aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_coding/neteq/expand.cc
blob: 2aa9fb0a8d6b9a69e4df95596b362923a4fa772b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_coding/neteq/expand.h"

#include <assert.h>
#include <string.h>  // memset

#include <algorithm>  // min, max
#include <limits>  // numeric_limits<T>

#include "webrtc/base/safe_conversions.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_coding/neteq/background_noise.h"
#include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
#include "webrtc/modules/audio_coding/neteq/random_vector.h"
#include "webrtc/modules/audio_coding/neteq/statistics_calculator.h"
#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"

namespace webrtc {

Expand::Expand(BackgroundNoise* background_noise,
               SyncBuffer* sync_buffer,
               RandomVector* random_vector,
               StatisticsCalculator* statistics,
               int fs,
               size_t num_channels)
    : random_vector_(random_vector),
      sync_buffer_(sync_buffer),
      first_expand_(true),
      fs_hz_(fs),
      num_channels_(num_channels),
      consecutive_expands_(0),
      background_noise_(background_noise),
      statistics_(statistics),
      overlap_length_(5 * fs / 8000),
      lag_index_direction_(0),
      current_lag_index_(0),
      stop_muting_(false),
      expand_duration_samples_(0),
      channel_parameters_(new ChannelParameters[num_channels_]) {
  assert(fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000);
  assert(fs <= static_cast<int>(kMaxSampleRate));  // Should not be possible.
  assert(num_channels_ > 0);
  memset(expand_lags_, 0, sizeof(expand_lags_));
  Reset();
}

Expand::~Expand() = default;

void Expand::Reset() {
  first_expand_ = true;
  consecutive_expands_ = 0;
  max_lag_ = 0;
  for (size_t ix = 0; ix < num_channels_; ++ix) {
    channel_parameters_[ix].expand_vector0.Clear();
    channel_parameters_[ix].expand_vector1.Clear();
  }
}

int Expand::Process(AudioMultiVector* output) {
  int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30];
  int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
  static const int kTempDataSize = 3600;
  int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
  int16_t* voiced_vector_storage = temp_data;
  int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
  static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
  int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
  int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
  int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;

  int fs_mult = fs_hz_ / 8000;

  if (first_expand_) {
    // Perform initial setup if this is the first expansion since last reset.
    AnalyzeSignal(random_vector);
    first_expand_ = false;
    expand_duration_samples_ = 0;
  } else {
    // This is not the first expansion, parameters are already estimated.
    // Extract a noise segment.
    size_t rand_length = max_lag_;
    // This only applies to SWB where length could be larger than 256.
    assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
    GenerateRandomVector(2, rand_length, random_vector);
  }


  // Generate signal.
  UpdateLagIndex();

  // Voiced part.
  // Generate a weighted vector with the current lag.
  size_t expansion_vector_length = max_lag_ + overlap_length_;
  size_t current_lag = expand_lags_[current_lag_index_];
  // Copy lag+overlap data.
  size_t expansion_vector_position = expansion_vector_length - current_lag -
      overlap_length_;
  size_t temp_length = current_lag + overlap_length_;
  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
    ChannelParameters& parameters = channel_parameters_[channel_ix];
    if (current_lag_index_ == 0) {
      // Use only expand_vector0.
      assert(expansion_vector_position + temp_length <=
             parameters.expand_vector0.Size());
      memcpy(voiced_vector_storage,
             &parameters.expand_vector0[expansion_vector_position],
             sizeof(int16_t) * temp_length);
    } else if (current_lag_index_ == 1) {
      // Mix 3/4 of expand_vector0 with 1/4 of expand_vector1.
      WebRtcSpl_ScaleAndAddVectorsWithRound(
          &parameters.expand_vector0[expansion_vector_position], 3,
          &parameters.expand_vector1[expansion_vector_position], 1, 2,
          voiced_vector_storage, temp_length);
    } else if (current_lag_index_ == 2) {
      // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
      assert(expansion_vector_position + temp_length <=
             parameters.expand_vector0.Size());
      assert(expansion_vector_position + temp_length <=
             parameters.expand_vector1.Size());
      WebRtcSpl_ScaleAndAddVectorsWithRound(
          &parameters.expand_vector0[expansion_vector_position], 1,
          &parameters.expand_vector1[expansion_vector_position], 1, 1,
          voiced_vector_storage, temp_length);
    }

    // Get tapering window parameters. Values are in Q15.
    int16_t muting_window, muting_window_increment;
    int16_t unmuting_window, unmuting_window_increment;
    if (fs_hz_ == 8000) {
      muting_window = DspHelper::kMuteFactorStart8kHz;
      muting_window_increment = DspHelper::kMuteFactorIncrement8kHz;
      unmuting_window = DspHelper::kUnmuteFactorStart8kHz;
      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz;
    } else if (fs_hz_ == 16000) {
      muting_window = DspHelper::kMuteFactorStart16kHz;
      muting_window_increment = DspHelper::kMuteFactorIncrement16kHz;
      unmuting_window = DspHelper::kUnmuteFactorStart16kHz;
      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz;
    } else if (fs_hz_ == 32000) {
      muting_window = DspHelper::kMuteFactorStart32kHz;
      muting_window_increment = DspHelper::kMuteFactorIncrement32kHz;
      unmuting_window = DspHelper::kUnmuteFactorStart32kHz;
      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz;
    } else {  // fs_ == 48000
      muting_window = DspHelper::kMuteFactorStart48kHz;
      muting_window_increment = DspHelper::kMuteFactorIncrement48kHz;
      unmuting_window = DspHelper::kUnmuteFactorStart48kHz;
      unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz;
    }

    // Smooth the expanded if it has not been muted to a low amplitude and
    // |current_voice_mix_factor| is larger than 0.5.
    if ((parameters.mute_factor > 819) &&
        (parameters.current_voice_mix_factor > 8192)) {
      size_t start_ix = sync_buffer_->Size() - overlap_length_;
      for (size_t i = 0; i < overlap_length_; i++) {
        // Do overlap add between new vector and overlap.
        (*sync_buffer_)[channel_ix][start_ix + i] =
            (((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) +
                (((parameters.mute_factor * voiced_vector_storage[i]) >> 14) *
                    unmuting_window) + 16384) >> 15;
        muting_window += muting_window_increment;
        unmuting_window += unmuting_window_increment;
      }
    } else if (parameters.mute_factor == 0) {
      // The expanded signal will consist of only comfort noise if
      // mute_factor = 0. Set the output length to 15 ms for best noise
      // production.
      // TODO(hlundin): This has been disabled since the length of
      // parameters.expand_vector0 and parameters.expand_vector1 no longer
      // match with expand_lags_, causing invalid reads and writes. Is it a good
      // idea to enable this again, and solve the vector size problem?
//      max_lag_ = fs_mult * 120;
//      expand_lags_[0] = fs_mult * 120;
//      expand_lags_[1] = fs_mult * 120;
//      expand_lags_[2] = fs_mult * 120;
    }

    // Unvoiced part.
    // Filter |scaled_random_vector| through |ar_filter_|.
    memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state,
           sizeof(int16_t) * kUnvoicedLpcOrder);
    int32_t add_constant = 0;
    if (parameters.ar_gain_scale > 0) {
      add_constant = 1 << (parameters.ar_gain_scale - 1);
    }
    WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
                                    parameters.ar_gain, add_constant,
                                    parameters.ar_gain_scale,
                                    current_lag);
    WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
                              parameters.ar_filter, kUnvoicedLpcOrder + 1,
                              current_lag);
    memcpy(parameters.ar_filter_state,
           &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
           sizeof(int16_t) * kUnvoicedLpcOrder);

    // Combine voiced and unvoiced contributions.

    // Set a suitable cross-fading slope.
    // For lag =
    //   <= 31 * fs_mult            => go from 1 to 0 in about 8 ms;
    //  (>= 31 .. <= 63) * fs_mult  => go from 1 to 0 in about 16 ms;
    //   >= 64 * fs_mult            => go from 1 to 0 in about 32 ms.
    // temp_shift = getbits(max_lag_) - 5.
    int temp_shift =
        (31 - WebRtcSpl_NormW32(rtc::checked_cast<int32_t>(max_lag_))) - 5;
    int16_t mix_factor_increment = 256 >> temp_shift;
    if (stop_muting_) {
      mix_factor_increment = 0;
    }

    // Create combined signal by shifting in more and more of unvoiced part.
    temp_shift = 8 - temp_shift;  // = getbits(mix_factor_increment).
    size_t temp_length = (parameters.current_voice_mix_factor -
        parameters.voice_mix_factor) >> temp_shift;
    temp_length = std::min(temp_length, current_lag);
    DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_length,
                         &parameters.current_voice_mix_factor,
                         mix_factor_increment, temp_data);

    // End of cross-fading period was reached before end of expanded signal
    // path. Mix the rest with a fixed mixing factor.
    if (temp_length < current_lag) {
      if (mix_factor_increment != 0) {
        parameters.current_voice_mix_factor = parameters.voice_mix_factor;
      }
      int16_t temp_scale = 16384 - parameters.current_voice_mix_factor;
      WebRtcSpl_ScaleAndAddVectorsWithRound(
          voiced_vector + temp_length, parameters.current_voice_mix_factor,
          unvoiced_vector + temp_length, temp_scale, 14,
          temp_data + temp_length, current_lag - temp_length);
    }

    // Select muting slope depending on how many consecutive expands we have
    // done.
    if (consecutive_expands_ == 3) {
      // Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms.
      // mute_slope = 0.0010 / fs_mult in Q20.
      parameters.mute_slope = std::max(parameters.mute_slope, 1049 / fs_mult);
    }
    if (consecutive_expands_ == 7) {
      // Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms.
      // mute_slope = 0.0020 / fs_mult in Q20.
      parameters.mute_slope = std::max(parameters.mute_slope, 2097 / fs_mult);
    }

    // Mute segment according to slope value.
    if ((consecutive_expands_ != 0) || !parameters.onset) {
      // Mute to the previous level, then continue with the muting.
      WebRtcSpl_AffineTransformVector(temp_data, temp_data,
                                      parameters.mute_factor, 8192,
                                      14, current_lag);

      if (!stop_muting_) {
        DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);

        // Shift by 6 to go from Q20 to Q14.
        // TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong.
        // Legacy.
        int16_t gain = static_cast<int16_t>(16384 -
            (((current_lag * parameters.mute_slope) + 8192) >> 6));
        gain = ((gain * parameters.mute_factor) + 8192) >> 14;

        // Guard against getting stuck with very small (but sometimes audible)
        // gain.
        if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) {
          parameters.mute_factor = 0;
        } else {
          parameters.mute_factor = gain;
        }
      }
    }

    // Background noise part.
    GenerateBackgroundNoise(random_vector,
                            channel_ix,
                            channel_parameters_[channel_ix].mute_slope,
                            TooManyExpands(),
                            current_lag,
                            unvoiced_array_memory);

    // Add background noise to the combined voiced-unvoiced signal.
    for (size_t i = 0; i < current_lag; i++) {
      temp_data[i] = temp_data[i] + noise_vector[i];
    }
    if (channel_ix == 0) {
      output->AssertSize(current_lag);
    } else {
      assert(output->Size() == current_lag);
    }
    memcpy(&(*output)[channel_ix][0], temp_data,
           sizeof(temp_data[0]) * current_lag);
  }

  // Increase call number and cap it.
  consecutive_expands_ = consecutive_expands_ >= kMaxConsecutiveExpands ?
      kMaxConsecutiveExpands : consecutive_expands_ + 1;
  expand_duration_samples_ += output->Size();
  // Clamp the duration counter at 2 seconds.
  expand_duration_samples_ =
      std::min(expand_duration_samples_, rtc::checked_cast<size_t>(fs_hz_ * 2));
  return 0;
}

void Expand::SetParametersForNormalAfterExpand() {
  current_lag_index_ = 0;
  lag_index_direction_ = 0;
  stop_muting_ = true;  // Do not mute signal any more.
  statistics_->LogDelayedPacketOutageEvent(
      rtc::checked_cast<int>(expand_duration_samples_) / (fs_hz_ / 1000));
}

void Expand::SetParametersForMergeAfterExpand() {
  current_lag_index_ = -1; /* out of the 3 possible ones */
  lag_index_direction_ = 1; /* make sure we get the "optimal" lag */
  stop_muting_ = true;
}

size_t Expand::overlap_length() const {
  return overlap_length_;
}

void Expand::InitializeForAnExpandPeriod() {
  lag_index_direction_ = 1;
  current_lag_index_ = -1;
  stop_muting_ = false;
  random_vector_->set_seed_increment(1);
  consecutive_expands_ = 0;
  for (size_t ix = 0; ix < num_channels_; ++ix) {
    channel_parameters_[ix].current_voice_mix_factor = 16384;  // 1.0 in Q14.
    channel_parameters_[ix].mute_factor = 16384;  // 1.0 in Q14.
    // Start with 0 gain for background noise.
    background_noise_->SetMuteFactor(ix, 0);
  }
}

bool Expand::TooManyExpands() {
  return consecutive_expands_ >= kMaxConsecutiveExpands;
}

void Expand::AnalyzeSignal(int16_t* random_vector) {
  int32_t auto_correlation[kUnvoicedLpcOrder + 1];
  int16_t reflection_coeff[kUnvoicedLpcOrder];
  int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
  size_t best_correlation_index[kNumCorrelationCandidates];
  int16_t best_correlation[kNumCorrelationCandidates];
  size_t best_distortion_index[kNumCorrelationCandidates];
  int16_t best_distortion[kNumCorrelationCandidates];
  int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
  int32_t best_distortion_w32[kNumCorrelationCandidates];
  static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
  int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
  int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;

  int fs_mult = fs_hz_ / 8000;

  // Pre-calculate common multiplications with fs_mult.
  size_t fs_mult_4 = static_cast<size_t>(fs_mult * 4);
  size_t fs_mult_20 = static_cast<size_t>(fs_mult * 20);
  size_t fs_mult_120 = static_cast<size_t>(fs_mult * 120);
  size_t fs_mult_dist_len = fs_mult * kDistortionLength;
  size_t fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;

  const size_t signal_length = static_cast<size_t>(256 * fs_mult);
  const int16_t* audio_history =
      &(*sync_buffer_)[0][sync_buffer_->Size() - signal_length];

  // Initialize.
  InitializeForAnExpandPeriod();

  // Calculate correlation in downsampled domain (4 kHz sample rate).
  int correlation_scale;
  size_t correlation_length = 51;  // TODO(hlundin): Legacy bit-exactness.
  // If it is decided to break bit-exactness |correlation_length| should be
  // initialized to the return value of Correlation().
  Correlation(audio_history, signal_length, correlation_vector,
              &correlation_scale);

  // Find peaks in correlation vector.
  DspHelper::PeakDetection(correlation_vector, correlation_length,
                           kNumCorrelationCandidates, fs_mult,
                           best_correlation_index, best_correlation);

  // Adjust peak locations; cross-correlation lags start at 2.5 ms
  // (20 * fs_mult samples).
  best_correlation_index[0] += fs_mult_20;
  best_correlation_index[1] += fs_mult_20;
  best_correlation_index[2] += fs_mult_20;

  // Calculate distortion around the |kNumCorrelationCandidates| best lags.
  int distortion_scale = 0;
  for (size_t i = 0; i < kNumCorrelationCandidates; i++) {
    size_t min_index = std::max(fs_mult_20,
                                best_correlation_index[i] - fs_mult_4);
    size_t max_index = std::min(fs_mult_120 - 1,
                                best_correlation_index[i] + fs_mult_4);
    best_distortion_index[i] = DspHelper::MinDistortion(
        &(audio_history[signal_length - fs_mult_dist_len]), min_index,
        max_index, fs_mult_dist_len, &best_distortion_w32[i]);
    distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]),
                                distortion_scale);
  }
  // Shift the distortion values to fit in 16 bits.
  WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates,
                                   best_distortion_w32, distortion_scale);

  // Find the maximizing index |i| of the cost function
  // f[i] = best_correlation[i] / best_distortion[i].
  int32_t best_ratio = std::numeric_limits<int32_t>::min();
  size_t best_index = std::numeric_limits<size_t>::max();
  for (size_t i = 0; i < kNumCorrelationCandidates; ++i) {
    int32_t ratio;
    if (best_distortion[i] > 0) {
      ratio = (best_correlation[i] << 16) / best_distortion[i];
    } else if (best_correlation[i] == 0) {
      ratio = 0;  // No correlation set result to zero.
    } else {
      ratio = std::numeric_limits<int32_t>::max();  // Denominator is zero.
    }
    if (ratio > best_ratio) {
      best_index = i;
      best_ratio = ratio;
    }
  }

  size_t distortion_lag = best_distortion_index[best_index];
  size_t correlation_lag = best_correlation_index[best_index];
  max_lag_ = std::max(distortion_lag, correlation_lag);

  // Calculate the exact best correlation in the range between
  // |correlation_lag| and |distortion_lag|.
  correlation_length =
      std::max(std::min(distortion_lag + 10, fs_mult_120),
               static_cast<size_t>(60 * fs_mult));

  size_t start_index = std::min(distortion_lag, correlation_lag);
  size_t correlation_lags = static_cast<size_t>(
      WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag)) + 1);
  assert(correlation_lags <= static_cast<size_t>(99 * fs_mult + 1));

  for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
    ChannelParameters& parameters = channel_parameters_[channel_ix];
    // Calculate suitable scaling.
    int16_t signal_max = WebRtcSpl_MaxAbsValueW16(
        &audio_history[signal_length - correlation_length - start_index
                       - correlation_lags],
                       correlation_length + start_index + correlation_lags - 1);
    correlation_scale = (31 - WebRtcSpl_NormW32(signal_max * signal_max)) +
        (31 - WebRtcSpl_NormW32(static_cast<int32_t>(correlation_length))) - 31;
    correlation_scale = std::max(0, correlation_scale);

    // Calculate the correlation, store in |correlation_vector2|.
    WebRtcSpl_CrossCorrelation(
        correlation_vector2,
        &(audio_history[signal_length - correlation_length]),
        &(audio_history[signal_length - correlation_length - start_index]),
        correlation_length, correlation_lags, correlation_scale, -1);

    // Find maximizing index.
    best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
    int32_t max_correlation = correlation_vector2[best_index];
    // Compensate index with start offset.
    best_index = best_index + start_index;

    // Calculate energies.
    int32_t energy1 = WebRtcSpl_DotProductWithScale(
        &(audio_history[signal_length - correlation_length]),
        &(audio_history[signal_length - correlation_length]),
        correlation_length, correlation_scale);
    int32_t energy2 = WebRtcSpl_DotProductWithScale(
        &(audio_history[signal_length - correlation_length - best_index]),
        &(audio_history[signal_length - correlation_length - best_index]),
        correlation_length, correlation_scale);

    // Calculate the correlation coefficient between the two portions of the
    // signal.
    int32_t corr_coefficient;
    if ((energy1 > 0) && (energy2 > 0)) {
      int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0);
      int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
      // Make sure total scaling is even (to simplify scale factor after sqrt).
      if ((energy1_scale + energy2_scale) & 1) {
        // If sum is odd, add 1 to make it even.
        energy1_scale += 1;
      }
      int32_t scaled_energy1 = energy1 >> energy1_scale;
      int32_t scaled_energy2 = energy2 >> energy2_scale;
      int16_t sqrt_energy_product = static_cast<int16_t>(
          WebRtcSpl_SqrtFloor(scaled_energy1 * scaled_energy2));
      // Calculate max_correlation / sqrt(energy1 * energy2) in Q14.
      int cc_shift = 14 - (energy1_scale + energy2_scale) / 2;
      max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift);
      corr_coefficient = WebRtcSpl_DivW32W16(max_correlation,
                                             sqrt_energy_product);
      // Cap at 1.0 in Q14.
      corr_coefficient = std::min(16384, corr_coefficient);
    } else {
      corr_coefficient = 0;
    }

    // Extract the two vectors expand_vector0 and expand_vector1 from
    // |audio_history|.
    size_t expansion_length = max_lag_ + overlap_length_;
    const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
    const int16_t* vector2 = vector1 - distortion_lag;
    // Normalize the second vector to the same energy as the first.
    energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length,
                                            correlation_scale);
    energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length,
                                            correlation_scale);
    // Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0,
    // i.e., energy1 / energy1 is within 0.25 - 4.
    int16_t amplitude_ratio;
    if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) {
      // Energy constraint fulfilled. Use both vectors and scale them
      // accordingly.
      int32_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
      int32_t scaled_energy1 = scaled_energy2 - 13;
      // Calculate scaled_energy1 / scaled_energy2 in Q13.
      int32_t energy_ratio = WebRtcSpl_DivW32W16(
          WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
          static_cast<int16_t>(energy2 >> scaled_energy2));
      // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
      amplitude_ratio =
          static_cast<int16_t>(WebRtcSpl_SqrtFloor(energy_ratio << 13));
      // Copy the two vectors and give them the same energy.
      parameters.expand_vector0.Clear();
      parameters.expand_vector0.PushBack(vector1, expansion_length);
      parameters.expand_vector1.Clear();
      if (parameters.expand_vector1.Size() < expansion_length) {
        parameters.expand_vector1.Extend(
            expansion_length - parameters.expand_vector1.Size());
      }
      WebRtcSpl_AffineTransformVector(&parameters.expand_vector1[0],
                                      const_cast<int16_t*>(vector2),
                                      amplitude_ratio,
                                      4096,
                                      13,
                                      expansion_length);
    } else {
      // Energy change constraint not fulfilled. Only use last vector.
      parameters.expand_vector0.Clear();
      parameters.expand_vector0.PushBack(vector1, expansion_length);
      // Copy from expand_vector0 to expand_vector1.
      parameters.expand_vector0.CopyTo(&parameters.expand_vector1);
      // Set the energy_ratio since it is used by muting slope.
      if ((energy1 / 4 < energy2) || (energy2 == 0)) {
        amplitude_ratio = 4096;  // 0.5 in Q13.
      } else {
        amplitude_ratio = 16384;  // 2.0 in Q13.
      }
    }

    // Set the 3 lag values.
    if (distortion_lag == correlation_lag) {
      expand_lags_[0] = distortion_lag;
      expand_lags_[1] = distortion_lag;
      expand_lags_[2] = distortion_lag;
    } else {
      // |distortion_lag| and |correlation_lag| are not equal; use different
      // combinations of the two.
      // First lag is |distortion_lag| only.
      expand_lags_[0] = distortion_lag;
      // Second lag is the average of the two.
      expand_lags_[1] = (distortion_lag + correlation_lag) / 2;
      // Third lag is the average again, but rounding towards |correlation_lag|.
      if (distortion_lag > correlation_lag) {
        expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2;
      } else {
        expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2;
      }
    }

    // Calculate the LPC and the gain of the filters.
    // Calculate scale value needed for auto-correlation.
    correlation_scale = WebRtcSpl_MaxAbsValueW16(
        &(audio_history[signal_length - fs_mult_lpc_analysis_len]),
        fs_mult_lpc_analysis_len);

    correlation_scale = std::min(16 - WebRtcSpl_NormW32(correlation_scale), 0);
    correlation_scale = std::max(correlation_scale * 2 + 7, 0);

    // Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function.
    size_t temp_index = signal_length - fs_mult_lpc_analysis_len -
        kUnvoicedLpcOrder;
    // Copy signal to temporary vector to be able to pad with leading zeros.
    int16_t* temp_signal = new int16_t[fs_mult_lpc_analysis_len
                                       + kUnvoicedLpcOrder];
    memset(temp_signal, 0,
           sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder));
    memcpy(&temp_signal[kUnvoicedLpcOrder],
           &audio_history[temp_index + kUnvoicedLpcOrder],
           sizeof(int16_t) * fs_mult_lpc_analysis_len);
    WebRtcSpl_CrossCorrelation(auto_correlation,
                               &temp_signal[kUnvoicedLpcOrder],
                               &temp_signal[kUnvoicedLpcOrder],
                               fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1,
                               correlation_scale, -1);
    delete [] temp_signal;

    // Verify that variance is positive.
    if (auto_correlation[0] > 0) {
      // Estimate AR filter parameters using Levinson-Durbin algorithm;
      // kUnvoicedLpcOrder + 1 filter coefficients.
      int16_t stability = WebRtcSpl_LevinsonDurbin(auto_correlation,
                                                   parameters.ar_filter,
                                                   reflection_coeff,
                                                   kUnvoicedLpcOrder);

      // Keep filter parameters only if filter is stable.
      if (stability != 1) {
        // Set first coefficient to 4096 (1.0 in Q12).
        parameters.ar_filter[0] = 4096;
        // Set remaining |kUnvoicedLpcOrder| coefficients to zero.
        WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder);
      }
    }

    if (channel_ix == 0) {
      // Extract a noise segment.
      size_t noise_length;
      if (distortion_lag < 40) {
        noise_length = 2 * distortion_lag + 30;
      } else {
        noise_length = distortion_lag + 30;
      }
      if (noise_length <= RandomVector::kRandomTableSize) {
        memcpy(random_vector, RandomVector::kRandomTable,
               sizeof(int16_t) * noise_length);
      } else {
        // Only applies to SWB where length could be larger than
        // |kRandomTableSize|.
        memcpy(random_vector, RandomVector::kRandomTable,
               sizeof(int16_t) * RandomVector::kRandomTableSize);
        assert(noise_length <= kMaxSampleRate / 8000 * 120 + 30);
        random_vector_->IncreaseSeedIncrement(2);
        random_vector_->Generate(
            noise_length - RandomVector::kRandomTableSize,
            &random_vector[RandomVector::kRandomTableSize]);
      }
    }

    // Set up state vector and calculate scale factor for unvoiced filtering.
    memcpy(parameters.ar_filter_state,
           &(audio_history[signal_length - kUnvoicedLpcOrder]),
           sizeof(int16_t) * kUnvoicedLpcOrder);
    memcpy(unvoiced_vector - kUnvoicedLpcOrder,
           &(audio_history[signal_length - 128 - kUnvoicedLpcOrder]),
           sizeof(int16_t) * kUnvoicedLpcOrder);
    WebRtcSpl_FilterMAFastQ12(&audio_history[signal_length - 128],
                              unvoiced_vector,
                              parameters.ar_filter,
                              kUnvoicedLpcOrder + 1,
                              128);
    int16_t unvoiced_prescale;
    if (WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128) > 4000) {
      unvoiced_prescale = 4;
    } else {
      unvoiced_prescale = 0;
    }
    int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale(unvoiced_vector,
                                                            unvoiced_vector,
                                                            128,
                                                            unvoiced_prescale);

    // Normalize |unvoiced_energy| to 28 or 29 bits to preserve sqrt() accuracy.
    int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3;
    // Make sure we do an odd number of shifts since we already have 7 shifts
    // from dividing with 128 earlier. This will make the total scale factor
    // even, which is suitable for the sqrt.
    unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1);
    unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale);
    int16_t unvoiced_gain =
        static_cast<int16_t>(WebRtcSpl_SqrtFloor(unvoiced_energy));
    parameters.ar_gain_scale = 13
        + (unvoiced_scale + 7 - unvoiced_prescale) / 2;
    parameters.ar_gain = unvoiced_gain;

    // Calculate voice_mix_factor from corr_coefficient.
    // Let x = corr_coefficient. Then, we compute:
    // if (x > 0.48)
    //   voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096;
    // else
    //   voice_mix_factor = 0;
    if (corr_coefficient > 7875) {
      int16_t x1, x2, x3;
      // |corr_coefficient| is in Q14.
      x1 = static_cast<int16_t>(corr_coefficient);
      x2 = (x1 * x1) >> 14;   // Shift 14 to keep result in Q14.
      x3 = (x1 * x2) >> 14;
      static const int kCoefficients[4] = { -5179, 19931, -16422, 5776 };
      int32_t temp_sum = kCoefficients[0] << 14;
      temp_sum += kCoefficients[1] * x1;
      temp_sum += kCoefficients[2] * x2;
      temp_sum += kCoefficients[3] * x3;
      parameters.voice_mix_factor =
          static_cast<int16_t>(std::min(temp_sum / 4096, 16384));
      parameters.voice_mix_factor = std::max(parameters.voice_mix_factor,
                                             static_cast<int16_t>(0));
    } else {
      parameters.voice_mix_factor = 0;
    }

    // Calculate muting slope. Reuse value from earlier scaling of
    // |expand_vector0| and |expand_vector1|.
    int16_t slope = amplitude_ratio;
    if (slope > 12288) {
      // slope > 1.5.
      // Calculate (1 - (1 / slope)) / distortion_lag =
      // (slope - 1) / (distortion_lag * slope).
      // |slope| is in Q13, so 1 corresponds to 8192. Shift up to Q25 before
      // the division.
      // Shift the denominator from Q13 to Q5 before the division. The result of
      // the division will then be in Q20.
      int temp_ratio = WebRtcSpl_DivW32W16(
          (slope - 8192) << 12,
          static_cast<int16_t>((distortion_lag * slope) >> 8));
      if (slope > 14746) {
        // slope > 1.8.
        // Divide by 2, with proper rounding.
        parameters.mute_slope = (temp_ratio + 1) / 2;
      } else {
        // Divide by 8, with proper rounding.
        parameters.mute_slope = (temp_ratio + 4) / 8;
      }
      parameters.onset = true;
    } else {
      // Calculate (1 - slope) / distortion_lag.
      // Shift |slope| by 7 to Q20 before the division. The result is in Q20.
      parameters.mute_slope = WebRtcSpl_DivW32W16(
          (8192 - slope) << 7, static_cast<int16_t>(distortion_lag));
      if (parameters.voice_mix_factor <= 13107) {
        // Make sure the mute factor decreases from 1.0 to 0.9 in no more than
        // 6.25 ms.
        // mute_slope >= 0.005 / fs_mult in Q20.
        parameters.mute_slope = std::max(5243 / fs_mult, parameters.mute_slope);
      } else if (slope > 8028) {
        parameters.mute_slope = 0;
      }
      parameters.onset = false;
    }
  }
}

Expand::ChannelParameters::ChannelParameters()
    : mute_factor(16384),
      ar_gain(0),
      ar_gain_scale(0),
      voice_mix_factor(0),
      current_voice_mix_factor(0),
      onset(false),
      mute_slope(0) {
  memset(ar_filter, 0, sizeof(ar_filter));
  memset(ar_filter_state, 0, sizeof(ar_filter_state));
}

void Expand::Correlation(const int16_t* input,
                         size_t input_length,
                         int16_t* output,
                         int* output_scale) const {
  // Set parameters depending on sample rate.
  const int16_t* filter_coefficients;
  size_t num_coefficients;
  int16_t downsampling_factor;
  if (fs_hz_ == 8000) {
    num_coefficients = 3;
    downsampling_factor = 2;
    filter_coefficients = DspHelper::kDownsample8kHzTbl;
  } else if (fs_hz_ == 16000) {
    num_coefficients = 5;
    downsampling_factor = 4;
    filter_coefficients = DspHelper::kDownsample16kHzTbl;
  } else if (fs_hz_ == 32000) {
    num_coefficients = 7;
    downsampling_factor = 8;
    filter_coefficients = DspHelper::kDownsample32kHzTbl;
  } else {  // fs_hz_ == 48000.
    num_coefficients = 7;
    downsampling_factor = 12;
    filter_coefficients = DspHelper::kDownsample48kHzTbl;
  }

  // Correlate from lag 10 to lag 60 in downsampled domain.
  // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
  static const size_t kCorrelationStartLag = 10;
  static const size_t kNumCorrelationLags = 54;
  static const size_t kCorrelationLength = 60;
  // Downsample to 4 kHz sample rate.
  static const size_t kDownsampledLength = kCorrelationStartLag
      + kNumCorrelationLags + kCorrelationLength;
  int16_t downsampled_input[kDownsampledLength];
  static const size_t kFilterDelay = 0;
  WebRtcSpl_DownsampleFast(
      input + input_length - kDownsampledLength * downsampling_factor,
      kDownsampledLength * downsampling_factor, downsampled_input,
      kDownsampledLength, filter_coefficients, num_coefficients,
      downsampling_factor, kFilterDelay);

  // Normalize |downsampled_input| to using all 16 bits.
  int16_t max_value = WebRtcSpl_MaxAbsValueW16(downsampled_input,
                                               kDownsampledLength);
  int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value);
  WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength,
                              downsampled_input, norm_shift);

  int32_t correlation[kNumCorrelationLags];
  static const int kCorrelationShift = 6;
  WebRtcSpl_CrossCorrelation(
      correlation,
      &downsampled_input[kDownsampledLength - kCorrelationLength],
      &downsampled_input[kDownsampledLength - kCorrelationLength
          - kCorrelationStartLag],
      kCorrelationLength, kNumCorrelationLags, kCorrelationShift, -1);

  // Normalize and move data from 32-bit to 16-bit vector.
  int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
                                                     kNumCorrelationLags);
  int16_t norm_shift2 = static_cast<int16_t>(
      std::max(18 - WebRtcSpl_NormW32(max_correlation), 0));
  WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation,
                                   norm_shift2);
  // Total scale factor (right shifts) of correlation value.
  *output_scale = 2 * norm_shift + kCorrelationShift + norm_shift2;
}

void Expand::UpdateLagIndex() {
  current_lag_index_ = current_lag_index_ + lag_index_direction_;
  // Change direction if needed.
  if (current_lag_index_ <= 0) {
    lag_index_direction_ = 1;
  }
  if (current_lag_index_ >= kNumLags - 1) {
    lag_index_direction_ = -1;
  }
}

Expand* ExpandFactory::Create(BackgroundNoise* background_noise,
                              SyncBuffer* sync_buffer,
                              RandomVector* random_vector,
                              StatisticsCalculator* statistics,
                              int fs,
                              size_t num_channels) const {
  return new Expand(background_noise, sync_buffer, random_vector, statistics,
                    fs, num_channels);
}

// TODO(turajs): This can be moved to BackgroundNoise class.
void Expand::GenerateBackgroundNoise(int16_t* random_vector,
                                     size_t channel,
                                     int mute_slope,
                                     bool too_many_expands,
                                     size_t num_noise_samples,
                                     int16_t* buffer) {
  static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
  int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
  assert(num_noise_samples <= (kMaxSampleRate / 8000 * 125));
  int16_t* noise_samples = &buffer[kNoiseLpcOrder];
  if (background_noise_->initialized()) {
    // Use background noise parameters.
    memcpy(noise_samples - kNoiseLpcOrder,
           background_noise_->FilterState(channel),
           sizeof(int16_t) * kNoiseLpcOrder);

    int dc_offset = 0;
    if (background_noise_->ScaleShift(channel) > 1) {
      dc_offset = 1 << (background_noise_->ScaleShift(channel) - 1);
    }

    // Scale random vector to correct energy level.
    WebRtcSpl_AffineTransformVector(
        scaled_random_vector, random_vector,
        background_noise_->Scale(channel), dc_offset,
        background_noise_->ScaleShift(channel),
        num_noise_samples);

    WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
                              background_noise_->Filter(channel),
                              kNoiseLpcOrder + 1,
                              num_noise_samples);

    background_noise_->SetFilterState(
        channel,
        &(noise_samples[num_noise_samples - kNoiseLpcOrder]),
        kNoiseLpcOrder);

    // Unmute the background noise.
    int16_t bgn_mute_factor = background_noise_->MuteFactor(channel);
    NetEq::BackgroundNoiseMode bgn_mode = background_noise_->mode();
    if (bgn_mode == NetEq::kBgnFade && too_many_expands &&
        bgn_mute_factor > 0) {
      // Fade BGN to zero.
      // Calculate muting slope, approximately -2^18 / fs_hz.
      int mute_slope;
      if (fs_hz_ == 8000) {
        mute_slope = -32;
      } else if (fs_hz_ == 16000) {
        mute_slope = -16;
      } else if (fs_hz_ == 32000) {
        mute_slope = -8;
      } else {
        mute_slope = -5;
      }
      // Use UnmuteSignal function with negative slope.
      // |bgn_mute_factor| is in Q14. |mute_slope| is in Q20.
      DspHelper::UnmuteSignal(noise_samples,
                              num_noise_samples,
                              &bgn_mute_factor,
                              mute_slope,
                              noise_samples);
    } else if (bgn_mute_factor < 16384) {
      // If mode is kBgnOn, or if kBgnFade has started fading,
      // use regular |mute_slope|.
      if (!stop_muting_ && bgn_mode != NetEq::kBgnOff &&
          !(bgn_mode == NetEq::kBgnFade && too_many_expands)) {
        DspHelper::UnmuteSignal(noise_samples,
                                static_cast<int>(num_noise_samples),
                                &bgn_mute_factor,
                                mute_slope,
                                noise_samples);
      } else {
        // kBgnOn and stop muting, or
        // kBgnOff (mute factor is always 0), or
        // kBgnFade has reached 0.
        WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
                                        bgn_mute_factor, 8192, 14,
                                        num_noise_samples);
      }
    }
    // Update mute_factor in BackgroundNoise class.
    background_noise_->SetMuteFactor(channel, bgn_mute_factor);
  } else {
    // BGN parameters have not been initialized; use zero noise.
    memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
  }
}

void Expand::GenerateRandomVector(int16_t seed_increment,
                                  size_t length,
                                  int16_t* random_vector) {
  // TODO(turajs): According to hlundin The loop should not be needed. Should be
  // just as good to generate all of the vector in one call.
  size_t samples_generated = 0;
  const size_t kMaxRandSamples = RandomVector::kRandomTableSize;
  while (samples_generated < length) {
    size_t rand_length = std::min(length - samples_generated, kMaxRandSamples);
    random_vector_->IncreaseSeedIncrement(seed_increment);
    random_vector_->Generate(rand_length, &random_vector[samples_generated]);
    samples_generated += rand_length;
  }
}

}  // namespace webrtc