aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_device/android/audio_device_unittest.cc
blob: 7b2d6354c493269b7ee83abd1b149a8217af6690 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <algorithm>
#include <limits>
#include <list>
#include <numeric>
#include <string>
#include <vector>

#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/arraysize.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/format_macros.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/scoped_ref_ptr.h"
#include "webrtc/modules/audio_device/android/audio_common.h"
#include "webrtc/modules/audio_device/android/audio_manager.h"
#include "webrtc/modules/audio_device/android/build_info.h"
#include "webrtc/modules/audio_device/android/ensure_initialized.h"
#include "webrtc/modules/audio_device/audio_device_impl.h"
#include "webrtc/modules/audio_device/include/audio_device.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/event_wrapper.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/testsupport/fileutils.h"

using std::cout;
using std::endl;
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Gt;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
using ::testing::Return;
using ::testing::TestWithParam;

// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);

namespace webrtc {

// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static const size_t kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static const int kTestTimeOutInMilliseconds = 10 * 1000;
// Average number of audio callbacks per second assuming 10ms packet size.
static const size_t kNumCallbacksPerSecond = 100;
// Play out a test file during this time (unit is in seconds).
static const int kFilePlayTimeInSec = 5;
static const size_t kBitsPerSample = 16;
static const size_t kBytesPerSample = kBitsPerSample / 8;
// Run the full-duplex test during this time (unit is in seconds).
// Note that first |kNumIgnoreFirstCallbacks| are ignored.
static const int kFullDuplexTimeInSec = 5;
// Wait for the callback sequence to stabilize by ignoring this amount of the
// initial callbacks (avoids initial FIFO access).
// Only used in the RunPlayoutAndRecordingInFullDuplex test.
static const size_t kNumIgnoreFirstCallbacks = 50;
// Sets the number of impulses per second in the latency test.
static const int kImpulseFrequencyInHz = 1;
// Length of round-trip latency measurements. Number of transmitted impulses
// is kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1.
static const int kMeasureLatencyTimeInSec = 11;
// Utilized in round-trip latency measurements to avoid capturing noise samples.
static const int kImpulseThreshold = 1000;
static const char kTag[] = "[..........] ";

enum TransportType {
  kPlayout = 0x1,
  kRecording = 0x2,
};

// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStreamInterface {
 public:
  virtual void Write(const void* source, size_t num_frames) = 0;
  virtual void Read(void* destination, size_t num_frames) = 0;
 protected:
  virtual ~AudioStreamInterface() {}
};

// Reads audio samples from a PCM file where the file is stored in memory at
// construction.
class FileAudioStream : public AudioStreamInterface {
 public:
  FileAudioStream(
      size_t num_callbacks, const std::string& file_name, int sample_rate)
      : file_size_in_bytes_(0),
        sample_rate_(sample_rate),
        file_pos_(0) {
    file_size_in_bytes_ = test::GetFileSize(file_name);
    sample_rate_ = sample_rate;
    EXPECT_GE(file_size_in_callbacks(), num_callbacks)
        << "Size of test file is not large enough to last during the test.";
    const size_t num_16bit_samples =
        test::GetFileSize(file_name) / kBytesPerSample;
    file_.reset(new int16_t[num_16bit_samples]);
    FILE* audio_file = fopen(file_name.c_str(), "rb");
    EXPECT_NE(audio_file, nullptr);
    size_t num_samples_read = fread(
        file_.get(), sizeof(int16_t), num_16bit_samples, audio_file);
    EXPECT_EQ(num_samples_read, num_16bit_samples);
    fclose(audio_file);
  }

  // AudioStreamInterface::Write() is not implemented.
  void Write(const void* source, size_t num_frames) override {}

  // Read samples from file stored in memory (at construction) and copy
  // |num_frames| (<=> 10ms) to the |destination| byte buffer.
  void Read(void* destination, size_t num_frames) override {
    memcpy(destination,
           static_cast<int16_t*> (&file_[file_pos_]),
           num_frames * sizeof(int16_t));
    file_pos_ += num_frames;
  }

  int file_size_in_seconds() const {
    return static_cast<int>(
        file_size_in_bytes_ / (kBytesPerSample * sample_rate_));
  }
  size_t file_size_in_callbacks() const {
    return file_size_in_seconds() * kNumCallbacksPerSecond;
  }

 private:
  size_t file_size_in_bytes_;
  int sample_rate_;
  rtc::scoped_ptr<int16_t[]> file_;
  size_t file_pos_;
};

// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
class FifoAudioStream : public AudioStreamInterface {
 public:
  explicit FifoAudioStream(size_t frames_per_buffer)
      : frames_per_buffer_(frames_per_buffer),
        bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
        fifo_(new AudioBufferList),
        largest_size_(0),
        total_written_elements_(0),
        write_count_(0) {
    EXPECT_NE(fifo_.get(), nullptr);
  }

  ~FifoAudioStream() {
    Flush();
  }

  // Allocate new memory, copy |num_frames| samples from |source| into memory
  // and add pointer to the memory location to end of the list.
  // Increases the size of the FIFO by one element.
  void Write(const void* source, size_t num_frames) override {
    ASSERT_EQ(num_frames, frames_per_buffer_);
    PRINTD("+");
    if (write_count_++ < kNumIgnoreFirstCallbacks) {
      return;
    }
    int16_t* memory = new int16_t[frames_per_buffer_];
    memcpy(static_cast<int16_t*> (&memory[0]),
           source,
           bytes_per_buffer_);
    rtc::CritScope lock(&lock_);
    fifo_->push_back(memory);
    const size_t size = fifo_->size();
    if (size > largest_size_) {
      largest_size_ = size;
      PRINTD("(%" PRIuS ")", largest_size_);
    }
    total_written_elements_ += size;
  }

  // Read pointer to data buffer from front of list, copy |num_frames| of stored
  // data into |destination| and delete the utilized memory allocation.
  // Decreases the size of the FIFO by one element.
  void Read(void* destination, size_t num_frames) override {
    ASSERT_EQ(num_frames, frames_per_buffer_);
    PRINTD("-");
    rtc::CritScope lock(&lock_);
    if (fifo_->empty()) {
      memset(destination, 0, bytes_per_buffer_);
    } else {
      int16_t* memory = fifo_->front();
      fifo_->pop_front();
      memcpy(destination,
             static_cast<int16_t*> (&memory[0]),
             bytes_per_buffer_);
      delete memory;
    }
  }

  size_t size() const {
    return fifo_->size();
  }

  size_t largest_size() const {
    return largest_size_;
  }

  size_t average_size() const {
    return (total_written_elements_ == 0) ? 0.0 : 0.5 + static_cast<float> (
      total_written_elements_) / (write_count_ - kNumIgnoreFirstCallbacks);
  }

 private:
  void Flush() {
    for (auto it = fifo_->begin(); it != fifo_->end(); ++it) {
      delete *it;
    }
    fifo_->clear();
  }

  using AudioBufferList = std::list<int16_t*>;
  rtc::CriticalSection lock_;
  const size_t frames_per_buffer_;
  const size_t bytes_per_buffer_;
  rtc::scoped_ptr<AudioBufferList> fifo_;
  size_t largest_size_;
  size_t total_written_elements_;
  size_t write_count_;
};

// Inserts periodic impulses and measures the latency between the time of
// transmission and time of receiving the same impulse.
// Usage requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
class LatencyMeasuringAudioStream : public AudioStreamInterface {
 public:
  explicit LatencyMeasuringAudioStream(size_t frames_per_buffer)
      : clock_(Clock::GetRealTimeClock()),
        frames_per_buffer_(frames_per_buffer),
        bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
        play_count_(0),
        rec_count_(0),
        pulse_time_(0) {
  }

  // Insert periodic impulses in first two samples of |destination|.
  void Read(void* destination, size_t num_frames) override {
    ASSERT_EQ(num_frames, frames_per_buffer_);
    if (play_count_ == 0) {
      PRINT("[");
    }
    play_count_++;
    memset(destination, 0, bytes_per_buffer_);
    if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) {
      if (pulse_time_ == 0) {
        pulse_time_ = clock_->TimeInMilliseconds();
      }
      PRINT(".");
      const int16_t impulse = std::numeric_limits<int16_t>::max();
      int16_t* ptr16 = static_cast<int16_t*> (destination);
      for (size_t i = 0; i < 2; ++i) {
        ptr16[i] = impulse;
      }
    }
  }

  // Detect received impulses in |source|, derive time between transmission and
  // detection and add the calculated delay to list of latencies.
  void Write(const void* source, size_t num_frames) override {
    ASSERT_EQ(num_frames, frames_per_buffer_);
    rec_count_++;
    if (pulse_time_ == 0) {
      // Avoid detection of new impulse response until a new impulse has
      // been transmitted (sets |pulse_time_| to value larger than zero).
      return;
    }
    const int16_t* ptr16 = static_cast<const int16_t*> (source);
    std::vector<int16_t> vec(ptr16, ptr16 + num_frames);
    // Find max value in the audio buffer.
    int max = *std::max_element(vec.begin(), vec.end());
    // Find index (element position in vector) of the max element.
    int index_of_max = std::distance(vec.begin(),
                                     std::find(vec.begin(), vec.end(),
                                     max));
    if (max > kImpulseThreshold) {
      PRINTD("(%d,%d)", max, index_of_max);
      int64_t now_time = clock_->TimeInMilliseconds();
      int extra_delay = IndexToMilliseconds(static_cast<double> (index_of_max));
      PRINTD("[%d]", static_cast<int> (now_time - pulse_time_));
      PRINTD("[%d]", extra_delay);
      // Total latency is the difference between transmit time and detection
      // tome plus the extra delay within the buffer in which we detected the
      // received impulse. It is transmitted at sample 0 but can be received
      // at sample N where N > 0. The term |extra_delay| accounts for N and it
      // is a value between 0 and 10ms.
      latencies_.push_back(now_time - pulse_time_ + extra_delay);
      pulse_time_ = 0;
    } else {
      PRINTD("-");
    }
  }

  size_t num_latency_values() const {
    return latencies_.size();
  }

  int min_latency() const {
    if (latencies_.empty())
      return 0;
    return *std::min_element(latencies_.begin(), latencies_.end());
  }

  int max_latency() const {
    if (latencies_.empty())
      return 0;
    return *std::max_element(latencies_.begin(), latencies_.end());
  }

  int average_latency() const {
    if (latencies_.empty())
      return 0;
    return 0.5 + static_cast<double> (
        std::accumulate(latencies_.begin(), latencies_.end(), 0)) /
        latencies_.size();
  }

  void PrintResults() const {
    PRINT("] ");
    for (auto it = latencies_.begin(); it != latencies_.end(); ++it) {
      PRINT("%d ", *it);
    }
    PRINT("\n");
    PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag,
        min_latency(), max_latency(), average_latency());
  }

  int IndexToMilliseconds(double index) const {
    return static_cast<int>(10.0 * (index / frames_per_buffer_) + 0.5);
  }

 private:
  Clock* clock_;
  const size_t frames_per_buffer_;
  const size_t bytes_per_buffer_;
  size_t play_count_;
  size_t rec_count_;
  int64_t pulse_time_;
  std::vector<int> latencies_;
};

// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransport : public AudioTransport {
 public:
  explicit MockAudioTransport(int type)
      : num_callbacks_(0),
        type_(type),
        play_count_(0),
        rec_count_(0),
        audio_stream_(nullptr) {}

  virtual ~MockAudioTransport() {}

  MOCK_METHOD10(RecordedDataIsAvailable,
                int32_t(const void* audioSamples,
                        const size_t nSamples,
                        const size_t nBytesPerSample,
                        const uint8_t nChannels,
                        const uint32_t samplesPerSec,
                        const uint32_t totalDelayMS,
                        const int32_t clockDrift,
                        const uint32_t currentMicLevel,
                        const bool keyPressed,
                        uint32_t& newMicLevel));
  MOCK_METHOD8(NeedMorePlayData,
               int32_t(const size_t nSamples,
                       const size_t nBytesPerSample,
                       const uint8_t nChannels,
                       const uint32_t samplesPerSec,
                       void* audioSamples,
                       size_t& nSamplesOut,
                       int64_t* elapsed_time_ms,
                       int64_t* ntp_time_ms));

  // Set default actions of the mock object. We are delegating to fake
  // implementations (of AudioStreamInterface) here.
  void HandleCallbacks(EventWrapper* test_is_done,
                       AudioStreamInterface* audio_stream,
                       int num_callbacks) {
    test_is_done_ = test_is_done;
    audio_stream_ = audio_stream;
    num_callbacks_ = num_callbacks;
    if (play_mode()) {
      ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
          .WillByDefault(
              Invoke(this, &MockAudioTransport::RealNeedMorePlayData));
    }
    if (rec_mode()) {
      ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
          .WillByDefault(
              Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable));
    }
  }

  int32_t RealRecordedDataIsAvailable(const void* audioSamples,
                                      const size_t nSamples,
                                      const size_t nBytesPerSample,
                                      const uint8_t nChannels,
                                      const uint32_t samplesPerSec,
                                      const uint32_t totalDelayMS,
                                      const int32_t clockDrift,
                                      const uint32_t currentMicLevel,
                                      const bool keyPressed,
                                      uint32_t& newMicLevel) {
    EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
    rec_count_++;
    // Process the recorded audio stream if an AudioStreamInterface
    // implementation exists.
    if (audio_stream_) {
      audio_stream_->Write(audioSamples, nSamples);
    }
    if (ReceivedEnoughCallbacks()) {
      test_is_done_->Set();
    }
    return 0;
  }

  int32_t RealNeedMorePlayData(const size_t nSamples,
                               const size_t nBytesPerSample,
                               const uint8_t nChannels,
                               const uint32_t samplesPerSec,
                               void* audioSamples,
                               size_t& nSamplesOut,
                               int64_t* elapsed_time_ms,
                               int64_t* ntp_time_ms) {
    EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
    play_count_++;
    nSamplesOut = nSamples;
    // Read (possibly processed) audio stream samples to be played out if an
    // AudioStreamInterface implementation exists.
    if (audio_stream_) {
      audio_stream_->Read(audioSamples, nSamples);
    }
    if (ReceivedEnoughCallbacks()) {
      test_is_done_->Set();
    }
    return 0;
  }

  bool ReceivedEnoughCallbacks() {
    bool recording_done = false;
    if (rec_mode())
      recording_done = rec_count_ >= num_callbacks_;
    else
      recording_done = true;

    bool playout_done = false;
    if (play_mode())
      playout_done = play_count_ >= num_callbacks_;
    else
      playout_done = true;

    return recording_done && playout_done;
  }

  bool play_mode() const { return type_ & kPlayout; }
  bool rec_mode() const { return type_ & kRecording; }

 private:
  EventWrapper* test_is_done_;
  size_t num_callbacks_;
  int type_;
  size_t play_count_;
  size_t rec_count_;
  AudioStreamInterface* audio_stream_;
  rtc::scoped_ptr<LatencyMeasuringAudioStream> latency_audio_stream_;
};

// AudioDeviceTest test fixture.
class AudioDeviceTest : public ::testing::Test {
 protected:
  AudioDeviceTest()
      : test_is_done_(EventWrapper::Create()) {
    // One-time initialization of JVM and application context. Ensures that we
    // can do calls between C++ and Java. Initializes both Java and OpenSL ES
    // implementations.
    webrtc::audiodevicemodule::EnsureInitialized();
    // Creates an audio device using a default audio layer.
    audio_device_ = CreateAudioDevice(AudioDeviceModule::kPlatformDefaultAudio);
    EXPECT_NE(audio_device_.get(), nullptr);
    EXPECT_EQ(0, audio_device_->Init());
    playout_parameters_ = audio_manager()->GetPlayoutAudioParameters();
    record_parameters_ = audio_manager()->GetRecordAudioParameters();
    build_info_.reset(new BuildInfo());
  }
  virtual ~AudioDeviceTest() {
    EXPECT_EQ(0, audio_device_->Terminate());
  }

  int playout_sample_rate() const {
    return playout_parameters_.sample_rate();
  }
  int record_sample_rate() const {
    return record_parameters_.sample_rate();
  }
  int playout_channels() const {
    return playout_parameters_.channels();
  }
  int record_channels() const {
    return record_parameters_.channels();
  }
  size_t playout_frames_per_10ms_buffer() const {
    return playout_parameters_.frames_per_10ms_buffer();
  }
  size_t record_frames_per_10ms_buffer() const {
    return record_parameters_.frames_per_10ms_buffer();
  }

  int total_delay_ms() const {
    return audio_manager()->GetDelayEstimateInMilliseconds();
  }

  rtc::scoped_refptr<AudioDeviceModule> audio_device() const {
    return audio_device_;
  }

  AudioDeviceModuleImpl* audio_device_impl() const {
    return static_cast<AudioDeviceModuleImpl*>(audio_device_.get());
  }

  AudioManager* audio_manager() const {
    return audio_device_impl()->GetAndroidAudioManagerForTest();
  }

  AudioManager* GetAudioManager(AudioDeviceModule* adm) const {
    return static_cast<AudioDeviceModuleImpl*>(adm)->
        GetAndroidAudioManagerForTest();
  }

  AudioDeviceBuffer* audio_device_buffer() const {
    return audio_device_impl()->GetAudioDeviceBuffer();
  }

  rtc::scoped_refptr<AudioDeviceModule> CreateAudioDevice(
      AudioDeviceModule::AudioLayer audio_layer) {
    rtc::scoped_refptr<AudioDeviceModule> module(
        AudioDeviceModuleImpl::Create(0, audio_layer));
    return module;
  }

  // Returns file name relative to the resource root given a sample rate.
  std::string GetFileName(int sample_rate) {
    EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100);
    char fname[64];
    snprintf(fname,
             sizeof(fname),
             "audio_device/audio_short%d",
             sample_rate / 1000);
    std::string file_name(webrtc::test::ResourcePath(fname, "pcm"));
    EXPECT_TRUE(test::FileExists(file_name));
#ifdef ENABLE_PRINTF
    PRINT("file name: %s\n", file_name.c_str());
    const size_t bytes = test::GetFileSize(file_name);
    PRINT("file size: %" PRIuS " [bytes]\n", bytes);
    PRINT("file size: %" PRIuS " [samples]\n", bytes / kBytesPerSample);
    const int seconds =
        static_cast<int>(bytes / (sample_rate * kBytesPerSample));
    PRINT("file size: %d [secs]\n", seconds);
    PRINT("file size: %" PRIuS " [callbacks]\n",
          seconds * kNumCallbacksPerSecond);
#endif
    return file_name;
  }

  AudioDeviceModule::AudioLayer GetActiveAudioLayer() const {
    AudioDeviceModule::AudioLayer audio_layer;
    EXPECT_EQ(0, audio_device()->ActiveAudioLayer(&audio_layer));
    return audio_layer;
  }

  int TestDelayOnAudioLayer(
      const AudioDeviceModule::AudioLayer& layer_to_test) {
    rtc::scoped_refptr<AudioDeviceModule> audio_device;
    audio_device = CreateAudioDevice(layer_to_test);
    EXPECT_NE(audio_device.get(), nullptr);
    AudioManager* audio_manager = GetAudioManager(audio_device.get());
    EXPECT_NE(audio_manager, nullptr);
    return audio_manager->GetDelayEstimateInMilliseconds();
  }

  AudioDeviceModule::AudioLayer TestActiveAudioLayer(
      const AudioDeviceModule::AudioLayer& layer_to_test) {
    rtc::scoped_refptr<AudioDeviceModule> audio_device;
    audio_device = CreateAudioDevice(layer_to_test);
    EXPECT_NE(audio_device.get(), nullptr);
    AudioDeviceModule::AudioLayer active;
    EXPECT_EQ(0, audio_device->ActiveAudioLayer(&active));
    return active;
  }

  bool DisableTestForThisDevice(const std::string& model) {
    return (build_info_->GetDeviceModel() == model);
  }

  // Volume control is currently only supported for the Java output audio layer.
  // For OpenSL ES, the internal stream volume is always on max level and there
  // is no need for this test to set it to max.
  bool AudioLayerSupportsVolumeControl() const {
    return GetActiveAudioLayer() == AudioDeviceModule::kAndroidJavaAudio;
  }

  void SetMaxPlayoutVolume() {
    if (!AudioLayerSupportsVolumeControl())
      return;
    uint32_t max_volume;
    EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
    EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
  }

  void DisableBuiltInAECIfAvailable() {
    if (audio_device()->BuiltInAECIsAvailable()) {
      EXPECT_EQ(0, audio_device()->EnableBuiltInAEC(false));
    }
  }

  void StartPlayout() {
    EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
    EXPECT_FALSE(audio_device()->Playing());
    EXPECT_EQ(0, audio_device()->InitPlayout());
    EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
    EXPECT_EQ(0, audio_device()->StartPlayout());
    EXPECT_TRUE(audio_device()->Playing());
  }

  void StopPlayout() {
    EXPECT_EQ(0, audio_device()->StopPlayout());
    EXPECT_FALSE(audio_device()->Playing());
    EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
  }

  void StartRecording() {
    EXPECT_FALSE(audio_device()->RecordingIsInitialized());
    EXPECT_FALSE(audio_device()->Recording());
    EXPECT_EQ(0, audio_device()->InitRecording());
    EXPECT_TRUE(audio_device()->RecordingIsInitialized());
    EXPECT_EQ(0, audio_device()->StartRecording());
    EXPECT_TRUE(audio_device()->Recording());
  }

  void StopRecording() {
    EXPECT_EQ(0, audio_device()->StopRecording());
    EXPECT_FALSE(audio_device()->Recording());
  }

  int GetMaxSpeakerVolume() const {
    uint32_t max_volume(0);
    EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
    return max_volume;
  }

  int GetMinSpeakerVolume() const {
    uint32_t min_volume(0);
    EXPECT_EQ(0, audio_device()->MinSpeakerVolume(&min_volume));
    return min_volume;
  }

  int GetSpeakerVolume() const {
    uint32_t volume(0);
    EXPECT_EQ(0, audio_device()->SpeakerVolume(&volume));
    return volume;
  }

  rtc::scoped_ptr<EventWrapper> test_is_done_;
  rtc::scoped_refptr<AudioDeviceModule> audio_device_;
  AudioParameters playout_parameters_;
  AudioParameters record_parameters_;
  rtc::scoped_ptr<BuildInfo> build_info_;
};

TEST_F(AudioDeviceTest, ConstructDestruct) {
  // Using the test fixture to create and destruct the audio device module.
}

// We always ask for a default audio layer when the ADM is constructed. But the
// ADM will then internally set the best suitable combination of audio layers,
// for input and output based on if low-latency output audio in combination
// with OpenSL ES is supported or not. This test ensures that the correct
// selection is done.
TEST_F(AudioDeviceTest, VerifyDefaultAudioLayer) {
  const AudioDeviceModule::AudioLayer audio_layer = GetActiveAudioLayer();
  bool low_latency_output = audio_manager()->IsLowLatencyPlayoutSupported();
  AudioDeviceModule::AudioLayer expected_audio_layer = low_latency_output ?
      AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio :
      AudioDeviceModule::kAndroidJavaAudio;
  EXPECT_EQ(expected_audio_layer, audio_layer);
}

// Verify that it is possible to explicitly create the two types of supported
// ADMs. These two tests overrides the default selection of native audio layer
// by ignoring if the device supports low-latency output or not.
TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForCombinedJavaOpenSLCombo) {
  AudioDeviceModule::AudioLayer expected_layer =
      AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio;
  AudioDeviceModule::AudioLayer active_layer = TestActiveAudioLayer(
      expected_layer);
  EXPECT_EQ(expected_layer, active_layer);
}

TEST_F(AudioDeviceTest, CorrectAudioLayerIsUsedForJavaInBothDirections) {
  AudioDeviceModule::AudioLayer expected_layer =
      AudioDeviceModule::kAndroidJavaAudio;
  AudioDeviceModule::AudioLayer active_layer = TestActiveAudioLayer(
      expected_layer);
  EXPECT_EQ(expected_layer, active_layer);
}

// The Android ADM supports two different delay reporting modes. One for the
// low-latency output path (in combination with OpenSL ES), and one for the
// high-latency output path (Java backends in both directions). These two tests
// verifies that the audio manager reports correct delay estimate given the
// selected audio layer. Note that, this delay estimate will only be utilized
// if the HW AEC is disabled.
TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForHighLatencyOutputPath) {
  EXPECT_EQ(kHighLatencyModeDelayEstimateInMilliseconds,
            TestDelayOnAudioLayer(AudioDeviceModule::kAndroidJavaAudio));
}

TEST_F(AudioDeviceTest, UsesCorrectDelayEstimateForLowLatencyOutputPath) {
  EXPECT_EQ(kLowLatencyModeDelayEstimateInMilliseconds,
            TestDelayOnAudioLayer(
      AudioDeviceModule::kAndroidJavaInputAndOpenSLESOutputAudio));
}

// Ensure that the ADM internal audio device buffer is configured to use the
// correct set of parameters.
TEST_F(AudioDeviceTest, VerifyAudioDeviceBufferParameters) {
  EXPECT_EQ(playout_parameters_.sample_rate(),
            audio_device_buffer()->PlayoutSampleRate());
  EXPECT_EQ(record_parameters_.sample_rate(),
            audio_device_buffer()->RecordingSampleRate());
  EXPECT_EQ(playout_parameters_.channels(),
            audio_device_buffer()->PlayoutChannels());
  EXPECT_EQ(record_parameters_.channels(),
            audio_device_buffer()->RecordingChannels());
}


TEST_F(AudioDeviceTest, InitTerminate) {
  // Initialization is part of the test fixture.
  EXPECT_TRUE(audio_device()->Initialized());
  EXPECT_EQ(0, audio_device()->Terminate());
  EXPECT_FALSE(audio_device()->Initialized());
}

TEST_F(AudioDeviceTest, Devices) {
  // Device enumeration is not supported. Verify fixed values only.
  EXPECT_EQ(1, audio_device()->PlayoutDevices());
  EXPECT_EQ(1, audio_device()->RecordingDevices());
}

TEST_F(AudioDeviceTest, SpeakerVolumeShouldBeAvailable) {
  // The OpenSL ES output audio path does not support volume control.
  if (!AudioLayerSupportsVolumeControl())
    return;
  bool available;
  EXPECT_EQ(0, audio_device()->SpeakerVolumeIsAvailable(&available));
  EXPECT_TRUE(available);
}

TEST_F(AudioDeviceTest, MaxSpeakerVolumeIsPositive) {
  // The OpenSL ES output audio path does not support volume control.
  if (!AudioLayerSupportsVolumeControl())
    return;
  StartPlayout();
  EXPECT_GT(GetMaxSpeakerVolume(), 0);
  StopPlayout();
}

TEST_F(AudioDeviceTest, MinSpeakerVolumeIsZero) {
  // The OpenSL ES output audio path does not support volume control.
  if (!AudioLayerSupportsVolumeControl())
    return;
  EXPECT_EQ(GetMinSpeakerVolume(), 0);
}

TEST_F(AudioDeviceTest, DefaultSpeakerVolumeIsWithinMinMax) {
  // The OpenSL ES output audio path does not support volume control.
  if (!AudioLayerSupportsVolumeControl())
    return;
  const int default_volume = GetSpeakerVolume();
  EXPECT_GE(default_volume, GetMinSpeakerVolume());
  EXPECT_LE(default_volume, GetMaxSpeakerVolume());
}

TEST_F(AudioDeviceTest, SetSpeakerVolumeActuallySetsVolume) {
  // The OpenSL ES output audio path does not support volume control.
  if (!AudioLayerSupportsVolumeControl())
    return;
  const int default_volume = GetSpeakerVolume();
  const int max_volume = GetMaxSpeakerVolume();
  EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
  int new_volume = GetSpeakerVolume();
  EXPECT_EQ(new_volume, max_volume);
  EXPECT_EQ(0, audio_device()->SetSpeakerVolume(default_volume));
}

// Tests that playout can be initiated, started and stopped. No audio callback
// is registered in this test.
// Flaky on our trybots makes this test unusable.
// https://code.google.com/p/webrtc/issues/detail?id=5046
TEST_F(AudioDeviceTest, DISABLED_StartStopPlayout) {
  StartPlayout();
  StopPlayout();
  StartPlayout();
  StopPlayout();
}

// Tests that recording can be initiated, started and stopped. No audio callback
// is registered in this test.
TEST_F(AudioDeviceTest, StartStopRecording) {
  StartRecording();
  StopRecording();
  StartRecording();
  StopRecording();
}

// Verify that calling StopPlayout() will leave us in an uninitialized state
// which will require a new call to InitPlayout(). This test does not call
// StartPlayout() while being uninitialized since doing so will hit a
// RTC_DCHECK.
TEST_F(AudioDeviceTest, StopPlayoutRequiresInitToRestart) {
  EXPECT_EQ(0, audio_device()->InitPlayout());
  EXPECT_EQ(0, audio_device()->StartPlayout());
  EXPECT_EQ(0, audio_device()->StopPlayout());
  EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
}

// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData callback.
TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
  MockAudioTransport mock(kPlayout);
  mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks);
  EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
                                     kBytesPerSample,
                                     playout_channels(),
                                     playout_sample_rate(),
                                     NotNull(),
                                     _, _, _))
      .Times(AtLeast(kNumCallbacks));
  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  StartPlayout();
  test_is_done_->Wait(kTestTimeOutInMilliseconds);
  StopPlayout();
}

// Start recording and verify that the native audio layer starts feeding real
// audio samples via the RecordedDataIsAvailable callback.
TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) {
  MockAudioTransport mock(kRecording);
  mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks);
  EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(),
                                            record_frames_per_10ms_buffer(),
                                            kBytesPerSample,
                                            record_channels(),
                                            record_sample_rate(),
                                            total_delay_ms(),
                                            0,
                                            0,
                                            false,
                                            _))
      .Times(AtLeast(kNumCallbacks));

  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  StartRecording();
  test_is_done_->Wait(kTestTimeOutInMilliseconds);
  StopRecording();
}


// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
  MockAudioTransport mock(kPlayout | kRecording);
  mock.HandleCallbacks(test_is_done_.get(), nullptr,  kNumCallbacks);
  EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_10ms_buffer(),
                                     kBytesPerSample,
                                     playout_channels(),
                                     playout_sample_rate(),
                                     NotNull(),
                                     _, _, _))
      .Times(AtLeast(kNumCallbacks));
  EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(),
                                            record_frames_per_10ms_buffer(),
                                            kBytesPerSample,
                                            record_channels(),
                                            record_sample_rate(),
                                            total_delay_ms(),
                                            0,
                                            0,
                                            false,
                                            _))
      .Times(AtLeast(kNumCallbacks));
  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  StartPlayout();
  StartRecording();
  test_is_done_->Wait(kTestTimeOutInMilliseconds);
  StopRecording();
  StopPlayout();
}

// Start playout and read audio from an external PCM file when the audio layer
// asks for data to play out. Real audio is played out in this test but it does
// not contain any explicit verification that the audio quality is perfect.
TEST_F(AudioDeviceTest, RunPlayoutWithFileAsSource) {
  // TODO(henrika): extend test when mono output is supported.
  EXPECT_EQ(1, playout_channels());
  NiceMock<MockAudioTransport> mock(kPlayout);
  const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond;
  std::string file_name = GetFileName(playout_sample_rate());
  rtc::scoped_ptr<FileAudioStream> file_audio_stream(
      new FileAudioStream(num_callbacks, file_name, playout_sample_rate()));
  mock.HandleCallbacks(test_is_done_.get(),
                       file_audio_stream.get(),
                       num_callbacks);
  // SetMaxPlayoutVolume();
  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  StartPlayout();
  test_is_done_->Wait(kTestTimeOutInMilliseconds);
  StopPlayout();
}

// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would only contain
// one packet on average. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for ten seconds while measuring the size
// (max and average) of the FIFO. The size of the FIFO is increased by the
// recording side and decreased by the playout side.
// TODO(henrika): tune the final test parameters after running tests on several
// different devices.
TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) {
  EXPECT_EQ(record_channels(), playout_channels());
  EXPECT_EQ(record_sample_rate(), playout_sample_rate());
  NiceMock<MockAudioTransport> mock(kPlayout | kRecording);
  rtc::scoped_ptr<FifoAudioStream> fifo_audio_stream(
      new FifoAudioStream(playout_frames_per_10ms_buffer()));
  mock.HandleCallbacks(test_is_done_.get(),
                       fifo_audio_stream.get(),
                       kFullDuplexTimeInSec * kNumCallbacksPerSecond);
  SetMaxPlayoutVolume();
  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  StartRecording();
  StartPlayout();
  test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds,
                               1000 * kFullDuplexTimeInSec));
  StopPlayout();
  StopRecording();
  EXPECT_LE(fifo_audio_stream->average_size(), 10u);
  EXPECT_LE(fifo_audio_stream->largest_size(), 20u);
}

// Measures loopback latency and reports the min, max and average values for
// a full duplex audio session.
// The latency is measured like so:
// - Insert impulses periodically on the output side.
// - Detect the impulses on the input side.
// - Measure the time difference between the transmit time and receive time.
// - Store time differences in a vector and calculate min, max and average.
// This test requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) {
  EXPECT_EQ(record_channels(), playout_channels());
  EXPECT_EQ(record_sample_rate(), playout_sample_rate());
  NiceMock<MockAudioTransport> mock(kPlayout | kRecording);
  rtc::scoped_ptr<LatencyMeasuringAudioStream> latency_audio_stream(
      new LatencyMeasuringAudioStream(playout_frames_per_10ms_buffer()));
  mock.HandleCallbacks(test_is_done_.get(),
                       latency_audio_stream.get(),
                       kMeasureLatencyTimeInSec * kNumCallbacksPerSecond);
  EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
  SetMaxPlayoutVolume();
  DisableBuiltInAECIfAvailable();
  StartRecording();
  StartPlayout();
  test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds,
                               1000 * kMeasureLatencyTimeInSec));
  StopPlayout();
  StopRecording();
  // Verify that the correct number of transmitted impulses are detected.
  EXPECT_EQ(latency_audio_stream->num_latency_values(),
            static_cast<size_t>(
                kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1));
  latency_audio_stream->PrintResults();
}

}  // namespace webrtc