aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_coding/neteq/neteq_impl.cc
blob: 92ce41e2eaf404c88f8bd455da92395d12a817c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_coding/neteq/neteq_impl.h"

#include <assert.h>
#include <memory.h>  // memset

#include <algorithm>

#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
#include "webrtc/modules/audio_coding/neteq/accelerate.h"
#include "webrtc/modules/audio_coding/neteq/background_noise.h"
#include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
#include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
#include "webrtc/modules/audio_coding/neteq/decision_logic.h"
#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/defines.h"
#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
#include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
#include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
#include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
#include "webrtc/modules/audio_coding/neteq/expand.h"
#include "webrtc/modules/audio_coding/neteq/merge.h"
#include "webrtc/modules/audio_coding/neteq/nack.h"
#include "webrtc/modules/audio_coding/neteq/normal.h"
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
#include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
#include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
#include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"

// Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
// longer required, this #define should be removed (and the code that it
// enables).
#define LEGACY_BITEXACT

namespace webrtc {

NetEqImpl::NetEqImpl(const NetEq::Config& config,
                     BufferLevelFilter* buffer_level_filter,
                     DecoderDatabase* decoder_database,
                     DelayManager* delay_manager,
                     DelayPeakDetector* delay_peak_detector,
                     DtmfBuffer* dtmf_buffer,
                     DtmfToneGenerator* dtmf_tone_generator,
                     PacketBuffer* packet_buffer,
                     PayloadSplitter* payload_splitter,
                     TimestampScaler* timestamp_scaler,
                     AccelerateFactory* accelerate_factory,
                     ExpandFactory* expand_factory,
                     PreemptiveExpandFactory* preemptive_expand_factory,
                     bool create_components)
    : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
      buffer_level_filter_(buffer_level_filter),
      decoder_database_(decoder_database),
      delay_manager_(delay_manager),
      delay_peak_detector_(delay_peak_detector),
      dtmf_buffer_(dtmf_buffer),
      dtmf_tone_generator_(dtmf_tone_generator),
      packet_buffer_(packet_buffer),
      payload_splitter_(payload_splitter),
      timestamp_scaler_(timestamp_scaler),
      vad_(new PostDecodeVad()),
      expand_factory_(expand_factory),
      accelerate_factory_(accelerate_factory),
      preemptive_expand_factory_(preemptive_expand_factory),
      last_mode_(kModeNormal),
      decoded_buffer_length_(kMaxFrameSize),
      decoded_buffer_(new int16_t[decoded_buffer_length_]),
      playout_timestamp_(0),
      new_codec_(false),
      timestamp_(0),
      reset_decoder_(false),
      current_rtp_payload_type_(0xFF),      // Invalid RTP payload type.
      current_cng_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
      ssrc_(0),
      first_packet_(true),
      error_code_(0),
      decoder_error_code_(0),
      background_noise_mode_(config.background_noise_mode),
      playout_mode_(config.playout_mode),
      enable_fast_accelerate_(config.enable_fast_accelerate),
      nack_enabled_(false) {
  LOG(LS_INFO) << "NetEq config: " << config.ToString();
  int fs = config.sample_rate_hz;
  if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
    LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
        "Changing to 8000 Hz.";
    fs = 8000;
  }
  fs_hz_ = fs;
  fs_mult_ = fs / 8000;
  output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
  decoder_frame_length_ = 3 * output_size_samples_;
  WebRtcSpl_Init();
  if (create_components) {
    SetSampleRateAndChannels(fs, 1);  // Default is 1 channel.
  }
}

NetEqImpl::~NetEqImpl() = default;

int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
                            const uint8_t* payload,
                            size_t length_bytes,
                            uint32_t receive_timestamp) {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "InsertPacket: ts=" << rtp_header.header.timestamp <<
      ", sn=" << rtp_header.header.sequenceNumber <<
      ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
      ", ssrc=" << rtp_header.header.ssrc <<
      ", len=" << length_bytes;
  int error = InsertPacketInternal(rtp_header, payload, length_bytes,
                                   receive_timestamp, false);
  if (error != 0) {
    error_code_ = error;
    return kFail;
  }
  return kOK;
}

int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
                                uint32_t receive_timestamp) {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "InsertPacket-Sync: ts="
      << rtp_header.header.timestamp <<
      ", sn=" << rtp_header.header.sequenceNumber <<
      ", pt=" << static_cast<int>(rtp_header.header.payloadType) <<
      ", ssrc=" << rtp_header.header.ssrc;

  const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
  int error = InsertPacketInternal(
      rtp_header, kSyncPayload, sizeof(kSyncPayload), receive_timestamp, true);

  if (error != 0) {
    error_code_ = error;
    return kFail;
  }
  return kOK;
}

int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
                        size_t* samples_per_channel, int* num_channels,
                        NetEqOutputType* type) {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "GetAudio";
  int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
                               num_channels);
  LOG(LS_VERBOSE) << "Produced " << *samples_per_channel <<
      " samples/channel for " << *num_channels << " channel(s)";
  if (error != 0) {
    error_code_ = error;
    return kFail;
  }
  if (type) {
    *type = LastOutputType();
  }
  return kOK;
}

int NetEqImpl::RegisterPayloadType(NetEqDecoder codec,
                                   uint8_t rtp_payload_type) {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "RegisterPayloadType "
                  << static_cast<int>(rtp_payload_type) << " "
                  << static_cast<int>(codec);
  int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec);
  if (ret != DecoderDatabase::kOK) {
    switch (ret) {
      case DecoderDatabase::kInvalidRtpPayloadType:
        error_code_ = kInvalidRtpPayloadType;
        break;
      case DecoderDatabase::kCodecNotSupported:
        error_code_ = kCodecNotSupported;
        break;
      case DecoderDatabase::kDecoderExists:
        error_code_ = kDecoderExists;
        break;
      default:
        error_code_ = kOtherError;
    }
    return kFail;
  }
  return kOK;
}

int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
                                       NetEqDecoder codec,
                                       uint8_t rtp_payload_type,
                                       int sample_rate_hz) {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "RegisterExternalDecoder "
                  << static_cast<int>(rtp_payload_type) << " "
                  << static_cast<int>(codec);
  if (!decoder) {
    LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
    assert(false);
    return kFail;
  }
  int ret = decoder_database_->InsertExternal(rtp_payload_type, codec,
                                              sample_rate_hz, decoder);
  if (ret != DecoderDatabase::kOK) {
    switch (ret) {
      case DecoderDatabase::kInvalidRtpPayloadType:
        error_code_ = kInvalidRtpPayloadType;
        break;
      case DecoderDatabase::kCodecNotSupported:
        error_code_ = kCodecNotSupported;
        break;
      case DecoderDatabase::kDecoderExists:
        error_code_ = kDecoderExists;
        break;
      case DecoderDatabase::kInvalidSampleRate:
        error_code_ = kInvalidSampleRate;
        break;
      case DecoderDatabase::kInvalidPointer:
        error_code_ = kInvalidPointer;
        break;
      default:
        error_code_ = kOtherError;
    }
    return kFail;
  }
  return kOK;
}

int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
  CriticalSectionScoped lock(crit_sect_.get());
  int ret = decoder_database_->Remove(rtp_payload_type);
  if (ret == DecoderDatabase::kOK) {
    return kOK;
  } else if (ret == DecoderDatabase::kDecoderNotFound) {
    error_code_ = kDecoderNotFound;
  } else {
    error_code_ = kOtherError;
  }
  return kFail;
}

bool NetEqImpl::SetMinimumDelay(int delay_ms) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (delay_ms >= 0 && delay_ms < 10000) {
    assert(delay_manager_.get());
    return delay_manager_->SetMinimumDelay(delay_ms);
  }
  return false;
}

bool NetEqImpl::SetMaximumDelay(int delay_ms) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (delay_ms >= 0 && delay_ms < 10000) {
    assert(delay_manager_.get());
    return delay_manager_->SetMaximumDelay(delay_ms);
  }
  return false;
}

int NetEqImpl::LeastRequiredDelayMs() const {
  CriticalSectionScoped lock(crit_sect_.get());
  assert(delay_manager_.get());
  return delay_manager_->least_required_delay_ms();
}

int NetEqImpl::SetTargetDelay() {
  return kNotImplemented;
}

int NetEqImpl::TargetDelay() {
  return kNotImplemented;
}

int NetEqImpl::CurrentDelayMs() const {
  CriticalSectionScoped lock(crit_sect_.get());
  if (fs_hz_ == 0)
    return 0;
  // Sum up the samples in the packet buffer with the future length of the sync
  // buffer, and divide the sum by the sample rate.
  const size_t delay_samples =
      packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
                                         decoder_frame_length_) +
      sync_buffer_->FutureLength();
  // The division below will truncate.
  const int delay_ms =
      static_cast<int>(delay_samples) / rtc::CheckedDivExact(fs_hz_, 1000);
  return delay_ms;
}

// Deprecated.
// TODO(henrik.lundin) Delete.
void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (mode != playout_mode_) {
    playout_mode_ = mode;
    CreateDecisionLogic();
  }
}

// Deprecated.
// TODO(henrik.lundin) Delete.
NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
  CriticalSectionScoped lock(crit_sect_.get());
  return playout_mode_;
}

int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
  CriticalSectionScoped lock(crit_sect_.get());
  assert(decoder_database_.get());
  const size_t total_samples_in_buffers =
      packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
                                         decoder_frame_length_) +
      sync_buffer_->FutureLength();
  assert(delay_manager_.get());
  assert(decision_logic_.get());
  stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
                              decoder_frame_length_, *delay_manager_.get(),
                              *decision_logic_.get(), stats);
  return 0;
}

void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (stats) {
    rtcp_.GetStatistics(false, stats);
  }
}

void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (stats) {
    rtcp_.GetStatistics(true, stats);
  }
}

void NetEqImpl::EnableVad() {
  CriticalSectionScoped lock(crit_sect_.get());
  assert(vad_.get());
  vad_->Enable();
}

void NetEqImpl::DisableVad() {
  CriticalSectionScoped lock(crit_sect_.get());
  assert(vad_.get());
  vad_->Disable();
}

bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (first_packet_) {
    // We don't have a valid RTP timestamp until we have decoded our first
    // RTP packet.
    return false;
  }
  *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
  return true;
}

int NetEqImpl::SetTargetNumberOfChannels() {
  return kNotImplemented;
}

int NetEqImpl::SetTargetSampleRate() {
  return kNotImplemented;
}

int NetEqImpl::LastError() const {
  CriticalSectionScoped lock(crit_sect_.get());
  return error_code_;
}

int NetEqImpl::LastDecoderError() {
  CriticalSectionScoped lock(crit_sect_.get());
  return decoder_error_code_;
}

void NetEqImpl::FlushBuffers() {
  CriticalSectionScoped lock(crit_sect_.get());
  LOG(LS_VERBOSE) << "FlushBuffers";
  packet_buffer_->Flush();
  assert(sync_buffer_.get());
  assert(expand_.get());
  sync_buffer_->Flush();
  sync_buffer_->set_next_index(sync_buffer_->next_index() -
                               expand_->overlap_length());
  // Set to wait for new codec.
  first_packet_ = true;
}

void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
                                       int* max_num_packets) const {
  CriticalSectionScoped lock(crit_sect_.get());
  packet_buffer_->BufferStat(current_num_packets, max_num_packets);
}

void NetEqImpl::EnableNack(size_t max_nack_list_size) {
  CriticalSectionScoped lock(crit_sect_.get());
  if (!nack_enabled_) {
    const int kNackThresholdPackets = 2;
    nack_.reset(Nack::Create(kNackThresholdPackets));
    nack_enabled_ = true;
    nack_->UpdateSampleRate(fs_hz_);
  }
  nack_->SetMaxNackListSize(max_nack_list_size);
}

void NetEqImpl::DisableNack() {
  CriticalSectionScoped lock(crit_sect_.get());
  nack_.reset();
  nack_enabled_ = false;
}

std::vector<uint16_t> NetEqImpl::GetNackList(int64_t round_trip_time_ms) const {
  CriticalSectionScoped lock(crit_sect_.get());
  if (!nack_enabled_) {
    return std::vector<uint16_t>();
  }
  RTC_DCHECK(nack_.get());
  return nack_->GetNackList(round_trip_time_ms);
}

const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
  CriticalSectionScoped lock(crit_sect_.get());
  return sync_buffer_.get();
}

// Methods below this line are private.

int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
                                    const uint8_t* payload,
                                    size_t length_bytes,
                                    uint32_t receive_timestamp,
                                    bool is_sync_packet) {
  if (!payload) {
    LOG_F(LS_ERROR) << "payload == NULL";
    return kInvalidPointer;
  }
  // Sanity checks for sync-packets.
  if (is_sync_packet) {
    if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
        decoder_database_->IsRed(rtp_header.header.payloadType) ||
        decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
      LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
                      << static_cast<int>(rtp_header.header.payloadType);
      return kSyncPacketNotAccepted;
    }
    if (first_packet_ ||
        rtp_header.header.payloadType != current_rtp_payload_type_ ||
        rtp_header.header.ssrc != ssrc_) {
      // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
      // accepted.
      LOG_F(LS_ERROR)
          << "Changing codec, SSRC or first packet with sync-packet.";
      return kSyncPacketNotAccepted;
    }
  }
  PacketList packet_list;
  RTPHeader main_header;
  {
    // Convert to Packet.
    // Create |packet| within this separate scope, since it should not be used
    // directly once it's been inserted in the packet list. This way, |packet|
    // is not defined outside of this block.
    Packet* packet = new Packet;
    packet->header.markerBit = false;
    packet->header.payloadType = rtp_header.header.payloadType;
    packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
    packet->header.timestamp = rtp_header.header.timestamp;
    packet->header.ssrc = rtp_header.header.ssrc;
    packet->header.numCSRCs = 0;
    packet->payload_length = length_bytes;
    packet->primary = true;
    packet->waiting_time = 0;
    packet->payload = new uint8_t[packet->payload_length];
    packet->sync_packet = is_sync_packet;
    if (!packet->payload) {
      LOG_F(LS_ERROR) << "Payload pointer is NULL.";
    }
    assert(payload);  // Already checked above.
    memcpy(packet->payload, payload, packet->payload_length);
    // Insert packet in a packet list.
    packet_list.push_back(packet);
    // Save main payloads header for later.
    memcpy(&main_header, &packet->header, sizeof(main_header));
  }

  bool update_sample_rate_and_channels = false;
  // Reinitialize NetEq if it's needed (changed SSRC or first call).
  if ((main_header.ssrc != ssrc_) || first_packet_) {
    // Note: |first_packet_| will be cleared further down in this method, once
    // the packet has been successfully inserted into the packet buffer.

    rtcp_.Init(main_header.sequenceNumber);

    // Flush the packet buffer and DTMF buffer.
    packet_buffer_->Flush();
    dtmf_buffer_->Flush();

    // Store new SSRC.
    ssrc_ = main_header.ssrc;

    // Update audio buffer timestamp.
    sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);

    // Update codecs.
    timestamp_ = main_header.timestamp;
    current_rtp_payload_type_ = main_header.payloadType;

    // Reset timestamp scaling.
    timestamp_scaler_->Reset();

    // Trigger an update of sampling rate and the number of channels.
    update_sample_rate_and_channels = true;
  }

  // Update RTCP statistics, only for regular packets.
  if (!is_sync_packet)
    rtcp_.Update(main_header, receive_timestamp);

  // Check for RED payload type, and separate payloads into several packets.
  if (decoder_database_->IsRed(main_header.payloadType)) {
    assert(!is_sync_packet);  // We had a sanity check for this.
    if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
      PacketBuffer::DeleteAllPackets(&packet_list);
      return kRedundancySplitError;
    }
    // Only accept a few RED payloads of the same type as the main data,
    // DTMF events and CNG.
    payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
    // Update the stored main payload header since the main payload has now
    // changed.
    memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
  }

  // Check payload types.
  if (decoder_database_->CheckPayloadTypes(packet_list) ==
      DecoderDatabase::kDecoderNotFound) {
    PacketBuffer::DeleteAllPackets(&packet_list);
    return kUnknownRtpPayloadType;
  }

  // Scale timestamp to internal domain (only for some codecs).
  timestamp_scaler_->ToInternal(&packet_list);

  // Process DTMF payloads. Cycle through the list of packets, and pick out any
  // DTMF payloads found.
  PacketList::iterator it = packet_list.begin();
  while (it != packet_list.end()) {
    Packet* current_packet = (*it);
    assert(current_packet);
    assert(current_packet->payload);
    if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
      assert(!current_packet->sync_packet);  // We had a sanity check for this.
      DtmfEvent event;
      int ret = DtmfBuffer::ParseEvent(
          current_packet->header.timestamp,
          current_packet->payload,
          current_packet->payload_length,
          &event);
      if (ret != DtmfBuffer::kOK) {
        PacketBuffer::DeleteAllPackets(&packet_list);
        return kDtmfParsingError;
      }
      if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
        PacketBuffer::DeleteAllPackets(&packet_list);
        return kDtmfInsertError;
      }
      // TODO(hlundin): Let the destructor of Packet handle the payload.
      delete [] current_packet->payload;
      delete current_packet;
      it = packet_list.erase(it);
    } else {
      ++it;
    }
  }

  // Check for FEC in packets, and separate payloads into several packets.
  int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
  if (ret != PayloadSplitter::kOK) {
    PacketBuffer::DeleteAllPackets(&packet_list);
    switch (ret) {
      case PayloadSplitter::kUnknownPayloadType:
        return kUnknownRtpPayloadType;
      default:
        return kOtherError;
    }
  }

  // Split payloads into smaller chunks. This also verifies that all payloads
  // are of a known payload type. SplitAudio() method is protected against
  // sync-packets.
  ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
  if (ret != PayloadSplitter::kOK) {
    PacketBuffer::DeleteAllPackets(&packet_list);
    switch (ret) {
      case PayloadSplitter::kUnknownPayloadType:
        return kUnknownRtpPayloadType;
      case PayloadSplitter::kFrameSplitError:
        return kFrameSplitError;
      default:
        return kOtherError;
    }
  }

  // Update bandwidth estimate, if the packet is not sync-packet.
  if (!packet_list.empty() && !packet_list.front()->sync_packet) {
    // The list can be empty here if we got nothing but DTMF payloads.
    AudioDecoder* decoder =
        decoder_database_->GetDecoder(main_header.payloadType);
    assert(decoder);  // Should always get a valid object, since we have
                      // already checked that the payload types are known.
    decoder->IncomingPacket(packet_list.front()->payload,
                            packet_list.front()->payload_length,
                            packet_list.front()->header.sequenceNumber,
                            packet_list.front()->header.timestamp,
                            receive_timestamp);
  }

  if (nack_enabled_) {
    RTC_DCHECK(nack_);
    if (update_sample_rate_and_channels) {
      nack_->Reset();
    }
    nack_->UpdateLastReceivedPacket(packet_list.front()->header.sequenceNumber,
                                    packet_list.front()->header.timestamp);
  }

  // Insert packets in buffer.
  const size_t buffer_length_before_insert =
      packet_buffer_->NumPacketsInBuffer();
  ret = packet_buffer_->InsertPacketList(
      &packet_list,
      *decoder_database_,
      &current_rtp_payload_type_,
      &current_cng_rtp_payload_type_);
  if (ret == PacketBuffer::kFlushed) {
    // Reset DSP timestamp etc. if packet buffer flushed.
    new_codec_ = true;
    update_sample_rate_and_channels = true;
  } else if (ret != PacketBuffer::kOK) {
    PacketBuffer::DeleteAllPackets(&packet_list);
    return kOtherError;
  }

  if (first_packet_) {
    first_packet_ = false;
    // Update the codec on the next GetAudio call.
    new_codec_ = true;
  }

  if (current_rtp_payload_type_ != 0xFF) {
    const DecoderDatabase::DecoderInfo* dec_info =
        decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
    if (!dec_info) {
      assert(false);  // Already checked that the payload type is known.
    }
  }

  if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
    // We do not use |current_rtp_payload_type_| to |set payload_type|, but
    // get the next RTP header from |packet_buffer_| to obtain the payload type.
    // The reason for it is the following corner case. If NetEq receives a
    // CNG packet with a sample rate different than the current CNG then it
    // flushes its buffer, assuming send codec must have been changed. However,
    // payload type of the hypothetically new send codec is not known.
    const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
    assert(rtp_header);
    int payload_type = rtp_header->payloadType;
    AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
    assert(decoder);  // Payloads are already checked to be valid.
    const DecoderDatabase::DecoderInfo* decoder_info =
        decoder_database_->GetDecoderInfo(payload_type);
    assert(decoder_info);
    if (decoder_info->fs_hz != fs_hz_ ||
        decoder->Channels() != algorithm_buffer_->Channels()) {
      SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
    }
    if (nack_enabled_) {
      RTC_DCHECK(nack_);
      // Update the sample rate even if the rate is not new, because of Reset().
      nack_->UpdateSampleRate(fs_hz_);
    }
  }

  // TODO(hlundin): Move this code to DelayManager class.
  const DecoderDatabase::DecoderInfo* dec_info =
          decoder_database_->GetDecoderInfo(main_header.payloadType);
  assert(dec_info);  // Already checked that the payload type is known.
  delay_manager_->LastDecoderType(dec_info->codec_type);
  if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
    // Calculate the total speech length carried in each packet.
    const size_t buffer_length_after_insert =
        packet_buffer_->NumPacketsInBuffer();

    if (buffer_length_after_insert > buffer_length_before_insert) {
      const size_t packet_length_samples =
          (buffer_length_after_insert - buffer_length_before_insert) *
          decoder_frame_length_;
      if (packet_length_samples != decision_logic_->packet_length_samples()) {
        decision_logic_->set_packet_length_samples(packet_length_samples);
        delay_manager_->SetPacketAudioLength(
            rtc::checked_cast<int>((1000 * packet_length_samples) / fs_hz_));
      }
    }

    // Update statistics.
    if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
        !new_codec_) {
      // Only update statistics if incoming packet is not older than last played
      // out packet, and if new codec flag is not set.
      delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
                             fs_hz_);
    }
  } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
    // This is first "normal" packet after CNG or DTMF.
    // Reset packet time counter and measure time until next packet,
    // but don't update statistics.
    delay_manager_->set_last_pack_cng_or_dtmf(0);
    delay_manager_->ResetPacketIatCount();
  }
  return 0;
}

int NetEqImpl::GetAudioInternal(size_t max_length,
                                int16_t* output,
                                size_t* samples_per_channel,
                                int* num_channels) {
  PacketList packet_list;
  DtmfEvent dtmf_event;
  Operations operation;
  bool play_dtmf;
  int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
                                 &play_dtmf);
  if (return_value != 0) {
    last_mode_ = kModeError;
    return return_value;
  }
  LOG(LS_VERBOSE) << "GetDecision returned operation=" << operation <<
      " and " << packet_list.size() << " packet(s)";

  AudioDecoder::SpeechType speech_type;
  int length = 0;
  int decode_return_value = Decode(&packet_list, &operation,
                                   &length, &speech_type);

  assert(vad_.get());
  bool sid_frame_available =
      (operation == kRfc3389Cng && !packet_list.empty());
  vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
               sid_frame_available, fs_hz_);

  algorithm_buffer_->Clear();
  switch (operation) {
    case kNormal: {
      DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
      break;
    }
    case kMerge: {
      DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
      break;
    }
    case kExpand: {
      return_value = DoExpand(play_dtmf);
      break;
    }
    case kAccelerate:
    case kFastAccelerate: {
      const bool fast_accelerate =
          enable_fast_accelerate_ && (operation == kFastAccelerate);
      return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
                                  play_dtmf, fast_accelerate);
      break;
    }
    case kPreemptiveExpand: {
      return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
                                        speech_type, play_dtmf);
      break;
    }
    case kRfc3389Cng:
    case kRfc3389CngNoPacket: {
      return_value = DoRfc3389Cng(&packet_list, play_dtmf);
      break;
    }
    case kCodecInternalCng: {
      // This handles the case when there is no transmission and the decoder
      // should produce internal comfort noise.
      // TODO(hlundin): Write test for codec-internal CNG.
      DoCodecInternalCng(decoded_buffer_.get(), length);
      break;
    }
    case kDtmf: {
      // TODO(hlundin): Write test for this.
      return_value = DoDtmf(dtmf_event, &play_dtmf);
      break;
    }
    case kAlternativePlc: {
      // TODO(hlundin): Write test for this.
      DoAlternativePlc(false);
      break;
    }
    case kAlternativePlcIncreaseTimestamp: {
      // TODO(hlundin): Write test for this.
      DoAlternativePlc(true);
      break;
    }
    case kAudioRepetitionIncreaseTimestamp: {
      // TODO(hlundin): Write test for this.
      sync_buffer_->IncreaseEndTimestamp(
          static_cast<uint32_t>(output_size_samples_));
      // Skipping break on purpose. Execution should move on into the
      // next case.
      FALLTHROUGH();
    }
    case kAudioRepetition: {
      // TODO(hlundin): Write test for this.
      // Copy last |output_size_samples_| from |sync_buffer_| to
      // |algorithm_buffer|.
      algorithm_buffer_->PushBackFromIndex(
          *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
      expand_->Reset();
      break;
    }
    case kUndefined: {
      LOG(LS_ERROR) << "Invalid operation kUndefined.";
      assert(false);  // This should not happen.
      last_mode_ = kModeError;
      return kInvalidOperation;
    }
  }  // End of switch.
  if (return_value < 0) {
    return return_value;
  }

  if (last_mode_ != kModeRfc3389Cng) {
    comfort_noise_->Reset();
  }

  // Copy from |algorithm_buffer| to |sync_buffer_|.
  sync_buffer_->PushBack(*algorithm_buffer_);

  // Extract data from |sync_buffer_| to |output|.
  size_t num_output_samples_per_channel = output_size_samples_;
  size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
  if (num_output_samples > max_length) {
    LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
        output_size_samples_ << " * " << sync_buffer_->Channels();
    num_output_samples = max_length;
    num_output_samples_per_channel = max_length / sync_buffer_->Channels();
  }
  const size_t samples_from_sync =
      sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
                                            output);
  *num_channels = static_cast<int>(sync_buffer_->Channels());
  LOG(LS_VERBOSE) << "Sync buffer (" << *num_channels << " channel(s)):" <<
      " insert " << algorithm_buffer_->Size() << " samples, extract " <<
      samples_from_sync << " samples";
  if (sync_buffer_->FutureLength() < expand_->overlap_length()) {
    // The sync buffer should always contain |overlap_length| samples, but now
    // too many samples have been extracted. Reinstall the |overlap_length|
    // lookahead by moving the index.
    const size_t missing_lookahead_samples =
        expand_->overlap_length() - sync_buffer_->FutureLength();
    RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples);
    sync_buffer_->set_next_index(sync_buffer_->next_index() -
                                 missing_lookahead_samples);
  }
  if (samples_from_sync != output_size_samples_) {
    LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync
                  << ") != output_size_samples_ (" << output_size_samples_
                  << ")";
    // TODO(minyue): treatment of under-run, filling zeros
    memset(output, 0, num_output_samples * sizeof(int16_t));
    *samples_per_channel = output_size_samples_;
    return kSampleUnderrun;
  }
  *samples_per_channel = output_size_samples_;

  // Should always have overlap samples left in the |sync_buffer_|.
  RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length());

  if (play_dtmf) {
    return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
  }

  // Update the background noise parameters if last operation wrote data
  // straight from the decoder to the |sync_buffer_|. That is, none of the
  // operations that modify the signal can be followed by a parameter update.
  if ((last_mode_ == kModeNormal) ||
      (last_mode_ == kModeAccelerateFail) ||
      (last_mode_ == kModePreemptiveExpandFail) ||
      (last_mode_ == kModeRfc3389Cng) ||
      (last_mode_ == kModeCodecInternalCng)) {
    background_noise_->Update(*sync_buffer_, *vad_.get());
  }

  if (operation == kDtmf) {
    // DTMF data was written the end of |sync_buffer_|.
    // Update index to end of DTMF data in |sync_buffer_|.
    sync_buffer_->set_dtmf_index(sync_buffer_->Size());
  }

  if (last_mode_ != kModeExpand) {
    // If last operation was not expand, calculate the |playout_timestamp_| from
    // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
    // would be moved "backwards".
    uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
        static_cast<uint32_t>(sync_buffer_->FutureLength());
    if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
      playout_timestamp_ = temp_timestamp;
    }
  } else {
    // Use dead reckoning to estimate the |playout_timestamp_|.
    playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
  }

  if (decode_return_value) return decode_return_value;
  return return_value;
}

int NetEqImpl::GetDecision(Operations* operation,
                           PacketList* packet_list,
                           DtmfEvent* dtmf_event,
                           bool* play_dtmf) {
  // Initialize output variables.
  *play_dtmf = false;
  *operation = kUndefined;

  // Increment time counters.
  packet_buffer_->IncrementWaitingTimes();
  stats_.IncreaseCounter(output_size_samples_, fs_hz_);

  assert(sync_buffer_.get());
  uint32_t end_timestamp = sync_buffer_->end_timestamp();
  if (!new_codec_) {
    const uint32_t five_seconds_samples = 5 * fs_hz_;
    packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples);
  }
  const RTPHeader* header = packet_buffer_->NextRtpHeader();

  if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
    // Because of timestamp peculiarities, we have to "manually" disallow using
    // a CNG packet with the same timestamp as the one that was last played.
    // This can happen when using redundancy and will cause the timing to shift.
    while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
           (end_timestamp >= header->timestamp ||
            end_timestamp + decision_logic_->generated_noise_samples() >
                header->timestamp)) {
      // Don't use this packet, discard it.
      if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
        assert(false);  // Must be ok by design.
      }
      // Check buffer again.
      if (!new_codec_) {
        packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_);
      }
      header = packet_buffer_->NextRtpHeader();
    }
  }

  assert(expand_.get());
  const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
      expand_->overlap_length());
  if (last_mode_ == kModeAccelerateSuccess ||
      last_mode_ == kModeAccelerateLowEnergy ||
      last_mode_ == kModePreemptiveExpandSuccess ||
      last_mode_ == kModePreemptiveExpandLowEnergy) {
    // Subtract (samples_left + output_size_samples_) from sampleMemory.
    decision_logic_->AddSampleMemory(
        -(samples_left + rtc::checked_cast<int>(output_size_samples_)));
  }

  // Check if it is time to play a DTMF event.
  if (dtmf_buffer_->GetEvent(
      static_cast<uint32_t>(
          end_timestamp + decision_logic_->generated_noise_samples()),
      dtmf_event)) {
    *play_dtmf = true;
  }

  // Get instruction.
  assert(sync_buffer_.get());
  assert(expand_.get());
  *operation = decision_logic_->GetDecision(*sync_buffer_,
                                            *expand_,
                                            decoder_frame_length_,
                                            header,
                                            last_mode_,
                                            *play_dtmf,
                                            &reset_decoder_);

  // Check if we already have enough samples in the |sync_buffer_|. If so,
  // change decision to normal, unless the decision was merge, accelerate, or
  // preemptive expand.
  if (samples_left >= rtc::checked_cast<int>(output_size_samples_) &&
      *operation != kMerge &&
      *operation != kAccelerate &&
      *operation != kFastAccelerate &&
      *operation != kPreemptiveExpand) {
    *operation = kNormal;
    return 0;
  }

  decision_logic_->ExpandDecision(*operation);

  // Check conditions for reset.
  if (new_codec_ || *operation == kUndefined) {
    // The only valid reason to get kUndefined is that new_codec_ is set.
    assert(new_codec_);
    if (*play_dtmf && !header) {
      timestamp_ = dtmf_event->timestamp;
    } else {
      if (!header) {
        LOG(LS_ERROR) << "Packet missing where it shouldn't.";
        return -1;
      }
      timestamp_ = header->timestamp;
      if (*operation == kRfc3389CngNoPacket
#ifndef LEGACY_BITEXACT
          // Without this check, it can happen that a non-CNG packet is sent to
          // the CNG decoder as if it was a SID frame. This is clearly a bug,
          // but is kept for now to maintain bit-exactness with the test
          // vectors.
          && decoder_database_->IsComfortNoise(header->payloadType)
#endif
      ) {
        // Change decision to CNG packet, since we do have a CNG packet, but it
        // was considered too early to use. Now, use it anyway.
        *operation = kRfc3389Cng;
      } else if (*operation != kRfc3389Cng) {
        *operation = kNormal;
      }
    }
    // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
    // new value.
    sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
    end_timestamp = timestamp_;
    new_codec_ = false;
    decision_logic_->SoftReset();
    buffer_level_filter_->Reset();
    delay_manager_->Reset();
    stats_.ResetMcu();
  }

  size_t required_samples = output_size_samples_;
  const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
  const size_t samples_20_ms = 2 * samples_10_ms;
  const size_t samples_30_ms = 3 * samples_10_ms;

  switch (*operation) {
    case kExpand: {
      timestamp_ = end_timestamp;
      return 0;
    }
    case kRfc3389CngNoPacket:
    case kCodecInternalCng: {
      return 0;
    }
    case kDtmf: {
      // TODO(hlundin): Write test for this.
      // Update timestamp.
      timestamp_ = end_timestamp;
      if (decision_logic_->generated_noise_samples() > 0 &&
          last_mode_ != kModeDtmf) {
        // Make a jump in timestamp due to the recently played comfort noise.
        uint32_t timestamp_jump =
            static_cast<uint32_t>(decision_logic_->generated_noise_samples());
        sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
        timestamp_ += timestamp_jump;
      }
      decision_logic_->set_generated_noise_samples(0);
      return 0;
    }
    case kAccelerate:
    case kFastAccelerate: {
      // In order to do an accelerate we need at least 30 ms of audio data.
      if (samples_left >= static_cast<int>(samples_30_ms)) {
        // Already have enough data, so we do not need to extract any more.
        decision_logic_->set_sample_memory(samples_left);
        decision_logic_->set_prev_time_scale(true);
        return 0;
      } else if (samples_left >= static_cast<int>(samples_10_ms) &&
          decoder_frame_length_ >= samples_30_ms) {
        // Avoid decoding more data as it might overflow the playout buffer.
        *operation = kNormal;
        return 0;
      } else if (samples_left < static_cast<int>(samples_20_ms) &&
          decoder_frame_length_ < samples_30_ms) {
        // Build up decoded data by decoding at least 20 ms of audio data. Do
        // not perform accelerate yet, but wait until we only need to do one
        // decoding.
        required_samples = 2 * output_size_samples_;
        *operation = kNormal;
      }
      // If none of the above is true, we have one of two possible situations:
      // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
      // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
      // In either case, we move on with the accelerate decision, and decode one
      // frame now.
      break;
    }
    case kPreemptiveExpand: {
      // In order to do a preemptive expand we need at least 30 ms of decoded
      // audio data.
      if ((samples_left >= static_cast<int>(samples_30_ms)) ||
          (samples_left >= static_cast<int>(samples_10_ms) &&
              decoder_frame_length_ >= samples_30_ms)) {
        // Already have enough data, so we do not need to extract any more.
        // Or, avoid decoding more data as it might overflow the playout buffer.
        // Still try preemptive expand, though.
        decision_logic_->set_sample_memory(samples_left);
        decision_logic_->set_prev_time_scale(true);
        return 0;
      }
      if (samples_left < static_cast<int>(samples_20_ms) &&
          decoder_frame_length_ < samples_30_ms) {
        // Build up decoded data by decoding at least 20 ms of audio data.
        // Still try to perform preemptive expand.
        required_samples = 2 * output_size_samples_;
      }
      // Move on with the preemptive expand decision.
      break;
    }
    case kMerge: {
      required_samples =
          std::max(merge_->RequiredFutureSamples(), required_samples);
      break;
    }
    default: {
      // Do nothing.
    }
  }

  // Get packets from buffer.
  int extracted_samples = 0;
  if (header &&
      *operation != kAlternativePlc &&
      *operation != kAlternativePlcIncreaseTimestamp &&
      *operation != kAudioRepetition &&
      *operation != kAudioRepetitionIncreaseTimestamp) {
    sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
    if (decision_logic_->CngOff()) {
      // Adjustment of timestamp only corresponds to an actual packet loss
      // if comfort noise is not played. If comfort noise was just played,
      // this adjustment of timestamp is only done to get back in sync with the
      // stream timestamp; no loss to report.
      stats_.LostSamples(header->timestamp - end_timestamp);
    }

    if (*operation != kRfc3389Cng) {
      // We are about to decode and use a non-CNG packet.
      decision_logic_->SetCngOff();
    }
    // Reset CNG timestamp as a new packet will be delivered.
    // (Also if this is a CNG packet, since playedOutTS is updated.)
    decision_logic_->set_generated_noise_samples(0);

    extracted_samples = ExtractPackets(required_samples, packet_list);
    if (extracted_samples < 0) {
      return kPacketBufferCorruption;
    }
  }

  if (*operation == kAccelerate || *operation == kFastAccelerate ||
      *operation == kPreemptiveExpand) {
    decision_logic_->set_sample_memory(samples_left + extracted_samples);
    decision_logic_->set_prev_time_scale(true);
  }

  if (*operation == kAccelerate || *operation == kFastAccelerate) {
    // Check that we have enough data (30ms) to do accelerate.
    if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
      // TODO(hlundin): Write test for this.
      // Not enough, do normal operation instead.
      *operation = kNormal;
    }
  }

  timestamp_ = end_timestamp;
  return 0;
}

int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
                      int* decoded_length,
                      AudioDecoder::SpeechType* speech_type) {
  *speech_type = AudioDecoder::kSpeech;

  // When packet_list is empty, we may be in kCodecInternalCng mode, and for
  // that we use current active decoder.
  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();

  if (!packet_list->empty()) {
    const Packet* packet = packet_list->front();
    uint8_t payload_type = packet->header.payloadType;
    if (!decoder_database_->IsComfortNoise(payload_type)) {
      decoder = decoder_database_->GetDecoder(payload_type);
      assert(decoder);
      if (!decoder) {
        LOG(LS_WARNING) << "Unknown payload type "
                        << static_cast<int>(payload_type);
        PacketBuffer::DeleteAllPackets(packet_list);
        return kDecoderNotFound;
      }
      bool decoder_changed;
      decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
      if (decoder_changed) {
        // We have a new decoder. Re-init some values.
        const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
            ->GetDecoderInfo(payload_type);
        assert(decoder_info);
        if (!decoder_info) {
          LOG(LS_WARNING) << "Unknown payload type "
                          << static_cast<int>(payload_type);
          PacketBuffer::DeleteAllPackets(packet_list);
          return kDecoderNotFound;
        }
        // If sampling rate or number of channels has changed, we need to make
        // a reset.
        if (decoder_info->fs_hz != fs_hz_ ||
            decoder->Channels() != algorithm_buffer_->Channels()) {
          // TODO(tlegrand): Add unittest to cover this event.
          SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
        }
        sync_buffer_->set_end_timestamp(timestamp_);
        playout_timestamp_ = timestamp_;
      }
    }
  }

  if (reset_decoder_) {
    // TODO(hlundin): Write test for this.
    if (decoder)
      decoder->Reset();

    // Reset comfort noise decoder.
    AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
    if (cng_decoder)
      cng_decoder->Reset();

    reset_decoder_ = false;
  }

#ifdef LEGACY_BITEXACT
  // Due to a bug in old SignalMCU, it could happen that CNG operation was
  // decided, but a speech packet was provided. The speech packet will be used
  // to update the comfort noise decoder, as if it was a SID frame, which is
  // clearly wrong.
  if (*operation == kRfc3389Cng) {
    return 0;
  }
#endif

  *decoded_length = 0;
  // Update codec-internal PLC state.
  if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
    decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
  }

  int return_value;
  if (*operation == kCodecInternalCng) {
    RTC_DCHECK(packet_list->empty());
    return_value = DecodeCng(decoder, decoded_length, speech_type);
  } else {
    return_value = DecodeLoop(packet_list, *operation, decoder,
                              decoded_length, speech_type);
  }

  if (*decoded_length < 0) {
    // Error returned from the decoder.
    *decoded_length = 0;
    sync_buffer_->IncreaseEndTimestamp(
        static_cast<uint32_t>(decoder_frame_length_));
    int error_code = 0;
    if (decoder)
      error_code = decoder->ErrorCode();
    if (error_code != 0) {
      // Got some error code from the decoder.
      decoder_error_code_ = error_code;
      return_value = kDecoderErrorCode;
      LOG(LS_WARNING) << "Decoder returned error code: " << error_code;
    } else {
      // Decoder does not implement error codes. Return generic error.
      return_value = kOtherDecoderError;
      LOG(LS_WARNING) << "Decoder error (no error code)";
    }
    *operation = kExpand;  // Do expansion to get data instead.
  }
  if (*speech_type != AudioDecoder::kComfortNoise) {
    // Don't increment timestamp if codec returned CNG speech type
    // since in this case, the we will increment the CNGplayedTS counter.
    // Increase with number of samples per channel.
    assert(*decoded_length == 0 ||
           (decoder && decoder->Channels() == sync_buffer_->Channels()));
    sync_buffer_->IncreaseEndTimestamp(
        *decoded_length / static_cast<int>(sync_buffer_->Channels()));
  }
  return return_value;
}

int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length,
                         AudioDecoder::SpeechType* speech_type) {
  if (!decoder) {
    // This happens when active decoder is not defined.
    *decoded_length = -1;
    return 0;
  }

  while (*decoded_length < rtc::checked_cast<int>(output_size_samples_)) {
    const int length = decoder->Decode(
            nullptr, 0, fs_hz_,
            (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
            &decoded_buffer_[*decoded_length], speech_type);
    if (length > 0) {
      *decoded_length += length;
      LOG(LS_VERBOSE) << "Decoded " << length << " CNG samples";
    } else {
      // Error.
      LOG(LS_WARNING) << "Failed to decode CNG";
      *decoded_length = -1;
      break;
    }
    if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
      // Guard against overflow.
      LOG(LS_WARNING) << "Decoded too much CNG.";
      return kDecodedTooMuch;
    }
  }
  return 0;
}

int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation,
                          AudioDecoder* decoder, int* decoded_length,
                          AudioDecoder::SpeechType* speech_type) {
  Packet* packet = NULL;
  if (!packet_list->empty()) {
    packet = packet_list->front();
  }

  // Do decoding.
  while (packet &&
      !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
    assert(decoder);  // At this point, we must have a decoder object.
    // The number of channels in the |sync_buffer_| should be the same as the
    // number decoder channels.
    assert(sync_buffer_->Channels() == decoder->Channels());
    assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels());
    assert(operation == kNormal || operation == kAccelerate ||
           operation == kFastAccelerate || operation == kMerge ||
           operation == kPreemptiveExpand);
    packet_list->pop_front();
    size_t payload_length = packet->payload_length;
    int decode_length;
    if (packet->sync_packet) {
      // Decode to silence with the same frame size as the last decode.
      LOG(LS_VERBOSE) << "Decoding sync-packet: " <<
          " ts=" << packet->header.timestamp <<
          ", sn=" << packet->header.sequenceNumber <<
          ", pt=" << static_cast<int>(packet->header.payloadType) <<
          ", ssrc=" << packet->header.ssrc <<
          ", len=" << packet->payload_length;
      memset(&decoded_buffer_[*decoded_length], 0,
             decoder_frame_length_ * decoder->Channels() *
                 sizeof(decoded_buffer_[0]));
      decode_length = rtc::checked_cast<int>(decoder_frame_length_);
    } else if (!packet->primary) {
      // This is a redundant payload; call the special decoder method.
      LOG(LS_VERBOSE) << "Decoding packet (redundant):" <<
          " ts=" << packet->header.timestamp <<
          ", sn=" << packet->header.sequenceNumber <<
          ", pt=" << static_cast<int>(packet->header.payloadType) <<
          ", ssrc=" << packet->header.ssrc <<
          ", len=" << packet->payload_length;
      decode_length = decoder->DecodeRedundant(
          packet->payload, packet->payload_length, fs_hz_,
          (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
          &decoded_buffer_[*decoded_length], speech_type);
    } else {
      LOG(LS_VERBOSE) << "Decoding packet: ts=" << packet->header.timestamp <<
          ", sn=" << packet->header.sequenceNumber <<
          ", pt=" << static_cast<int>(packet->header.payloadType) <<
          ", ssrc=" << packet->header.ssrc <<
          ", len=" << packet->payload_length;
      decode_length =
          decoder->Decode(
              packet->payload, packet->payload_length, fs_hz_,
              (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
              &decoded_buffer_[*decoded_length], speech_type);
    }

    delete[] packet->payload;
    delete packet;
    packet = NULL;
    if (decode_length > 0) {
      *decoded_length += decode_length;
      // Update |decoder_frame_length_| with number of samples per channel.
      decoder_frame_length_ =
          static_cast<size_t>(decode_length) / decoder->Channels();
      LOG(LS_VERBOSE) << "Decoded " << decode_length << " samples ("
                      << decoder->Channels() << " channel(s) -> "
                      << decoder_frame_length_ << " samples per channel)";
    } else if (decode_length < 0) {
      // Error.
      LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length;
      *decoded_length = -1;
      PacketBuffer::DeleteAllPackets(packet_list);
      break;
    }
    if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
      // Guard against overflow.
      LOG(LS_WARNING) << "Decoded too much.";
      PacketBuffer::DeleteAllPackets(packet_list);
      return kDecodedTooMuch;
    }
    if (!packet_list->empty()) {
      packet = packet_list->front();
    } else {
      packet = NULL;
    }
  }  // End of decode loop.

  // If the list is not empty at this point, either a decoding error terminated
  // the while-loop, or list must hold exactly one CNG packet.
  assert(packet_list->empty() || *decoded_length < 0 ||
         (packet_list->size() == 1 && packet &&
             decoder_database_->IsComfortNoise(packet->header.payloadType)));
  return 0;
}

void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
                         AudioDecoder::SpeechType speech_type, bool play_dtmf) {
  assert(normal_.get());
  assert(mute_factor_array_.get());
  normal_->Process(decoded_buffer, decoded_length, last_mode_,
                   mute_factor_array_.get(), algorithm_buffer_.get());
  if (decoded_length != 0) {
    last_mode_ = kModeNormal;
  }

  // If last packet was decoded as an inband CNG, set mode to CNG instead.
  if ((speech_type == AudioDecoder::kComfortNoise)
      || ((last_mode_ == kModeCodecInternalCng)
          && (decoded_length == 0))) {
    // TODO(hlundin): Remove second part of || statement above.
    last_mode_ = kModeCodecInternalCng;
  }

  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
}

void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
                        AudioDecoder::SpeechType speech_type, bool play_dtmf) {
  assert(mute_factor_array_.get());
  assert(merge_.get());
  size_t new_length = merge_->Process(decoded_buffer, decoded_length,
                                      mute_factor_array_.get(),
                                      algorithm_buffer_.get());
  size_t expand_length_correction = new_length -
      decoded_length / algorithm_buffer_->Channels();

  // Update in-call and post-call statistics.
  if (expand_->MuteFactor(0) == 0) {
    // Expand generates only noise.
    stats_.ExpandedNoiseSamples(expand_length_correction);
  } else {
    // Expansion generates more than only noise.
    stats_.ExpandedVoiceSamples(expand_length_correction);
  }

  last_mode_ = kModeMerge;
  // If last packet was decoded as an inband CNG, set mode to CNG instead.
  if (speech_type == AudioDecoder::kComfortNoise) {
    last_mode_ = kModeCodecInternalCng;
  }
  expand_->Reset();
  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
}

int NetEqImpl::DoExpand(bool play_dtmf) {
  while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
      output_size_samples_) {
    algorithm_buffer_->Clear();
    int return_value = expand_->Process(algorithm_buffer_.get());
    size_t length = algorithm_buffer_->Size();

    // Update in-call and post-call statistics.
    if (expand_->MuteFactor(0) == 0) {
      // Expand operation generates only noise.
      stats_.ExpandedNoiseSamples(length);
    } else {
      // Expand operation generates more than only noise.
      stats_.ExpandedVoiceSamples(length);
    }

    last_mode_ = kModeExpand;

    if (return_value < 0) {
      return return_value;
    }

    sync_buffer_->PushBack(*algorithm_buffer_);
    algorithm_buffer_->Clear();
  }
  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
  return 0;
}

int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
                            size_t decoded_length,
                            AudioDecoder::SpeechType speech_type,
                            bool play_dtmf,
                            bool fast_accelerate) {
  const size_t required_samples =
      static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
  size_t borrowed_samples_per_channel = 0;
  size_t num_channels = algorithm_buffer_->Channels();
  size_t decoded_length_per_channel = decoded_length / num_channels;
  if (decoded_length_per_channel < required_samples) {
    // Must move data from the |sync_buffer_| in order to get 30 ms.
    borrowed_samples_per_channel = static_cast<int>(required_samples -
        decoded_length_per_channel);
    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
            decoded_buffer,
            sizeof(int16_t) * decoded_length);
    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
                                         decoded_buffer);
    decoded_length = required_samples * num_channels;
  }

  size_t samples_removed;
  Accelerate::ReturnCodes return_code =
      accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
                           algorithm_buffer_.get(), &samples_removed);
  stats_.AcceleratedSamples(samples_removed);
  switch (return_code) {
    case Accelerate::kSuccess:
      last_mode_ = kModeAccelerateSuccess;
      break;
    case Accelerate::kSuccessLowEnergy:
      last_mode_ = kModeAccelerateLowEnergy;
      break;
    case Accelerate::kNoStretch:
      last_mode_ = kModeAccelerateFail;
      break;
    case Accelerate::kError:
      // TODO(hlundin): Map to kModeError instead?
      last_mode_ = kModeAccelerateFail;
      return kAccelerateError;
  }

  if (borrowed_samples_per_channel > 0) {
    // Copy borrowed samples back to the |sync_buffer_|.
    size_t length = algorithm_buffer_->Size();
    if (length < borrowed_samples_per_channel) {
      // This destroys the beginning of the buffer, but will not cause any
      // problems.
      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
                                   sync_buffer_->Size() -
                                   borrowed_samples_per_channel);
      sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
      algorithm_buffer_->PopFront(length);
      assert(algorithm_buffer_->Empty());
    } else {
      sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
                                   borrowed_samples_per_channel,
                                   sync_buffer_->Size() -
                                   borrowed_samples_per_channel);
      algorithm_buffer_->PopFront(borrowed_samples_per_channel);
    }
  }

  // If last packet was decoded as an inband CNG, set mode to CNG instead.
  if (speech_type == AudioDecoder::kComfortNoise) {
    last_mode_ = kModeCodecInternalCng;
  }
  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
  expand_->Reset();
  return 0;
}

int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
                                  size_t decoded_length,
                                  AudioDecoder::SpeechType speech_type,
                                  bool play_dtmf) {
  const size_t required_samples =
      static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
  size_t num_channels = algorithm_buffer_->Channels();
  size_t borrowed_samples_per_channel = 0;
  size_t old_borrowed_samples_per_channel = 0;
  size_t decoded_length_per_channel = decoded_length / num_channels;
  if (decoded_length_per_channel < required_samples) {
    // Must move data from the |sync_buffer_| in order to get 30 ms.
    borrowed_samples_per_channel =
        required_samples - decoded_length_per_channel;
    // Calculate how many of these were already played out.
    old_borrowed_samples_per_channel =
        (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ?
        (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0;
    memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
            decoded_buffer,
            sizeof(int16_t) * decoded_length);
    sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
                                         decoded_buffer);
    decoded_length = required_samples * num_channels;
  }

  size_t samples_added;
  PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
      decoded_buffer, decoded_length,
      old_borrowed_samples_per_channel,
      algorithm_buffer_.get(), &samples_added);
  stats_.PreemptiveExpandedSamples(samples_added);
  switch (return_code) {
    case PreemptiveExpand::kSuccess:
      last_mode_ = kModePreemptiveExpandSuccess;
      break;
    case PreemptiveExpand::kSuccessLowEnergy:
      last_mode_ = kModePreemptiveExpandLowEnergy;
      break;
    case PreemptiveExpand::kNoStretch:
      last_mode_ = kModePreemptiveExpandFail;
      break;
    case PreemptiveExpand::kError:
      // TODO(hlundin): Map to kModeError instead?
      last_mode_ = kModePreemptiveExpandFail;
      return kPreemptiveExpandError;
  }

  if (borrowed_samples_per_channel > 0) {
    // Copy borrowed samples back to the |sync_buffer_|.
    sync_buffer_->ReplaceAtIndex(
        *algorithm_buffer_, borrowed_samples_per_channel,
        sync_buffer_->Size() - borrowed_samples_per_channel);
    algorithm_buffer_->PopFront(borrowed_samples_per_channel);
  }

  // If last packet was decoded as an inband CNG, set mode to CNG instead.
  if (speech_type == AudioDecoder::kComfortNoise) {
    last_mode_ = kModeCodecInternalCng;
  }
  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
  expand_->Reset();
  return 0;
}

int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
  if (!packet_list->empty()) {
    // Must have exactly one SID frame at this point.
    assert(packet_list->size() == 1);
    Packet* packet = packet_list->front();
    packet_list->pop_front();
    if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
#ifdef LEGACY_BITEXACT
      // This can happen due to a bug in GetDecision. Change the payload type
      // to a CNG type, and move on. Note that this means that we are in fact
      // sending a non-CNG payload to the comfort noise decoder for decoding.
      // Clearly wrong, but will maintain bit-exactness with legacy.
      if (fs_hz_ == 8000) {
        packet->header.payloadType =
            decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGnb);
      } else if (fs_hz_ == 16000) {
        packet->header.payloadType =
            decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGwb);
      } else if (fs_hz_ == 32000) {
        packet->header.payloadType = decoder_database_->GetRtpPayloadType(
            NetEqDecoder::kDecoderCNGswb32kHz);
      } else if (fs_hz_ == 48000) {
        packet->header.payloadType = decoder_database_->GetRtpPayloadType(
            NetEqDecoder::kDecoderCNGswb48kHz);
      }
      assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
#else
      LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
      return kOtherError;
#endif
    }
    // UpdateParameters() deletes |packet|.
    if (comfort_noise_->UpdateParameters(packet) ==
        ComfortNoise::kInternalError) {
      algorithm_buffer_->Zeros(output_size_samples_);
      return -comfort_noise_->internal_error_code();
    }
  }
  int cn_return = comfort_noise_->Generate(output_size_samples_,
                                           algorithm_buffer_.get());
  expand_->Reset();
  last_mode_ = kModeRfc3389Cng;
  if (!play_dtmf) {
    dtmf_tone_generator_->Reset();
  }
  if (cn_return == ComfortNoise::kInternalError) {
    decoder_error_code_ = comfort_noise_->internal_error_code();
    return kComfortNoiseErrorCode;
  } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
    return kUnknownRtpPayloadType;
  }
  return 0;
}

void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer,
                                   size_t decoded_length) {
  RTC_DCHECK(normal_.get());
  RTC_DCHECK(mute_factor_array_.get());
  normal_->Process(decoded_buffer, decoded_length, last_mode_,
                   mute_factor_array_.get(), algorithm_buffer_.get());
  last_mode_ = kModeCodecInternalCng;
  expand_->Reset();
}

int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
  // This block of the code and the block further down, handling |dtmf_switch|
  // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
  // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
  // equivalent to |dtmf_switch| always be false.
  //
  // See http://webrtc-codereview.appspot.com/1195004/ for discussion
  // On this issue. This change might cause some glitches at the point of
  // switch from audio to DTMF. Issue 1545 is filed to track this.
  //
  //  bool dtmf_switch = false;
  //  if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
  //    // Special case; see below.
  //    // We must catch this before calling Generate, since |initialized| is
  //    // modified in that call.
  //    dtmf_switch = true;
  //  }

  int dtmf_return_value = 0;
  if (!dtmf_tone_generator_->initialized()) {
    // Initialize if not already done.
    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
                                                   dtmf_event.volume);
  }

  if (dtmf_return_value == 0) {
    // Generate DTMF signal.
    dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
                                                       algorithm_buffer_.get());
  }

  if (dtmf_return_value < 0) {
    algorithm_buffer_->Zeros(output_size_samples_);
    return dtmf_return_value;
  }

  //  if (dtmf_switch) {
  //    // This is the special case where the previous operation was DTMF
  //    // overdub, but the current instruction is "regular" DTMF. We must make
  //    // sure that the DTMF does not have any discontinuities. The first DTMF
  //    // sample that we generate now must be played out immediately, therefore
  //    // it must be copied to the speech buffer.
  //    // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
  //    // verify correct operation.
  //    assert(false);
  //    // Must generate enough data to replace all of the |sync_buffer_|
  //    // "future".
  //    int required_length = sync_buffer_->FutureLength();
  //    assert(dtmf_tone_generator_->initialized());
  //    dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
  //                                                       algorithm_buffer_);
  //    assert((size_t) required_length == algorithm_buffer_->Size());
  //    if (dtmf_return_value < 0) {
  //      algorithm_buffer_->Zeros(output_size_samples_);
  //      return dtmf_return_value;
  //    }
  //
  //    // Overwrite the "future" part of the speech buffer with the new DTMF
  //    // data.
  //    // TODO(hlundin): It seems that this overwriting has gone lost.
  //    // Not adapted for multi-channel yet.
  //    assert(algorithm_buffer_->Channels() == 1);
  //    if (algorithm_buffer_->Channels() != 1) {
  //      LOG(LS_WARNING) << "DTMF not supported for more than one channel";
  //      return kStereoNotSupported;
  //    }
  //    // Shuffle the remaining data to the beginning of algorithm buffer.
  //    algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
  //  }

  sync_buffer_->IncreaseEndTimestamp(
      static_cast<uint32_t>(output_size_samples_));
  expand_->Reset();
  last_mode_ = kModeDtmf;

  // Set to false because the DTMF is already in the algorithm buffer.
  *play_dtmf = false;
  return 0;
}

void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
  AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
  size_t length;
  if (decoder && decoder->HasDecodePlc()) {
    // Use the decoder's packet-loss concealment.
    // TODO(hlundin): Will probably need a longer buffer for multi-channel.
    int16_t decoded_buffer[kMaxFrameSize];
    length = decoder->DecodePlc(1, decoded_buffer);
    if (length > 0)
      algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
  } else {
    // Do simple zero-stuffing.
    length = output_size_samples_;
    algorithm_buffer_->Zeros(length);
    // By not advancing the timestamp, NetEq inserts samples.
    stats_.AddZeros(length);
  }
  if (increase_timestamp) {
    sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length));
  }
  expand_->Reset();
}

int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
                           int16_t* output) const {
  size_t out_index = 0;
  size_t overdub_length = output_size_samples_;  // Default value.

  if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
    // Special operation for transition from "DTMF only" to "DTMF overdub".
    out_index = std::min(
        sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
        output_size_samples_);
    overdub_length = output_size_samples_ - out_index;
  }

  AudioMultiVector dtmf_output(num_channels);
  int dtmf_return_value = 0;
  if (!dtmf_tone_generator_->initialized()) {
    dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
                                                   dtmf_event.volume);
  }
  if (dtmf_return_value == 0) {
    dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
                                                       &dtmf_output);
    assert(overdub_length == dtmf_output.Size());
  }
  dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
  return dtmf_return_value < 0 ? dtmf_return_value : 0;
}

int NetEqImpl::ExtractPackets(size_t required_samples,
                              PacketList* packet_list) {
  bool first_packet = true;
  uint8_t prev_payload_type = 0;
  uint32_t prev_timestamp = 0;
  uint16_t prev_sequence_number = 0;
  bool next_packet_available = false;

  const RTPHeader* header = packet_buffer_->NextRtpHeader();
  assert(header);
  if (!header) {
    LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
    return -1;
  }
  uint32_t first_timestamp = header->timestamp;
  int extracted_samples = 0;

  // Packet extraction loop.
  do {
    timestamp_ = header->timestamp;
    size_t discard_count = 0;
    Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
    // |header| may be invalid after the |packet_buffer_| operation.
    header = NULL;
    if (!packet) {
      LOG(LS_ERROR) << "Should always be able to extract a packet here";
      assert(false);  // Should always be able to extract a packet here.
      return -1;
    }
    stats_.PacketsDiscarded(discard_count);
    // Store waiting time in ms; packets->waiting_time is in "output blocks".
    stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
    assert(packet->payload_length > 0);
    packet_list->push_back(packet);  // Store packet in list.

    if (first_packet) {
      first_packet = false;
      if (nack_enabled_) {
        RTC_DCHECK(nack_);
        // TODO(henrik.lundin): Should we update this for all decoded packets?
        nack_->UpdateLastDecodedPacket(packet->header.sequenceNumber,
                                       packet->header.timestamp);
      }
      prev_sequence_number = packet->header.sequenceNumber;
      prev_timestamp = packet->header.timestamp;
      prev_payload_type = packet->header.payloadType;
    }

    // Store number of extracted samples.
    int packet_duration = 0;
    AudioDecoder* decoder = decoder_database_->GetDecoder(
        packet->header.payloadType);
    if (decoder) {
      if (packet->sync_packet) {
        packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
      } else {
        if (packet->primary) {
          packet_duration = decoder->PacketDuration(packet->payload,
                                                    packet->payload_length);
        } else {
          packet_duration = decoder->
              PacketDurationRedundant(packet->payload, packet->payload_length);
          stats_.SecondaryDecodedSamples(packet_duration);
        }
      }
    } else {
      LOG(LS_WARNING) << "Unknown payload type "
                      << static_cast<int>(packet->header.payloadType);
      assert(false);
    }
    if (packet_duration <= 0) {
      // Decoder did not return a packet duration. Assume that the packet
      // contains the same number of samples as the previous one.
      packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
    }
    extracted_samples = packet->header.timestamp - first_timestamp +
        packet_duration;

    // Check what packet is available next.
    header = packet_buffer_->NextRtpHeader();
    next_packet_available = false;
    if (header && prev_payload_type == header->payloadType) {
      int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
      size_t ts_diff = header->timestamp - prev_timestamp;
      if (seq_no_diff == 1 ||
          (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
        // The next sequence number is available, or the next part of a packet
        // that was split into pieces upon insertion.
        next_packet_available = true;
      }
      prev_sequence_number = header->sequenceNumber;
    }
  } while (extracted_samples < rtc::checked_cast<int>(required_samples) &&
           next_packet_available);

  if (extracted_samples > 0) {
    // Delete old packets only when we are going to decode something. Otherwise,
    // we could end up in the situation where we never decode anything, since
    // all incoming packets are considered too old but the buffer will also
    // never be flooded and flushed.
    packet_buffer_->DiscardAllOldPackets(timestamp_);
  }

  return extracted_samples;
}

void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
  // Delete objects and create new ones.
  expand_.reset(expand_factory_->Create(background_noise_.get(),
                                        sync_buffer_.get(), &random_vector_,
                                        &stats_, fs_hz, channels));
  merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
}

void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
  LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels;
  // TODO(hlundin): Change to an enumerator and skip assert.
  assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz ==  32000 || fs_hz == 48000);
  assert(channels > 0);

  fs_hz_ = fs_hz;
  fs_mult_ = fs_hz / 8000;
  output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
  decoder_frame_length_ = 3 * output_size_samples_;  // Initialize to 30ms.

  last_mode_ = kModeNormal;

  // Create a new array of mute factors and set all to 1.
  mute_factor_array_.reset(new int16_t[channels]);
  for (size_t i = 0; i < channels; ++i) {
    mute_factor_array_[i] = 16384;  // 1.0 in Q14.
  }

  AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
  if (cng_decoder)
    cng_decoder->Reset();

  // Reinit post-decode VAD with new sample rate.
  assert(vad_.get());  // Cannot be NULL here.
  vad_->Init();

  // Delete algorithm buffer and create a new one.
  algorithm_buffer_.reset(new AudioMultiVector(channels));

  // Delete sync buffer and create a new one.
  sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));

  // Delete BackgroundNoise object and create a new one.
  background_noise_.reset(new BackgroundNoise(channels));
  background_noise_->set_mode(background_noise_mode_);

  // Reset random vector.
  random_vector_.Reset();

  UpdatePlcComponents(fs_hz, channels);

  // Move index so that we create a small set of future samples (all 0).
  sync_buffer_->set_next_index(sync_buffer_->next_index() -
      expand_->overlap_length());

  normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
                           expand_.get()));
  accelerate_.reset(
      accelerate_factory_->Create(fs_hz, channels, *background_noise_));
  preemptive_expand_.reset(preemptive_expand_factory_->Create(
      fs_hz, channels, *background_noise_, expand_->overlap_length()));

  // Delete ComfortNoise object and create a new one.
  comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
                                        sync_buffer_.get()));

  // Verify that |decoded_buffer_| is long enough.
  if (decoded_buffer_length_ < kMaxFrameSize * channels) {
    // Reallocate to larger size.
    decoded_buffer_length_ = kMaxFrameSize * channels;
    decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
  }

  // Create DecisionLogic if it is not created yet, then communicate new sample
  // rate and output size to DecisionLogic object.
  if (!decision_logic_.get()) {
    CreateDecisionLogic();
  }
  decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
}

NetEqOutputType NetEqImpl::LastOutputType() {
  assert(vad_.get());
  assert(expand_.get());
  if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
    return kOutputCNG;
  } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
    // Expand mode has faded down to background noise only (very long expand).
    return kOutputPLCtoCNG;
  } else if (last_mode_ == kModeExpand) {
    return kOutputPLC;
  } else if (vad_->running() && !vad_->active_speech()) {
    return kOutputVADPassive;
  } else {
    return kOutputNormal;
  }
}

void NetEqImpl::CreateDecisionLogic() {
  decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
                                              playout_mode_,
                                              decoder_database_.get(),
                                              *packet_buffer_.get(),
                                              delay_manager_.get(),
                                              buffer_level_filter_.get()));
}
}  // namespace webrtc