aboutsummaryrefslogtreecommitdiff
path: root/webrtc/common_audio/audio_converter_unittest.cc
blob: c85b96e28589bbc92ac424879aed402260de0b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <cmath>
#include <algorithm>
#include <vector>

#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/common_audio/audio_converter.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"

namespace webrtc {

typedef rtc::scoped_ptr<ChannelBuffer<float>> ScopedBuffer;

// Sets the signal value to increase by |data| with every sample.
ScopedBuffer CreateBuffer(const std::vector<float>& data, int frames) {
  const int num_channels = static_cast<int>(data.size());
  ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
  for (int i = 0; i < num_channels; ++i)
    for (int j = 0; j < frames; ++j)
      sb->channels()[i][j] = data[i] * j;
  return sb;
}

void VerifyParams(const ChannelBuffer<float>& ref,
                  const ChannelBuffer<float>& test) {
  EXPECT_EQ(ref.num_channels(), test.num_channels());
  EXPECT_EQ(ref.num_frames(), test.num_frames());
}

// Computes the best SNR based on the error between |ref_frame| and
// |test_frame|. It searches around |expected_delay| in samples between the
// signals to compensate for the resampling delay.
float ComputeSNR(const ChannelBuffer<float>& ref,
                 const ChannelBuffer<float>& test,
                 size_t expected_delay) {
  VerifyParams(ref, test);
  float best_snr = 0;
  size_t best_delay = 0;

  // Search within one sample of the expected delay.
  for (size_t delay = std::max(expected_delay, static_cast<size_t>(1)) - 1;
       delay <= std::min(expected_delay + 1, ref.num_frames());
       ++delay) {
    float mse = 0;
    float variance = 0;
    float mean = 0;
    for (int i = 0; i < ref.num_channels(); ++i) {
      for (size_t j = 0; j < ref.num_frames() - delay; ++j) {
        float error = ref.channels()[i][j] - test.channels()[i][j + delay];
        mse += error * error;
        variance += ref.channels()[i][j] * ref.channels()[i][j];
        mean += ref.channels()[i][j];
      }
    }

    const size_t length = ref.num_channels() * (ref.num_frames() - delay);
    mse /= length;
    variance /= length;
    mean /= length;
    variance -= mean * mean;
    float snr = 100;  // We assign 100 dB to the zero-error case.
    if (mse > 0)
      snr = 10 * std::log10(variance / mse);
    if (snr > best_snr) {
      best_snr = snr;
      best_delay = delay;
    }
  }
  printf("SNR=%.1f dB at delay=%" PRIuS "\n", best_snr, best_delay);
  return best_snr;
}

// Sets the source to a linearly increasing signal for which we can easily
// generate a reference. Runs the AudioConverter and ensures the output has
// sufficiently high SNR relative to the reference.
void RunAudioConverterTest(int src_channels,
                           int src_sample_rate_hz,
                           int dst_channels,
                           int dst_sample_rate_hz) {
  const float kSrcLeft = 0.0002f;
  const float kSrcRight = 0.0001f;
  const float resampling_factor = (1.f * src_sample_rate_hz) /
      dst_sample_rate_hz;
  const float dst_left = resampling_factor * kSrcLeft;
  const float dst_right = resampling_factor * kSrcRight;
  const float dst_mono = (dst_left + dst_right) / 2;
  const int src_frames = src_sample_rate_hz / 100;
  const int dst_frames = dst_sample_rate_hz / 100;

  std::vector<float> src_data(1, kSrcLeft);
  if (src_channels == 2)
    src_data.push_back(kSrcRight);
  ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);

  std::vector<float> dst_data(1, 0);
  std::vector<float> ref_data;
  if (dst_channels == 1) {
    if (src_channels == 1)
      ref_data.push_back(dst_left);
    else
      ref_data.push_back(dst_mono);
  } else {
    dst_data.push_back(0);
    ref_data.push_back(dst_left);
    if (src_channels == 1)
      ref_data.push_back(dst_left);
    else
      ref_data.push_back(dst_right);
  }
  ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
  ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);

  // The sinc resampler has a known delay, which we compute here.
  const size_t delay_frames = src_sample_rate_hz == dst_sample_rate_hz ? 0 :
      static_cast<size_t>(
          PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
          dst_sample_rate_hz);
  printf("(%d, %d Hz) -> (%d, %d Hz) ",  // SNR reported on the same line later.
      src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);

  rtc::scoped_ptr<AudioConverter> converter = AudioConverter::Create(
      src_channels, src_frames, dst_channels, dst_frames);
  converter->Convert(src_buffer->channels(), src_buffer->size(),
                     dst_buffer->channels(), dst_buffer->size());

  EXPECT_LT(43.f,
            ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
}

TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
  const int kSampleRates[] = {8000, 16000, 32000, 44100, 48000};
  const int kSampleRatesSize = sizeof(kSampleRates) / sizeof(*kSampleRates);
  const int kChannels[] = {1, 2};
  const int kChannelsSize = sizeof(kChannels) / sizeof(*kChannels);
  for (int src_rate = 0; src_rate < kSampleRatesSize; ++src_rate) {
    for (int dst_rate = 0; dst_rate < kSampleRatesSize; ++dst_rate) {
      for (int src_channel = 0; src_channel < kChannelsSize; ++src_channel) {
        for (int dst_channel = 0; dst_channel < kChannelsSize; ++dst_channel) {
          RunAudioConverterTest(kChannels[src_channel], kSampleRates[src_rate],
                                kChannels[dst_channel], kSampleRates[dst_rate]);
        }
      }
    }
  }
}

}  // namespace webrtc