aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aec/aec_core_neon.c
blob: 9a677aaa6721e287f7ab24a62909d0a5c5f7d1e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * The core AEC algorithm, neon version of speed-critical functions.
 *
 * Based on aec_core_sse2.c.
 */

#include <arm_neon.h>
#include <math.h>
#include <string.h>  // memset

#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aec/aec_common.h"
#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"

enum { kShiftExponentIntoTopMantissa = 8 };
enum { kFloatExponentShift = 23 };

__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
  return aRe * bRe - aIm * bIm;
}

__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
  return aRe * bIm + aIm * bRe;
}

static void FilterFarNEON(AecCore* aec, float yf[2][PART_LEN1]) {
  int i;
  const int num_partitions = aec->num_partitions;
  for (i = 0; i < num_partitions; i++) {
    int j;
    int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
    int pos = i * PART_LEN1;
    // Check for wrap
    if (i + aec->xfBufBlockPos >= num_partitions) {
      xPos -= num_partitions * PART_LEN1;
    }

    // vectorized code (four at once)
    for (j = 0; j + 3 < PART_LEN1; j += 4) {
      const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
      const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
      const float32x4_t wfBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
      const float32x4_t wfBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
      const float32x4_t yf_re = vld1q_f32(&yf[0][j]);
      const float32x4_t yf_im = vld1q_f32(&yf[1][j]);
      const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re);
      const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im);
      const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im);
      const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re);
      const float32x4_t g = vaddq_f32(yf_re, e);
      const float32x4_t h = vaddq_f32(yf_im, f);
      vst1q_f32(&yf[0][j], g);
      vst1q_f32(&yf[1][j], h);
    }
    // scalar code for the remaining items.
    for (; j < PART_LEN1; j++) {
      yf[0][j] += MulRe(aec->xfBuf[0][xPos + j],
                        aec->xfBuf[1][xPos + j],
                        aec->wfBuf[0][pos + j],
                        aec->wfBuf[1][pos + j]);
      yf[1][j] += MulIm(aec->xfBuf[0][xPos + j],
                        aec->xfBuf[1][xPos + j],
                        aec->wfBuf[0][pos + j],
                        aec->wfBuf[1][pos + j]);
    }
  }
}

// ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
#if !defined (WEBRTC_ARCH_ARM64)
static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
  int i;
  float32x4_t x = vrecpeq_f32(b);
  // from arm documentation
  // The Newton-Raphson iteration:
  //     x[n+1] = x[n] * (2 - d * x[n])
  // converges to (1/d) if x0 is the result of VRECPE applied to d.
  //
  // Note: The precision did not improve after 2 iterations.
  for (i = 0; i < 2; i++) {
    x = vmulq_f32(vrecpsq_f32(b, x), x);
  }
  // a/b = a*(1/b)
  return vmulq_f32(a, x);
}

static float32x4_t vsqrtq_f32(float32x4_t s) {
  int i;
  float32x4_t x = vrsqrteq_f32(s);

  // Code to handle sqrt(0).
  // If the input to sqrtf() is zero, a zero will be returned.
  // If the input to vrsqrteq_f32() is zero, positive infinity is returned.
  const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
  // check for divide by zero
  const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
  // zero out the positive infinity results
  x = vreinterpretq_f32_u32(vandq_u32(vmvnq_u32(div_by_zero),
                                      vreinterpretq_u32_f32(x)));
  // from arm documentation
  // The Newton-Raphson iteration:
  //     x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
  // converges to (1/√d) if x0 is the result of VRSQRTE applied to d.
  //
  // Note: The precision did not improve after 2 iterations.
  for (i = 0; i < 2; i++) {
    x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
  }
  // sqrt(s) = s * 1/sqrt(s)
  return vmulq_f32(s, x);;
}
#endif  // WEBRTC_ARCH_ARM64

static void ScaleErrorSignalNEON(AecCore* aec, float ef[2][PART_LEN1]) {
  const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu;
  const float error_threshold = aec->extended_filter_enabled ?
      kExtendedErrorThreshold : aec->normal_error_threshold;
  const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
  const float32x4_t kMu = vmovq_n_f32(mu);
  const float32x4_t kThresh = vmovq_n_f32(error_threshold);
  int i;
  // vectorized code (four at once)
  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    const float32x4_t xPow = vld1q_f32(&aec->xPow[i]);
    const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
    const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
    const float32x4_t xPowPlus = vaddq_f32(xPow, k1e_10f);
    float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
    float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
    const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
    const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
    const float32x4_t absEf = vsqrtq_f32(ef_sum2);
    const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
    const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
    const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
    uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
    uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
    uint32x4_t ef_re_u32 = vandq_u32(vmvnq_u32(bigger),
                                     vreinterpretq_u32_f32(ef_re));
    uint32x4_t ef_im_u32 = vandq_u32(vmvnq_u32(bigger),
                                     vreinterpretq_u32_f32(ef_im));
    ef_re_if = vandq_u32(bigger, ef_re_if);
    ef_im_if = vandq_u32(bigger, ef_im_if);
    ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
    ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
    ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
    ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
    vst1q_f32(&ef[0][i], ef_re);
    vst1q_f32(&ef[1][i], ef_im);
  }
  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    float abs_ef;
    ef[0][i] /= (aec->xPow[i] + 1e-10f);
    ef[1][i] /= (aec->xPow[i] + 1e-10f);
    abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);

    if (abs_ef > error_threshold) {
      abs_ef = error_threshold / (abs_ef + 1e-10f);
      ef[0][i] *= abs_ef;
      ef[1][i] *= abs_ef;
    }

    // Stepsize factor
    ef[0][i] *= mu;
    ef[1][i] *= mu;
  }
}

static void FilterAdaptationNEON(AecCore* aec,
                                 float* fft,
                                 float ef[2][PART_LEN1]) {
  int i;
  const int num_partitions = aec->num_partitions;
  for (i = 0; i < num_partitions; i++) {
    int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
    int pos = i * PART_LEN1;
    int j;
    // Check for wrap
    if (i + aec->xfBufBlockPos >= num_partitions) {
      xPos -= num_partitions * PART_LEN1;
    }

    // Process the whole array...
    for (j = 0; j < PART_LEN; j += 4) {
      // Load xfBuf and ef.
      const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
      const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
      const float32x4_t ef_re = vld1q_f32(&ef[0][j]);
      const float32x4_t ef_im = vld1q_f32(&ef[1][j]);
      // Calculate the product of conjugate(xfBuf) by ef.
      //   re(conjugate(a) * b) = aRe * bRe + aIm * bIm
      //   im(conjugate(a) * b)=  aRe * bIm - aIm * bRe
      const float32x4_t a = vmulq_f32(xfBuf_re, ef_re);
      const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im);
      const float32x4_t c = vmulq_f32(xfBuf_re, ef_im);
      const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re);
      // Interleave real and imaginary parts.
      const float32x4x2_t g_n_h = vzipq_f32(e, f);
      // Store
      vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
      vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
    }
    // ... and fixup the first imaginary entry.
    fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
                   -aec->xfBuf[1][xPos + PART_LEN],
                   ef[0][PART_LEN],
                   ef[1][PART_LEN]);

    aec_rdft_inverse_128(fft);
    memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);

    // fft scaling
    {
      const float scale = 2.0f / PART_LEN2;
      const float32x4_t scale_ps = vmovq_n_f32(scale);
      for (j = 0; j < PART_LEN; j += 4) {
        const float32x4_t fft_ps = vld1q_f32(&fft[j]);
        const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
        vst1q_f32(&fft[j], fft_scale);
      }
    }
    aec_rdft_forward_128(fft);

    {
      const float wt1 = aec->wfBuf[1][pos];
      aec->wfBuf[0][pos + PART_LEN] += fft[1];
      for (j = 0; j < PART_LEN; j += 4) {
        float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
        float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
        const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
        const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
        const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
        wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
        wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);

        vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re);
        vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im);
      }
      aec->wfBuf[1][pos] = wt1;
    }
  }
}

static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
  // a^b = exp2(b * log2(a))
  //   exp2(x) and log2(x) are calculated using polynomial approximations.
  float32x4_t log2_a, b_log2_a, a_exp_b;

  // Calculate log2(x), x = a.
  {
    // To calculate log2(x), we decompose x like this:
    //   x = y * 2^n
    //     n is an integer
    //     y is in the [1.0, 2.0) range
    //
    //   log2(x) = log2(y) + n
    //     n       can be evaluated by playing with float representation.
    //     log2(y) in a small range can be approximated, this code uses an order
    //             five polynomial approximation. The coefficients have been
    //             estimated with the Remez algorithm and the resulting
    //             polynomial has a maximum relative error of 0.00086%.

    // Compute n.
    //    This is done by masking the exponent, shifting it into the top bit of
    //    the mantissa, putting eight into the biased exponent (to shift/
    //    compensate the fact that the exponent has been shifted in the top/
    //    fractional part and finally getting rid of the implicit leading one
    //    from the mantissa by substracting it out.
    const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
    const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
    const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
    const uint32x4_t two_n = vandq_u32(vreinterpretq_u32_f32(a),
                                       vec_float_exponent_mask);
    const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
    const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
    const float32x4_t n =
        vsubq_f32(vreinterpretq_f32_u32(n_0),
                  vreinterpretq_f32_u32(vec_implicit_leading_one));
    // Compute y.
    const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
    const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
    const uint32x4_t mantissa = vandq_u32(vreinterpretq_u32_f32(a),
                                          vec_mantissa_mask);
    const float32x4_t y =
        vreinterpretq_f32_u32(vorrq_u32(mantissa,
                                        vec_zero_biased_exponent_is_one));
    // Approximate log2(y) ~= (y - 1) * pol5(y).
    //    pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
    const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
    const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
    const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
    const float32x4_t C2 = vdupq_n_f32(2.5988452f);
    const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
    const float32x4_t C0 = vdupq_n_f32(3.1157899f);
    float32x4_t pol5_y = C5;
    pol5_y = vmlaq_f32(C4, y, pol5_y);
    pol5_y = vmlaq_f32(C3, y, pol5_y);
    pol5_y = vmlaq_f32(C2, y, pol5_y);
    pol5_y = vmlaq_f32(C1, y, pol5_y);
    pol5_y = vmlaq_f32(C0, y, pol5_y);
    const float32x4_t y_minus_one =
        vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
    const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);

    // Combine parts.
    log2_a = vaddq_f32(n, log2_y);
  }

  // b * log2(a)
  b_log2_a = vmulq_f32(b, log2_a);

  // Calculate exp2(x), x = b * log2(a).
  {
    // To calculate 2^x, we decompose x like this:
    //   x = n + y
    //     n is an integer, the value of x - 0.5 rounded down, therefore
    //     y is in the [0.5, 1.5) range
    //
    //   2^x = 2^n * 2^y
    //     2^n can be evaluated by playing with float representation.
    //     2^y in a small range can be approximated, this code uses an order two
    //         polynomial approximation. The coefficients have been estimated
    //         with the Remez algorithm and the resulting polynomial has a
    //         maximum relative error of 0.17%.
    // To avoid over/underflow, we reduce the range of input to ]-127, 129].
    const float32x4_t max_input = vdupq_n_f32(129.f);
    const float32x4_t min_input = vdupq_n_f32(-126.99999f);
    const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
    const float32x4_t x_max = vmaxq_f32(x_min, min_input);
    // Compute n.
    const float32x4_t half = vdupq_n_f32(0.5f);
    const float32x4_t x_minus_half = vsubq_f32(x_max, half);
    const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);

    // Compute 2^n.
    const int32x4_t float_exponent_bias = vdupq_n_s32(127);
    const int32x4_t two_n_exponent =
        vaddq_s32(x_minus_half_floor, float_exponent_bias);
    const float32x4_t two_n =
        vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
    // Compute y.
    const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));

    // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
    const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
    const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
    const float32x4_t C0 = vdupq_n_f32(1.0017247f);
    float32x4_t exp2_y = C2;
    exp2_y = vmlaq_f32(C1, y, exp2_y);
    exp2_y = vmlaq_f32(C0, y, exp2_y);

    // Combine parts.
    a_exp_b = vmulq_f32(exp2_y, two_n);
  }

  return a_exp_b;
}

static void OverdriveAndSuppressNEON(AecCore* aec,
                                     float hNl[PART_LEN1],
                                     const float hNlFb,
                                     float efw[2][PART_LEN1]) {
  int i;
  const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
  const float32x4_t vec_one = vdupq_n_f32(1.0f);
  const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
  const float32x4_t vec_overDriveSm = vmovq_n_f32(aec->overDriveSm);

  // vectorized code (four at once)
  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    // Weight subbands
    float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
    const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
    const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
    const float32x4_t vec_weightCurve_hNlFb = vmulq_f32(vec_weightCurve,
                                                        vec_hNlFb);
    const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
    const float32x4_t vec_one_weightCurve_hNl = vmulq_f32(vec_one_weightCurve,
                                                          vec_hNl);
    const uint32x4_t vec_if0 = vandq_u32(vmvnq_u32(bigger),
                                         vreinterpretq_u32_f32(vec_hNl));
    const float32x4_t vec_one_weightCurve_add =
        vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
    const uint32x4_t vec_if1 =
        vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));

    vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));

    {
      const float32x4_t vec_overDriveCurve =
          vld1q_f32(&WebRtcAec_overDriveCurve[i]);
      const float32x4_t vec_overDriveSm_overDriveCurve =
          vmulq_f32(vec_overDriveSm, vec_overDriveCurve);
      vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
      vst1q_f32(&hNl[i], vec_hNl);
    }

    // Suppress error signal
    {
      float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
      float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
      vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
      vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);

      // Ooura fft returns incorrect sign on imaginary component. It matters
      // here because we are making an additive change with comfort noise.
      vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
      vst1q_f32(&efw[0][i], vec_efw_re);
      vst1q_f32(&efw[1][i], vec_efw_im);
    }
  }

  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    // Weight subbands
    if (hNl[i] > hNlFb) {
      hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
               (1 - WebRtcAec_weightCurve[i]) * hNl[i];
    }

    hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);

    // Suppress error signal
    efw[0][i] *= hNl[i];
    efw[1][i] *= hNl[i];

    // Ooura fft returns incorrect sign on imaginary component. It matters
    // here because we are making an additive change with comfort noise.
    efw[1][i] *= -1;
  }
}

static int PartitionDelay(const AecCore* aec) {
  // Measures the energy in each filter partition and returns the partition with
  // highest energy.
  // TODO(bjornv): Spread computational cost by computing one partition per
  // block?
  float wfEnMax = 0;
  int i;
  int delay = 0;

  for (i = 0; i < aec->num_partitions; i++) {
    int j;
    int pos = i * PART_LEN1;
    float wfEn = 0;
    float32x4_t vec_wfEn = vdupq_n_f32(0.0f);
    // vectorized code (four at once)
    for (j = 0; j + 3 < PART_LEN1; j += 4) {
      const float32x4_t vec_wfBuf0 = vld1q_f32(&aec->wfBuf[0][pos + j]);
      const float32x4_t vec_wfBuf1 = vld1q_f32(&aec->wfBuf[1][pos + j]);
      vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0);
      vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1);
    }
    {
      float32x2_t vec_total;
      // A B C D
      vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn));
      // A+B C+D
      vec_total = vpadd_f32(vec_total, vec_total);
      // A+B+C+D A+B+C+D
      wfEn = vget_lane_f32(vec_total, 0);
    }

    // scalar code for the remaining items.
    for (; j < PART_LEN1; j++) {
      wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
              aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
    }

    if (wfEn > wfEnMax) {
      wfEnMax = wfEn;
      delay = i;
    }
  }
  return delay;
}

// Updates the following smoothed  Power Spectral Densities (PSD):
//  - sd  : near-end
//  - se  : residual echo
//  - sx  : far-end
//  - sde : cross-PSD of near-end and residual echo
//  - sxd : cross-PSD of near-end and far-end
//
// In addition to updating the PSDs, also the filter diverge state is determined
// upon actions are taken.
static void SmoothedPSD(AecCore* aec,
                        float efw[2][PART_LEN1],
                        float dfw[2][PART_LEN1],
                        float xfw[2][PART_LEN1]) {
  // Power estimate smoothing coefficients.
  const float* ptrGCoh = aec->extended_filter_enabled
      ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
      : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
  int i;
  float sdSum = 0, seSum = 0;
  const float32x4_t vec_15 =  vdupq_n_f32(WebRtcAec_kMinFarendPSD);
  float32x4_t vec_sdSum = vdupq_n_f32(0.0f);
  float32x4_t vec_seSum = vdupq_n_f32(0.0f);

  for (i = 0; i + 3 < PART_LEN1; i += 4) {
    const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]);
    const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]);
    const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]);
    const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]);
    const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]);
    const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]);
    float32x4_t vec_sd = vmulq_n_f32(vld1q_f32(&aec->sd[i]), ptrGCoh[0]);
    float32x4_t vec_se = vmulq_n_f32(vld1q_f32(&aec->se[i]), ptrGCoh[0]);
    float32x4_t vec_sx = vmulq_n_f32(vld1q_f32(&aec->sx[i]), ptrGCoh[0]);
    float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0);
    float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0);
    float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0);

    vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1);
    vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1);
    vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1);
    vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15);
    vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]);
    vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]);
    vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]);

    vst1q_f32(&aec->sd[i], vec_sd);
    vst1q_f32(&aec->se[i], vec_se);
    vst1q_f32(&aec->sx[i], vec_sx);

    {
      float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
      float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0);
      float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1);
      vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]);
      vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]);
      vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1);
      vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0);
      vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]);
      vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]);
      vst2q_f32(&aec->sde[i][0], vec_sde);
    }

    {
      float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
      float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0);
      float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1);
      vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]);
      vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]);
      vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1);
      vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0);
      vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]);
      vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]);
      vst2q_f32(&aec->sxd[i][0], vec_sxd);
    }

    vec_sdSum = vaddq_f32(vec_sdSum, vec_sd);
    vec_seSum = vaddq_f32(vec_seSum, vec_se);
  }
  {
    float32x2_t vec_sdSum_total;
    float32x2_t vec_seSum_total;
    // A B C D
    vec_sdSum_total = vpadd_f32(vget_low_f32(vec_sdSum),
                                vget_high_f32(vec_sdSum));
    vec_seSum_total = vpadd_f32(vget_low_f32(vec_seSum),
                                vget_high_f32(vec_seSum));
    // A+B C+D
    vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total);
    vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total);
    // A+B+C+D A+B+C+D
    sdSum = vget_lane_f32(vec_sdSum_total, 0);
    seSum = vget_lane_f32(vec_seSum_total, 0);
  }

  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
                 ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
    aec->se[i] = ptrGCoh[0] * aec->se[i] +
                 ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
    // We threshold here to protect against the ill-effects of a zero farend.
    // The threshold is not arbitrarily chosen, but balances protection and
    // adverse interaction with the algorithm's tuning.
    // TODO(bjornv): investigate further why this is so sensitive.
    aec->sx[i] =
        ptrGCoh[0] * aec->sx[i] +
        ptrGCoh[1] * WEBRTC_SPL_MAX(
            xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
            WebRtcAec_kMinFarendPSD);

    aec->sde[i][0] =
        ptrGCoh[0] * aec->sde[i][0] +
        ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
    aec->sde[i][1] =
        ptrGCoh[0] * aec->sde[i][1] +
        ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);

    aec->sxd[i][0] =
        ptrGCoh[0] * aec->sxd[i][0] +
        ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
    aec->sxd[i][1] =
        ptrGCoh[0] * aec->sxd[i][1] +
        ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);

    sdSum += aec->sd[i];
    seSum += aec->se[i];
  }

  // Divergent filter safeguard.
  aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;

  if (aec->divergeState)
    memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);

  // Reset if error is significantly larger than nearend (13 dB).
  if (!aec->extended_filter_enabled && seSum > (19.95f * sdSum))
    memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
}

// Window time domain data to be used by the fft.
__inline static void WindowData(float* x_windowed, const float* x) {
  int i;
  for (i = 0; i < PART_LEN; i += 4) {
    const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
    const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
    const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
    // A B C D
    float32x4_t vec_sqrtHanning_rev =
        vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
    // B A D C
    vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
    // D C B A
    vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
                                       vget_low_f32(vec_sqrtHanning_rev));
    vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
    vst1q_f32(&x_windowed[PART_LEN + i],
            vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
  }
}

// Puts fft output data into a complex valued array.
__inline static void StoreAsComplex(const float* data,
                                    float data_complex[2][PART_LEN1]) {
  int i;
  for (i = 0; i < PART_LEN; i += 4) {
    const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]);
    vst1q_f32(&data_complex[0][i], vec_data.val[0]);
    vst1q_f32(&data_complex[1][i], vec_data.val[1]);
  }
  // fix beginning/end values
  data_complex[1][0] = 0;
  data_complex[1][PART_LEN] = 0;
  data_complex[0][0] = data[0];
  data_complex[0][PART_LEN] = data[1];
}

static void SubbandCoherenceNEON(AecCore* aec,
                                 float efw[2][PART_LEN1],
                                 float xfw[2][PART_LEN1],
                                 float* fft,
                                 float* cohde,
                                 float* cohxd) {
  float dfw[2][PART_LEN1];
  int i;

  if (aec->delayEstCtr == 0)
    aec->delayIdx = PartitionDelay(aec);

  // Use delayed far.
  memcpy(xfw,
         aec->xfwBuf + aec->delayIdx * PART_LEN1,
         sizeof(xfw[0][0]) * 2 * PART_LEN1);

  // Windowed near fft
  WindowData(fft, aec->dBuf);
  aec_rdft_forward_128(fft);
  StoreAsComplex(fft, dfw);

  // Windowed error fft
  WindowData(fft, aec->eBuf);
  aec_rdft_forward_128(fft);
  StoreAsComplex(fft, efw);

  SmoothedPSD(aec, efw, dfw, xfw);

  {
    const float32x4_t vec_1eminus10 =  vdupq_n_f32(1e-10f);

    // Subband coherence
    for (i = 0; i + 3 < PART_LEN1; i += 4) {
      const float32x4_t vec_sd = vld1q_f32(&aec->sd[i]);
      const float32x4_t vec_se = vld1q_f32(&aec->se[i]);
      const float32x4_t vec_sx = vld1q_f32(&aec->sx[i]);
      const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se);
      const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx);
      float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
      float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
      float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]);
      float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]);
      vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]);
      vec_cohde = vdivq_f32(vec_cohde, vec_sdse);
      vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]);
      vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx);

      vst1q_f32(&cohde[i], vec_cohde);
      vst1q_f32(&cohxd[i], vec_cohxd);
    }
  }
  // scalar code for the remaining items.
  for (; i < PART_LEN1; i++) {
    cohde[i] =
        (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
        (aec->sd[i] * aec->se[i] + 1e-10f);
    cohxd[i] =
        (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
        (aec->sx[i] * aec->sd[i] + 1e-10f);
  }
}

void WebRtcAec_InitAec_neon(void) {
  WebRtcAec_FilterFar = FilterFarNEON;
  WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
  WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
  WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
  WebRtcAec_SubbandCoherence = SubbandCoherenceNEON;
}