aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_coding/neteq/merge.cc
blob: d3d8077516bb6163f2354d25ed139950cad7b340 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_coding/neteq/merge.h"

#include <assert.h>
#include <string.h>  // memmove, memcpy, memset, size_t

#include <algorithm>  // min, max

#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_coding/neteq/audio_multi_vector.h"
#include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
#include "webrtc/modules/audio_coding/neteq/expand.h"
#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"

namespace webrtc {

int Merge::Process(int16_t* input, size_t input_length,
                   int16_t* external_mute_factor_array,
                   AudioMultiVector* output) {
  // TODO(hlundin): Change to an enumerator and skip assert.
  assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ ==  32000 ||
         fs_hz_ == 48000);
  assert(fs_hz_ <= kMaxSampleRate);  // Should not be possible.

  int old_length;
  int expand_period;
  // Get expansion data to overlap and mix with.
  int expanded_length = GetExpandedSignal(&old_length, &expand_period);

  // Transfer input signal to an AudioMultiVector.
  AudioMultiVector input_vector(num_channels_);
  input_vector.PushBackInterleaved(input, input_length);
  size_t input_length_per_channel = input_vector.Size();
  assert(input_length_per_channel == input_length / num_channels_);

  int16_t best_correlation_index = 0;
  size_t output_length = 0;

  for (size_t channel = 0; channel < num_channels_; ++channel) {
    int16_t* input_channel = &input_vector[channel][0];
    int16_t* expanded_channel = &expanded_[channel][0];
    int16_t expanded_max, input_max;
    int16_t new_mute_factor = SignalScaling(
        input_channel, static_cast<int>(input_length_per_channel),
        expanded_channel, &expanded_max, &input_max);

    // Adjust muting factor (product of "main" muting factor and expand muting
    // factor).
    int16_t* external_mute_factor = &external_mute_factor_array[channel];
    *external_mute_factor =
        (*external_mute_factor * expand_->MuteFactor(channel)) >> 14;

    // Update |external_mute_factor| if it is lower than |new_mute_factor|.
    if (new_mute_factor > *external_mute_factor) {
      *external_mute_factor = std::min(new_mute_factor,
                                       static_cast<int16_t>(16384));
    }

    if (channel == 0) {
      // Downsample, correlate, and find strongest correlation period for the
      // master (i.e., first) channel only.
      // Downsample to 4kHz sample rate.
      Downsample(input_channel, static_cast<int>(input_length_per_channel),
                 expanded_channel, expanded_length);

      // Calculate the lag of the strongest correlation period.
      best_correlation_index = CorrelateAndPeakSearch(
          expanded_max, input_max, old_length,
          static_cast<int>(input_length_per_channel), expand_period);
    }

    static const int kTempDataSize = 3600;
    int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
    int16_t* decoded_output = temp_data + best_correlation_index;

    // Mute the new decoded data if needed (and unmute it linearly).
    // This is the overlapping part of expanded_signal.
    int interpolation_length = std::min(
        kMaxCorrelationLength * fs_mult_,
        expanded_length - best_correlation_index);
    interpolation_length = std::min(interpolation_length,
                                    static_cast<int>(input_length_per_channel));
    if (*external_mute_factor < 16384) {
      // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
      // and so on.
      int increment = 4194 / fs_mult_;
      *external_mute_factor = DspHelper::RampSignal(input_channel,
                                                    interpolation_length,
                                                    *external_mute_factor,
                                                    increment);
      DspHelper::UnmuteSignal(&input_channel[interpolation_length],
                              input_length_per_channel - interpolation_length,
                              external_mute_factor, increment,
                              &decoded_output[interpolation_length]);
    } else {
      // No muting needed.
      memmove(
          &decoded_output[interpolation_length],
          &input_channel[interpolation_length],
          sizeof(int16_t) * (input_length_per_channel - interpolation_length));
    }

    // Do overlap and mix linearly.
    int increment = 16384 / (interpolation_length + 1);  // In Q14.
    int16_t mute_factor = 16384 - increment;
    memmove(temp_data, expanded_channel,
            sizeof(int16_t) * best_correlation_index);
    DspHelper::CrossFade(&expanded_channel[best_correlation_index],
                         input_channel, interpolation_length,
                         &mute_factor, increment, decoded_output);

    output_length = best_correlation_index + input_length_per_channel;
    if (channel == 0) {
      assert(output->Empty());  // Output should be empty at this point.
      output->AssertSize(output_length);
    } else {
      assert(output->Size() == output_length);
    }
    memcpy(&(*output)[channel][0], temp_data,
           sizeof(temp_data[0]) * output_length);
  }

  // Copy back the first part of the data to |sync_buffer_| and remove it from
  // |output|.
  sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
  output->PopFront(old_length);

  // Return new added length. |old_length| samples were borrowed from
  // |sync_buffer_|.
  return static_cast<int>(output_length) - old_length;
}

int Merge::GetExpandedSignal(int* old_length, int* expand_period) {
  // Check how much data that is left since earlier.
  *old_length = static_cast<int>(sync_buffer_->FutureLength());
  // Should never be less than overlap_length.
  assert(*old_length >= static_cast<int>(expand_->overlap_length()));
  // Generate data to merge the overlap with using expand.
  expand_->SetParametersForMergeAfterExpand();

  if (*old_length >= 210 * kMaxSampleRate / 8000) {
    // TODO(hlundin): Write test case for this.
    // The number of samples available in the sync buffer is more than what fits
    // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
    // but shift them towards the end of the buffer. This is ok, since all of
    // the buffer will be expand data anyway, so as long as the beginning is
    // left untouched, we're fine.
    int16_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
    sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
    *old_length = 210 * kMaxSampleRate / 8000;
    // This is the truncated length.
  }
  // This assert should always be true thanks to the if statement above.
  assert(210 * kMaxSampleRate / 8000 - *old_length >= 0);

  AudioMultiVector expanded_temp(num_channels_);
  expand_->Process(&expanded_temp);
  *expand_period = static_cast<int>(expanded_temp.Size());  // Samples per
                                                            // channel.

  expanded_.Clear();
  // Copy what is left since earlier into the expanded vector.
  expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
  assert(expanded_.Size() == static_cast<size_t>(*old_length));
  assert(expanded_temp.Size() > 0);
  // Do "ugly" copy and paste from the expanded in order to generate more data
  // to correlate (but not interpolate) with.
  const int required_length = (120 + 80 + 2) * fs_mult_;
  if (expanded_.Size() < static_cast<size_t>(required_length)) {
    while (expanded_.Size() < static_cast<size_t>(required_length)) {
      // Append one more pitch period each time.
      expanded_.PushBack(expanded_temp);
    }
    // Trim the length to exactly |required_length|.
    expanded_.PopBack(expanded_.Size() - required_length);
  }
  assert(expanded_.Size() >= static_cast<size_t>(required_length));
  return required_length;
}

int16_t Merge::SignalScaling(const int16_t* input, int input_length,
                             const int16_t* expanded_signal,
                             int16_t* expanded_max, int16_t* input_max) const {
  // Adjust muting factor if new vector is more or less of the BGN energy.
  const int mod_input_length = std::min(64 * fs_mult_, input_length);
  *expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
  *input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);

  // Calculate energy of expanded signal.
  // |log_fs_mult| is log2(fs_mult_), but is not exact for 48000 Hz.
  int log_fs_mult = 30 - WebRtcSpl_NormW32(fs_mult_);
  int expanded_shift = 6 + log_fs_mult
      - WebRtcSpl_NormW32(*expanded_max * *expanded_max);
  expanded_shift = std::max(expanded_shift, 0);
  int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal,
                                                          expanded_signal,
                                                          mod_input_length,
                                                          expanded_shift);

  // Calculate energy of input signal.
  int input_shift = 6 + log_fs_mult -
      WebRtcSpl_NormW32(*input_max * *input_max);
  input_shift = std::max(input_shift, 0);
  int32_t energy_input = WebRtcSpl_DotProductWithScale(input, input,
                                                       mod_input_length,
                                                       input_shift);

  // Align to the same Q-domain.
  if (input_shift > expanded_shift) {
    energy_expanded = energy_expanded >> (input_shift - expanded_shift);
  } else {
    energy_input = energy_input >> (expanded_shift - input_shift);
  }

  // Calculate muting factor to use for new frame.
  int16_t mute_factor;
  if (energy_input > energy_expanded) {
    // Normalize |energy_input| to 14 bits.
    int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
    energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
    // Put |energy_expanded| in a domain 14 higher, so that
    // energy_expanded / energy_input is in Q14.
    energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
    // Calculate sqrt(energy_expanded / energy_input) in Q14.
    mute_factor = WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14);
  } else {
    // Set to 1 (in Q14) when |expanded| has higher energy than |input|.
    mute_factor = 16384;
  }

  return mute_factor;
}

// TODO(hlundin): There are some parameter values in this method that seem
// strange. Compare with Expand::Correlation.
void Merge::Downsample(const int16_t* input, int input_length,
                       const int16_t* expanded_signal, int expanded_length) {
  const int16_t* filter_coefficients;
  int num_coefficients;
  int decimation_factor = fs_hz_ / 4000;
  static const int kCompensateDelay = 0;
  int length_limit = fs_hz_ / 100;  // 10 ms in samples.
  if (fs_hz_ == 8000) {
    filter_coefficients = DspHelper::kDownsample8kHzTbl;
    num_coefficients = 3;
  } else if (fs_hz_ == 16000) {
    filter_coefficients = DspHelper::kDownsample16kHzTbl;
    num_coefficients = 5;
  } else if (fs_hz_ == 32000) {
    filter_coefficients = DspHelper::kDownsample32kHzTbl;
    num_coefficients = 7;
  } else {  // fs_hz_ == 48000
    filter_coefficients = DspHelper::kDownsample48kHzTbl;
    num_coefficients = 7;
  }
  int signal_offset = num_coefficients - 1;
  WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset],
                           expanded_length - signal_offset,
                           expanded_downsampled_, kExpandDownsampLength,
                           filter_coefficients, num_coefficients,
                           decimation_factor, kCompensateDelay);
  if (input_length <= length_limit) {
    // Not quite long enough, so we have to cheat a bit.
    int16_t temp_len = input_length - signal_offset;
    // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off
    // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
    int16_t downsamp_temp_len = temp_len / decimation_factor;
    WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
                             input_downsampled_, downsamp_temp_len,
                             filter_coefficients, num_coefficients,
                             decimation_factor, kCompensateDelay);
    memset(&input_downsampled_[downsamp_temp_len], 0,
           sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
  } else {
    WebRtcSpl_DownsampleFast(&input[signal_offset],
                             input_length - signal_offset, input_downsampled_,
                             kInputDownsampLength, filter_coefficients,
                             num_coefficients, decimation_factor,
                             kCompensateDelay);
  }
}

int16_t Merge::CorrelateAndPeakSearch(int16_t expanded_max, int16_t input_max,
                                      int start_position, int input_length,
                                      int expand_period) const {
  // Calculate correlation without any normalization.
  const int max_corr_length = kMaxCorrelationLength;
  int stop_position_downsamp = std::min(
      max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
  int16_t correlation_shift = 0;
  if (expanded_max * input_max > 26843546) {
    correlation_shift = 3;
  }

  int32_t correlation[kMaxCorrelationLength];
  WebRtcSpl_CrossCorrelation(correlation, input_downsampled_,
                             expanded_downsampled_, kInputDownsampLength,
                             stop_position_downsamp, correlation_shift, 1);

  // Normalize correlation to 14 bits and copy to a 16-bit array.
  const int pad_length = static_cast<int>(expand_->overlap_length() - 1);
  const int correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
  scoped_ptr<int16_t[]> correlation16(new int16_t[correlation_buffer_size]);
  memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
  int16_t* correlation_ptr = &correlation16[pad_length];
  int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
                                                     stop_position_downsamp);
  int16_t norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
  WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
                                   correlation, norm_shift);

  // Calculate allowed starting point for peak finding.
  // The peak location bestIndex must fulfill two criteria:
  // (1) w16_bestIndex + input_length <
  //     timestamps_per_call_ + expand_->overlap_length();
  // (2) w16_bestIndex + input_length < start_position.
  int start_index = timestamps_per_call_ +
      static_cast<int>(expand_->overlap_length());
  start_index = std::max(start_position, start_index);
  start_index = std::max(start_index - input_length, 0);
  // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
  int start_index_downsamp = start_index / (fs_mult_ * 2);

  // Calculate a modified |stop_position_downsamp| to account for the increased
  // start index |start_index_downsamp| and the effective array length.
  int modified_stop_pos =
      std::min(stop_position_downsamp,
               kMaxCorrelationLength + pad_length - start_index_downsamp);
  int best_correlation_index;
  int16_t best_correlation;
  static const int kNumCorrelationCandidates = 1;
  DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
                           modified_stop_pos, kNumCorrelationCandidates,
                           fs_mult_, &best_correlation_index,
                           &best_correlation);
  // Compensate for modified start index.
  best_correlation_index += start_index;

  // Ensure that underrun does not occur for 10ms case => we have to get at
  // least 10ms + overlap . (This should never happen thanks to the above
  // modification of peak-finding starting point.)
  while ((best_correlation_index + input_length) <
      static_cast<int>(timestamps_per_call_ + expand_->overlap_length()) ||
      best_correlation_index + input_length < start_position) {
    assert(false);  // Should never happen.
    best_correlation_index += expand_period;  // Jump one lag ahead.
  }
  return best_correlation_index;
}

int Merge::RequiredFutureSamples() {
  return static_cast<int>(fs_hz_ / 100 * num_channels_);  // 10 ms.
}


}  // namespace webrtc