aboutsummaryrefslogtreecommitdiff
path: root/webrtc/common_audio/wav_file_unittest.cc
blob: ba1db1c296787bca2fd295b4a60491f06aa9c3a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES

#include <cmath>
#include <limits>

#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/wav_header.h"
#include "webrtc/common_audio/wav_file.h"
#include "webrtc/test/testsupport/fileutils.h"

namespace webrtc {

static const float kSamples[] = {0.0, 10.0, 4e4, -1e9};

// Write a tiny WAV file with the C++ interface and verify the result.
TEST(WavWriterTest, CPP) {
  const std::string outfile = test::OutputPath() + "wavtest1.wav";
  static const size_t kNumSamples = 3;
  {
    WavWriter w(outfile, 14099, 1);
    EXPECT_EQ(14099, w.sample_rate());
    EXPECT_EQ(1u, w.num_channels());
    EXPECT_EQ(0u, w.num_samples());
    w.WriteSamples(kSamples, kNumSamples);
    EXPECT_EQ(kNumSamples, w.num_samples());
  }
  // Write some extra "metadata" to the file that should be silently ignored
  // by WavReader. We don't use WavWriter directly for this because it doesn't
  // support metadata.
  static const uint8_t kMetadata[] = {101, 202};
  {
    FILE* f = fopen(outfile.c_str(), "ab");
    ASSERT_TRUE(f);
    ASSERT_EQ(1u, fwrite(kMetadata, sizeof(kMetadata), 1, f));
    fclose(f);
  }
  static const uint8_t kExpectedContents[] = {
    'R', 'I', 'F', 'F',
    42, 0, 0, 0,  // size of whole file - 8: 6 + 44 - 8
    'W', 'A', 'V', 'E',
    'f', 'm', 't', ' ',
    16, 0, 0, 0,  // size of fmt block - 8: 24 - 8
    1, 0,  // format: PCM (1)
    1, 0,  // channels: 1
    0x13, 0x37, 0, 0,  // sample rate: 14099
    0x26, 0x6e, 0, 0,  // byte rate: 2 * 14099
    2, 0,  // block align: NumChannels * BytesPerSample
    16, 0,  // bits per sample: 2 * 8
    'd', 'a', 't', 'a',
    6, 0, 0, 0,  // size of payload: 6
    0, 0,  // first sample: 0.0
    10, 0,  // second sample: 10.0
    0xff, 0x7f,  // third sample: 4e4 (saturated)
    kMetadata[0], kMetadata[1],
  };
  static const size_t kContentSize =
      kWavHeaderSize + kNumSamples * sizeof(int16_t) + sizeof(kMetadata);
  static_assert(sizeof(kExpectedContents) == kContentSize, "content size");
  EXPECT_EQ(kContentSize, test::GetFileSize(outfile));
  FILE* f = fopen(outfile.c_str(), "rb");
  ASSERT_TRUE(f);
  uint8_t contents[kContentSize];
  ASSERT_EQ(1u, fread(contents, kContentSize, 1, f));
  EXPECT_EQ(0, fclose(f));
  EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize));

  {
    WavReader r(outfile);
    EXPECT_EQ(14099, r.sample_rate());
    EXPECT_EQ(1u, r.num_channels());
    EXPECT_EQ(kNumSamples, r.num_samples());
    static const float kTruncatedSamples[] = {0.0, 10.0, 32767.0};
    float samples[kNumSamples];
    EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, samples));
    EXPECT_EQ(0, memcmp(kTruncatedSamples, samples, sizeof(samples)));
    EXPECT_EQ(0u, r.ReadSamples(kNumSamples, samples));
  }
}

// Write a tiny WAV file with the C interface and verify the result.
TEST(WavWriterTest, C) {
  const std::string outfile = test::OutputPath() + "wavtest2.wav";
  rtc_WavWriter* w = rtc_WavOpen(outfile.c_str(), 11904, 2);
  EXPECT_EQ(11904, rtc_WavSampleRate(w));
  EXPECT_EQ(2u, rtc_WavNumChannels(w));
  EXPECT_EQ(0u, rtc_WavNumSamples(w));
  static const size_t kNumSamples = 4;
  rtc_WavWriteSamples(w, &kSamples[0], 2);
  EXPECT_EQ(2u, rtc_WavNumSamples(w));
  rtc_WavWriteSamples(w, &kSamples[2], kNumSamples - 2);
  EXPECT_EQ(kNumSamples, rtc_WavNumSamples(w));
  rtc_WavClose(w);
  static const uint8_t kExpectedContents[] = {
    'R', 'I', 'F', 'F',
    44, 0, 0, 0,  // size of whole file - 8: 8 + 44 - 8
    'W', 'A', 'V', 'E',
    'f', 'm', 't', ' ',
    16, 0, 0, 0,  // size of fmt block - 8: 24 - 8
    1, 0,  // format: PCM (1)
    2, 0,  // channels: 2
    0x80, 0x2e, 0, 0,  // sample rate: 11904
    0, 0xba, 0, 0,  // byte rate: 2 * 2 * 11904
    4, 0,  // block align: NumChannels * BytesPerSample
    16, 0,  // bits per sample: 2 * 8
    'd', 'a', 't', 'a',
    8, 0, 0, 0,  // size of payload: 8
    0, 0,  // first sample: 0.0
    10, 0,  // second sample: 10.0
    0xff, 0x7f,  // third sample: 4e4 (saturated)
    0, 0x80,  // fourth sample: -1e9 (saturated)
  };
  static const size_t kContentSize =
      kWavHeaderSize + kNumSamples * sizeof(int16_t);
  static_assert(sizeof(kExpectedContents) == kContentSize, "content size");
  EXPECT_EQ(kContentSize, test::GetFileSize(outfile));
  FILE* f = fopen(outfile.c_str(), "rb");
  ASSERT_TRUE(f);
  uint8_t contents[kContentSize];
  ASSERT_EQ(1u, fread(contents, kContentSize, 1, f));
  EXPECT_EQ(0, fclose(f));
  EXPECT_EQ(0, memcmp(kExpectedContents, contents, kContentSize));
}

// Write a larger WAV file. You can listen to this file to sanity-check it.
TEST(WavWriterTest, LargeFile) {
  std::string outfile = test::OutputPath() + "wavtest3.wav";
  static const int kSampleRate = 8000;
  static const size_t kNumChannels = 2;
  static const size_t kNumSamples = 3 * kSampleRate * kNumChannels;
  float samples[kNumSamples];
  for (size_t i = 0; i < kNumSamples; i += kNumChannels) {
    // A nice periodic beeping sound.
    static const double kToneHz = 440;
    const double t = static_cast<double>(i) / (kNumChannels * kSampleRate);
    const double x =
        std::numeric_limits<int16_t>::max() * std::sin(t * kToneHz * 2 * M_PI);
    samples[i] = std::pow(std::sin(t * 2 * 2 * M_PI), 10) * x;
    samples[i + 1] = std::pow(std::cos(t * 2 * 2 * M_PI), 10) * x;
  }
  {
    WavWriter w(outfile, kSampleRate, kNumChannels);
    EXPECT_EQ(kSampleRate, w.sample_rate());
    EXPECT_EQ(kNumChannels, w.num_channels());
    EXPECT_EQ(0u, w.num_samples());
    w.WriteSamples(samples, kNumSamples);
    EXPECT_EQ(kNumSamples, w.num_samples());
  }
  EXPECT_EQ(sizeof(int16_t) * kNumSamples + kWavHeaderSize,
            test::GetFileSize(outfile));

  {
    WavReader r(outfile);
    EXPECT_EQ(kSampleRate, r.sample_rate());
    EXPECT_EQ(kNumChannels, r.num_channels());
    EXPECT_EQ(kNumSamples, r.num_samples());

    float read_samples[kNumSamples];
    EXPECT_EQ(kNumSamples, r.ReadSamples(kNumSamples, read_samples));
    for (size_t i = 0; i < kNumSamples; ++i)
      EXPECT_NEAR(samples[i], read_samples[i], 1);

    EXPECT_EQ(0u, r.ReadSamples(kNumSamples, read_samples));
  }
}

}  // namespace webrtc