aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/aec/echo_cancellation.c
blob: aab1718b242865fa32b17d2df9b3cc06f3e6db6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * Contains the API functions for the AEC.
 */
#include "webrtc/modules/audio_processing/aec/echo_cancellation.h"

#include <math.h>
#ifdef WEBRTC_AEC_DEBUG_DUMP
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>

#include "webrtc/common_audio/ring_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#include "webrtc/modules/audio_processing/aec/aec_resampler.h"
#include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
#include "webrtc/typedefs.h"

// Measured delays [ms]
// Device                Chrome  GTP
// MacBook Air           10
// MacBook Retina        10      100
// MacPro                30?
//
// Win7 Desktop          70      80?
// Win7 T430s            110
// Win8 T420s            70
//
// Daisy                 50
// Pixel (w/ preproc?)           240
// Pixel (w/o preproc?)  110     110

// The extended filter mode gives us the flexibility to ignore the system's
// reported delays. We do this for platforms which we believe provide results
// which are incompatible with the AEC's expectations. Based on measurements
// (some provided above) we set a conservative (i.e. lower than measured)
// fixed delay.
//
// WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode|
// is enabled. See the note along with |DelayCorrection| in
// echo_cancellation_impl.h for more details on the mode.
//
// Justification:
// Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays
// havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms
// and then compensate by rewinding by 10 ms (in wideband) through
// kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind
// values, but fortunately this is sufficient.
//
// Chromium/Linux(ChromeOS): The values we get on this platform don't correspond
// well to reality. The variance doesn't match the AEC's buffer changes, and the
// bulk values tend to be too low. However, the range across different hardware
// appears to be too large to choose a single value.
//
// GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values.
#if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC)
#define WEBRTC_UNTRUSTED_DELAY
#endif

#if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC)
static const int kDelayDiffOffsetSamples = -160;
#else
// Not enabled for now.
static const int kDelayDiffOffsetSamples = 0;
#endif

#if defined(WEBRTC_MAC)
static const int kFixedDelayMs = 20;
#else
static const int kFixedDelayMs = 50;
#endif
#if !defined(WEBRTC_UNTRUSTED_DELAY)
static const int kMinTrustedDelayMs = 20;
#endif
static const int kMaxTrustedDelayMs = 500;

// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
// TODO(bjornv): Replace with kResamplerBufferSize
#define MAX_RESAMP_LEN (5 * FRAME_LEN)

static const int kMaxBufSizeStart = 62;  // In partitions
static const int sampMsNb = 8;           // samples per ms in nb
static const int initCheck = 42;

#ifdef WEBRTC_AEC_DEBUG_DUMP
int webrtc_aec_instance_count = 0;
#endif

// Estimates delay to set the position of the far-end buffer read pointer
// (controlled by knownDelay)
static void EstBufDelayNormal(Aec* aecInst);
static void EstBufDelayExtended(Aec* aecInst);
static int ProcessNormal(Aec* self,
                         const float* const* near,
                         size_t num_bands,
                         float* const* out,
                         size_t num_samples,
                         int16_t reported_delay_ms,
                         int32_t skew);
static void ProcessExtended(Aec* self,
                            const float* const* near,
                            size_t num_bands,
                            float* const* out,
                            size_t num_samples,
                            int16_t reported_delay_ms,
                            int32_t skew);

void* WebRtcAec_Create() {
  Aec* aecpc = malloc(sizeof(Aec));

  if (!aecpc) {
    return NULL;
  }

  aecpc->aec = WebRtcAec_CreateAec();
  if (!aecpc->aec) {
    WebRtcAec_Free(aecpc);
    return NULL;
  }
  aecpc->resampler = WebRtcAec_CreateResampler();
  if (!aecpc->resampler) {
    WebRtcAec_Free(aecpc);
    return NULL;
  }
  // Create far-end pre-buffer. The buffer size has to be large enough for
  // largest possible drift compensation (kResamplerBufferSize) + "almost" an
  // FFT buffer (PART_LEN2 - 1).
  aecpc->far_pre_buf =
      WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float));
  if (!aecpc->far_pre_buf) {
    WebRtcAec_Free(aecpc);
    return NULL;
  }

  aecpc->initFlag = 0;

#ifdef WEBRTC_AEC_DEBUG_DUMP
  {
    char filename[64];
    sprintf(filename, "aec_buf%d.dat", webrtc_aec_instance_count);
    aecpc->bufFile = fopen(filename, "wb");
    sprintf(filename, "aec_skew%d.dat", webrtc_aec_instance_count);
    aecpc->skewFile = fopen(filename, "wb");
    sprintf(filename, "aec_delay%d.dat", webrtc_aec_instance_count);
    aecpc->delayFile = fopen(filename, "wb");
    webrtc_aec_instance_count++;
  }
#endif

  return aecpc;
}

void WebRtcAec_Free(void* aecInst) {
  Aec* aecpc = aecInst;

  if (aecpc == NULL) {
    return;
  }

  WebRtc_FreeBuffer(aecpc->far_pre_buf);

#ifdef WEBRTC_AEC_DEBUG_DUMP
  fclose(aecpc->bufFile);
  fclose(aecpc->skewFile);
  fclose(aecpc->delayFile);
#endif

  WebRtcAec_FreeAec(aecpc->aec);
  WebRtcAec_FreeResampler(aecpc->resampler);
  free(aecpc);
}

int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) {
  Aec* aecpc = aecInst;
  AecConfig aecConfig;

  if (sampFreq != 8000 &&
      sampFreq != 16000 &&
      sampFreq != 32000 &&
      sampFreq != 48000) {
    return AEC_BAD_PARAMETER_ERROR;
  }
  aecpc->sampFreq = sampFreq;

  if (scSampFreq < 1 || scSampFreq > 96000) {
    return AEC_BAD_PARAMETER_ERROR;
  }
  aecpc->scSampFreq = scSampFreq;

  // Initialize echo canceller core
  if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
    return AEC_UNSPECIFIED_ERROR;
  }

  if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
    return AEC_UNSPECIFIED_ERROR;
  }

  WebRtc_InitBuffer(aecpc->far_pre_buf);
  WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);  // Start overlap.

  aecpc->initFlag = initCheck;  // indicates that initialization has been done

  if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) {
    aecpc->splitSampFreq = 16000;
  } else {
    aecpc->splitSampFreq = sampFreq;
  }

  aecpc->delayCtr = 0;
  aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
  // Sampling frequency multiplier (SWB is processed as 160 frame size).
  aecpc->rate_factor = aecpc->splitSampFreq / 8000;

  aecpc->sum = 0;
  aecpc->counter = 0;
  aecpc->checkBuffSize = 1;
  aecpc->firstVal = 0;

  // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled,
  // but not extended_filter mode.
  aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) ||
      !WebRtcAec_delay_agnostic_enabled(aecpc->aec);
  aecpc->bufSizeStart = 0;
  aecpc->checkBufSizeCtr = 0;
  aecpc->msInSndCardBuf = 0;
  aecpc->filtDelay = -1;  // -1 indicates an initialized state.
  aecpc->timeForDelayChange = 0;
  aecpc->knownDelay = 0;
  aecpc->lastDelayDiff = 0;

  aecpc->skewFrCtr = 0;
  aecpc->resample = kAecFalse;
  aecpc->highSkewCtr = 0;
  aecpc->skew = 0;

  aecpc->farend_started = 0;

  // Default settings.
  aecConfig.nlpMode = kAecNlpModerate;
  aecConfig.skewMode = kAecFalse;
  aecConfig.metricsMode = kAecFalse;
  aecConfig.delay_logging = kAecFalse;

  if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
    return AEC_UNSPECIFIED_ERROR;
  }

  return 0;
}

// Returns any error that is caused when buffering the
// far-end signal.
int32_t WebRtcAec_GetBufferFarendError(void* aecInst,
                                       const float* farend,
                                       size_t nrOfSamples) {
  Aec* aecpc = aecInst;

  if (!farend)
    return AEC_NULL_POINTER_ERROR;

  if (aecpc->initFlag != initCheck)
    return AEC_UNINITIALIZED_ERROR;

  // number of samples == 160 for SWB input
  if (nrOfSamples != 80 && nrOfSamples != 160)
    return AEC_BAD_PARAMETER_ERROR;

  return 0;
}

// only buffer L band for farend
int32_t WebRtcAec_BufferFarend(void* aecInst,
                               const float* farend,
                               size_t nrOfSamples) {
  Aec* aecpc = aecInst;
  size_t newNrOfSamples = nrOfSamples;
  float new_farend[MAX_RESAMP_LEN];
  const float* farend_ptr = farend;

  // Get any error caused by buffering the farend signal.
  int32_t error_code = WebRtcAec_GetBufferFarendError(aecInst, farend,
                                                      nrOfSamples);

  if (error_code != 0)
    return error_code;


  if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
    // Resample and get a new number of samples
    WebRtcAec_ResampleLinear(aecpc->resampler,
                             farend,
                             nrOfSamples,
                             aecpc->skew,
                             new_farend,
                             &newNrOfSamples);
    farend_ptr = new_farend;
  }

  aecpc->farend_started = 1;
  WebRtcAec_SetSystemDelay(
      aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples);

  // Write the time-domain data to |far_pre_buf|.
  WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples);

  // TODO(minyue): reduce to |PART_LEN| samples for each buffering, when
  // WebRtcAec_BufferFarendPartition() is changed to take |PART_LEN| samples.
  while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
    // We have enough data to pass to the FFT, hence read PART_LEN2 samples.
    {
      float* ptmp = NULL;
      float tmp[PART_LEN2];
      WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2);
      WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp);
    }

    // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
    WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
  }

  return 0;
}

int32_t WebRtcAec_Process(void* aecInst,
                          const float* const* nearend,
                          size_t num_bands,
                          float* const* out,
                          size_t nrOfSamples,
                          int16_t msInSndCardBuf,
                          int32_t skew) {
  Aec* aecpc = aecInst;
  int32_t retVal = 0;

  if (out == NULL) {
    return AEC_NULL_POINTER_ERROR;
  }

  if (aecpc->initFlag != initCheck) {
    return AEC_UNINITIALIZED_ERROR;
  }

  // number of samples == 160 for SWB input
  if (nrOfSamples != 80 && nrOfSamples != 160) {
    return AEC_BAD_PARAMETER_ERROR;
  }

  if (msInSndCardBuf < 0) {
    msInSndCardBuf = 0;
    retVal = AEC_BAD_PARAMETER_WARNING;
  } else if (msInSndCardBuf > kMaxTrustedDelayMs) {
    // The clamping is now done in ProcessExtended/Normal().
    retVal = AEC_BAD_PARAMETER_WARNING;
  }

  // This returns the value of aec->extended_filter_enabled.
  if (WebRtcAec_extended_filter_enabled(aecpc->aec)) {
    ProcessExtended(aecpc,
                    nearend,
                    num_bands,
                    out,
                    nrOfSamples,
                    msInSndCardBuf,
                    skew);
  } else {
    retVal = ProcessNormal(aecpc,
                           nearend,
                           num_bands,
                           out,
                           nrOfSamples,
                           msInSndCardBuf,
                           skew);
  }

#ifdef WEBRTC_AEC_DEBUG_DUMP
  {
    int16_t far_buf_size_ms = (int16_t)(WebRtcAec_system_delay(aecpc->aec) /
                                        (sampMsNb * aecpc->rate_factor));
    (void)fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile);
    (void)fwrite(
        &aecpc->knownDelay, sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
  }
#endif

  return retVal;
}

int WebRtcAec_set_config(void* handle, AecConfig config) {
  Aec* self = (Aec*)handle;
  if (self->initFlag != initCheck) {
    return AEC_UNINITIALIZED_ERROR;
  }

  if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
    return AEC_BAD_PARAMETER_ERROR;
  }
  self->skewMode = config.skewMode;

  if (config.nlpMode != kAecNlpConservative &&
      config.nlpMode != kAecNlpModerate &&
      config.nlpMode != kAecNlpAggressive) {
    return AEC_BAD_PARAMETER_ERROR;
  }

  if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
    return AEC_BAD_PARAMETER_ERROR;
  }

  if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
    return AEC_BAD_PARAMETER_ERROR;
  }

  WebRtcAec_SetConfigCore(
      self->aec, config.nlpMode, config.metricsMode, config.delay_logging);
  return 0;
}

int WebRtcAec_get_echo_status(void* handle, int* status) {
  Aec* self = (Aec*)handle;
  if (status == NULL) {
    return AEC_NULL_POINTER_ERROR;
  }
  if (self->initFlag != initCheck) {
    return AEC_UNINITIALIZED_ERROR;
  }

  *status = WebRtcAec_echo_state(self->aec);

  return 0;
}

int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) {
  const float kUpWeight = 0.7f;
  float dtmp;
  int stmp;
  Aec* self = (Aec*)handle;
  Stats erl;
  Stats erle;
  Stats a_nlp;

  if (handle == NULL) {
    return -1;
  }
  if (metrics == NULL) {
    return AEC_NULL_POINTER_ERROR;
  }
  if (self->initFlag != initCheck) {
    return AEC_UNINITIALIZED_ERROR;
  }

  WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp);

  // ERL
  metrics->erl.instant = (int)erl.instant;

  if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) {
    // Use a mix between regular average and upper part average.
    dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average;
    metrics->erl.average = (int)dtmp;
  } else {
    metrics->erl.average = kOffsetLevel;
  }

  metrics->erl.max = (int)erl.max;

  if (erl.min < (kOffsetLevel * (-1))) {
    metrics->erl.min = (int)erl.min;
  } else {
    metrics->erl.min = kOffsetLevel;
  }

  // ERLE
  metrics->erle.instant = (int)erle.instant;

  if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) {
    // Use a mix between regular average and upper part average.
    dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average;
    metrics->erle.average = (int)dtmp;
  } else {
    metrics->erle.average = kOffsetLevel;
  }

  metrics->erle.max = (int)erle.max;

  if (erle.min < (kOffsetLevel * (-1))) {
    metrics->erle.min = (int)erle.min;
  } else {
    metrics->erle.min = kOffsetLevel;
  }

  // RERL
  if ((metrics->erl.average > kOffsetLevel) &&
      (metrics->erle.average > kOffsetLevel)) {
    stmp = metrics->erl.average + metrics->erle.average;
  } else {
    stmp = kOffsetLevel;
  }
  metrics->rerl.average = stmp;

  // No other statistics needed, but returned for completeness.
  metrics->rerl.instant = stmp;
  metrics->rerl.max = stmp;
  metrics->rerl.min = stmp;

  // A_NLP
  metrics->aNlp.instant = (int)a_nlp.instant;

  if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) {
    // Use a mix between regular average and upper part average.
    dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average;
    metrics->aNlp.average = (int)dtmp;
  } else {
    metrics->aNlp.average = kOffsetLevel;
  }

  metrics->aNlp.max = (int)a_nlp.max;

  if (a_nlp.min < (kOffsetLevel * (-1))) {
    metrics->aNlp.min = (int)a_nlp.min;
  } else {
    metrics->aNlp.min = kOffsetLevel;
  }

  return 0;
}

int WebRtcAec_GetDelayMetrics(void* handle,
                              int* median,
                              int* std,
                              float* fraction_poor_delays) {
  Aec* self = handle;
  if (median == NULL) {
    return AEC_NULL_POINTER_ERROR;
  }
  if (std == NULL) {
    return AEC_NULL_POINTER_ERROR;
  }
  if (self->initFlag != initCheck) {
    return AEC_UNINITIALIZED_ERROR;
  }
  if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std,
                                    fraction_poor_delays) ==
      -1) {
    // Logging disabled.
    return AEC_UNSUPPORTED_FUNCTION_ERROR;
  }

  return 0;
}


AecCore* WebRtcAec_aec_core(void* handle) {
  if (!handle) {
    return NULL;
  }
  return ((Aec*)handle)->aec;
}

static int ProcessNormal(Aec* aecpc,
                         const float* const* nearend,
                         size_t num_bands,
                         float* const* out,
                         size_t nrOfSamples,
                         int16_t msInSndCardBuf,
                         int32_t skew) {
  int retVal = 0;
  size_t i;
  size_t nBlocks10ms;
  // Limit resampling to doubling/halving of signal
  const float minSkewEst = -0.5f;
  const float maxSkewEst = 1.0f;

  msInSndCardBuf =
      msInSndCardBuf > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : msInSndCardBuf;
  // TODO(andrew): we need to investigate if this +10 is really wanted.
  msInSndCardBuf += 10;
  aecpc->msInSndCardBuf = msInSndCardBuf;

  if (aecpc->skewMode == kAecTrue) {
    if (aecpc->skewFrCtr < 25) {
      aecpc->skewFrCtr++;
    } else {
      retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
      if (retVal == -1) {
        aecpc->skew = 0;
        retVal = AEC_BAD_PARAMETER_WARNING;
      }

      aecpc->skew /= aecpc->sampFactor * nrOfSamples;

      if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
        aecpc->resample = kAecFalse;
      } else {
        aecpc->resample = kAecTrue;
      }

      if (aecpc->skew < minSkewEst) {
        aecpc->skew = minSkewEst;
      } else if (aecpc->skew > maxSkewEst) {
        aecpc->skew = maxSkewEst;
      }

#ifdef WEBRTC_AEC_DEBUG_DUMP
      (void)fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
#endif
    }
  }

  nBlocks10ms = nrOfSamples / (FRAME_LEN * aecpc->rate_factor);

  if (aecpc->startup_phase) {
    for (i = 0; i < num_bands; ++i) {
      // Only needed if they don't already point to the same place.
      if (nearend[i] != out[i]) {
        memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * nrOfSamples);
      }
    }

    // The AEC is in the start up mode
    // AEC is disabled until the system delay is OK

    // Mechanism to ensure that the system delay is reasonably stable.
    if (aecpc->checkBuffSize) {
      aecpc->checkBufSizeCtr++;
      // Before we fill up the far-end buffer we require the system delay
      // to be stable (+/-8 ms) compared to the first value. This
      // comparison is made during the following 6 consecutive 10 ms
      // blocks. If it seems to be stable then we start to fill up the
      // far-end buffer.
      if (aecpc->counter == 0) {
        aecpc->firstVal = aecpc->msInSndCardBuf;
        aecpc->sum = 0;
      }

      if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
          WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
        aecpc->sum += aecpc->msInSndCardBuf;
        aecpc->counter++;
      } else {
        aecpc->counter = 0;
      }

      if (aecpc->counter * nBlocks10ms >= 6) {
        // The far-end buffer size is determined in partitions of
        // PART_LEN samples. Use 75% of the average value of the system
        // delay as buffer size to start with.
        aecpc->bufSizeStart =
            WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->rate_factor * 8) /
                               (4 * aecpc->counter * PART_LEN),
                           kMaxBufSizeStart);
        // Buffer size has now been determined.
        aecpc->checkBuffSize = 0;
      }

      if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
        // For really bad systems, don't disable the echo canceller for
        // more than 0.5 sec.
        aecpc->bufSizeStart = WEBRTC_SPL_MIN(
            (aecpc->msInSndCardBuf * aecpc->rate_factor * 3) / 40,
            kMaxBufSizeStart);
        aecpc->checkBuffSize = 0;
      }
    }

    // If |checkBuffSize| changed in the if-statement above.
    if (!aecpc->checkBuffSize) {
      // The system delay is now reasonably stable (or has been unstable
      // for too long). When the far-end buffer is filled with
      // approximately the same amount of data as reported by the system
      // we end the startup phase.
      int overhead_elements =
          WebRtcAec_system_delay(aecpc->aec) / PART_LEN - aecpc->bufSizeStart;
      if (overhead_elements == 0) {
        // Enable the AEC
        aecpc->startup_phase = 0;
      } else if (overhead_elements > 0) {
        // TODO(bjornv): Do we need a check on how much we actually
        // moved the read pointer? It should always be possible to move
        // the pointer |overhead_elements| since we have only added data
        // to the buffer and no delay compensation nor AEC processing
        // has been done.
        WebRtcAec_MoveFarReadPtr(aecpc->aec, overhead_elements);

        // Enable the AEC
        aecpc->startup_phase = 0;
      }
    }
  } else {
    // AEC is enabled.
    EstBufDelayNormal(aecpc);

    // Call the AEC.
    // TODO(bjornv): Re-structure such that we don't have to pass
    // |aecpc->knownDelay| as input. Change name to something like
    // |system_buffer_diff|.
    WebRtcAec_ProcessFrames(aecpc->aec,
                            nearend,
                            num_bands,
                            nrOfSamples,
                            aecpc->knownDelay,
                            out);
  }

  return retVal;
}

static void ProcessExtended(Aec* self,
                            const float* const* near,
                            size_t num_bands,
                            float* const* out,
                            size_t num_samples,
                            int16_t reported_delay_ms,
                            int32_t skew) {
  size_t i;
  const int delay_diff_offset = kDelayDiffOffsetSamples;
#if defined(WEBRTC_UNTRUSTED_DELAY)
  reported_delay_ms = kFixedDelayMs;
#else
  // This is the usual mode where we trust the reported system delay values.
  // Due to the longer filter, we no longer add 10 ms to the reported delay
  // to reduce chance of non-causality. Instead we apply a minimum here to avoid
  // issues with the read pointer jumping around needlessly.
  reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs
                          ? kMinTrustedDelayMs
                          : reported_delay_ms;
  // If the reported delay appears to be bogus, we attempt to recover by using
  // the measured fixed delay values. We use >= here because higher layers
  // may already clamp to this maximum value, and we would otherwise not
  // detect it here.
  reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs
                          ? kFixedDelayMs
                          : reported_delay_ms;
#endif
  self->msInSndCardBuf = reported_delay_ms;

  if (!self->farend_started) {
    for (i = 0; i < num_bands; ++i) {
      // Only needed if they don't already point to the same place.
      if (near[i] != out[i]) {
        memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples);
      }
    }
    return;
  }
  if (self->startup_phase) {
    // In the extended mode, there isn't a startup "phase", just a special
    // action on the first frame. In the trusted delay case, we'll take the
    // current reported delay, unless it's less then our conservative
    // measurement.
    int startup_size_ms =
        reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms;
#if defined(WEBRTC_ANDROID)
    int target_delay = startup_size_ms * self->rate_factor * 8;
#else
    // To avoid putting the AEC in a non-causal state we're being slightly
    // conservative and scale by 2. On Android we use a fixed delay and
    // therefore there is no need to scale the target_delay.
    int target_delay = startup_size_ms * self->rate_factor * 8 / 2;
#endif
    int overhead_elements =
        (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN;
    WebRtcAec_MoveFarReadPtr(self->aec, overhead_elements);
    self->startup_phase = 0;
  }

  EstBufDelayExtended(self);

  {
    // |delay_diff_offset| gives us the option to manually rewind the delay on
    // very low delay platforms which can't be expressed purely through
    // |reported_delay_ms|.
    const int adjusted_known_delay =
        WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset);

    WebRtcAec_ProcessFrames(self->aec,
                            near,
                            num_bands,
                            num_samples,
                            adjusted_known_delay,
                            out);
  }
}

static void EstBufDelayNormal(Aec* aecpc) {
  int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor;
  int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec);
  int delay_difference = 0;

  // Before we proceed with the delay estimate filtering we:
  // 1) Compensate for the frame that will be read.
  // 2) Compensate for drift resampling.
  // 3) Compensate for non-causality if needed, since the estimated delay can't
  //    be negative.

  // 1) Compensating for the frame(s) that will be read/processed.
  current_delay += FRAME_LEN * aecpc->rate_factor;

  // 2) Account for resampling frame delay.
  if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
    current_delay -= kResamplingDelay;
  }

  // 3) Compensate for non-causality, if needed, by flushing one block.
  if (current_delay < PART_LEN) {
    current_delay += WebRtcAec_MoveFarReadPtr(aecpc->aec, 1) * PART_LEN;
  }

  // We use -1 to signal an initialized state in the "extended" implementation;
  // compensate for that.
  aecpc->filtDelay = aecpc->filtDelay < 0 ? 0 : aecpc->filtDelay;
  aecpc->filtDelay =
      WEBRTC_SPL_MAX(0, (short)(0.8 * aecpc->filtDelay + 0.2 * current_delay));

  delay_difference = aecpc->filtDelay - aecpc->knownDelay;
  if (delay_difference > 224) {
    if (aecpc->lastDelayDiff < 96) {
      aecpc->timeForDelayChange = 0;
    } else {
      aecpc->timeForDelayChange++;
    }
  } else if (delay_difference < 96 && aecpc->knownDelay > 0) {
    if (aecpc->lastDelayDiff > 224) {
      aecpc->timeForDelayChange = 0;
    } else {
      aecpc->timeForDelayChange++;
    }
  } else {
    aecpc->timeForDelayChange = 0;
  }
  aecpc->lastDelayDiff = delay_difference;

  if (aecpc->timeForDelayChange > 25) {
    aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0);
  }
}

static void EstBufDelayExtended(Aec* self) {
  int reported_delay = self->msInSndCardBuf * sampMsNb * self->rate_factor;
  int current_delay = reported_delay - WebRtcAec_system_delay(self->aec);
  int delay_difference = 0;

  // Before we proceed with the delay estimate filtering we:
  // 1) Compensate for the frame that will be read.
  // 2) Compensate for drift resampling.
  // 3) Compensate for non-causality if needed, since the estimated delay can't
  //    be negative.

  // 1) Compensating for the frame(s) that will be read/processed.
  current_delay += FRAME_LEN * self->rate_factor;

  // 2) Account for resampling frame delay.
  if (self->skewMode == kAecTrue && self->resample == kAecTrue) {
    current_delay -= kResamplingDelay;
  }

  // 3) Compensate for non-causality, if needed, by flushing two blocks.
  if (current_delay < PART_LEN) {
    current_delay += WebRtcAec_MoveFarReadPtr(self->aec, 2) * PART_LEN;
  }

  if (self->filtDelay == -1) {
    self->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay);
  } else {
    self->filtDelay = WEBRTC_SPL_MAX(
        0, (short)(0.95 * self->filtDelay + 0.05 * current_delay));
  }

  delay_difference = self->filtDelay - self->knownDelay;
  if (delay_difference > 384) {
    if (self->lastDelayDiff < 128) {
      self->timeForDelayChange = 0;
    } else {
      self->timeForDelayChange++;
    }
  } else if (delay_difference < 128 && self->knownDelay > 0) {
    if (self->lastDelayDiff > 384) {
      self->timeForDelayChange = 0;
    } else {
      self->timeForDelayChange++;
    }
  } else {
    self->timeForDelayChange = 0;
  }
  self->lastDelayDiff = delay_difference;

  if (self->timeForDelayChange > 25) {
    self->knownDelay = WEBRTC_SPL_MAX((int)self->filtDelay - 256, 0);
  }
}