}

TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) {
  CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
                          SocketAddress("::", 5000),
                          true);
}

TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) {
  CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0),
                          SocketAddress("::1", 5000),
                          false);
}

TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) {
  CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0),
                          SocketAddress("::ffff:127.0.0.2", 5000),
                          true);
}

TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) {
  CrossFamilyDatagramTest(SocketAddress("::", 0),
                          SocketAddress("0.0.0.0", 5000),
                          true);
}

TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) {
  const uint32_t kTestMean[] = {10, 100, 333, 1000};
  const double kTestDev[] = { 0.25, 0.1, 0.01 };
  // TODO: The current code only works for 1000 data points or more.
  const uint32_t kTestSamples[] = {/*10, 100,*/ 1000};
  for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) {
    for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) {
      for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) {
        ASSERT_LT(0u, kTestSamples[sidx]);
        const uint32_t kStdDev =
            static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]);
        VirtualSocketServer::Function* f =
            VirtualSocketServer::CreateDistribution(kTestMean[midx],
                                                    kStdDev,
                                                    kTestSamples[sidx]);
        ASSERT_TRUE(NULL != f);
        ASSERT_EQ(kTestSamples[sidx], f->size());
        double sum = 0;
        for (uint32_t i = 0; i < f->size(); ++i) {
          sum += (*f)[i].second;
        }
        const double mean = sum / f->size();
        double sum_sq_dev = 0;
        for (uint32_t i = 0; i < f->size(); ++i) {
          double dev = (*f)[i].second - mean;
          sum_sq_dev += dev * dev;
        }
        const double stddev = sqrt(sum_sq_dev / f->size());
        EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx])
          << "M=" << kTestMean[midx]
          << " SD=" << kStdDev
          << " N=" << kTestSamples[sidx];
        EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev)
          << "M=" << kTestMean[midx]
          << " SD=" << kStdDev
          << " N=" << kTestSamples[sidx];
        delete f;
      }
    }
  }
}