aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/audio_processing/beamformer/nonlinear_beamformer_unittest.cc
blob: a38a49b1e15eb02721947c68f6855fbee9953ede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES

#include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h"

#include <math.h>

#include "testing/gtest/include/gtest/gtest.h"

namespace webrtc {
namespace {

const int kChunkSizeMs = 10;
const int kSampleRateHz = 16000;

SphericalPointf AzimuthToSphericalPoint(float azimuth_radians) {
  return SphericalPointf(azimuth_radians, 0.f, 1.f);
}

void Verify(NonlinearBeamformer* bf, float target_azimuth_radians) {
  EXPECT_TRUE(bf->IsInBeam(AzimuthToSphericalPoint(target_azimuth_radians)));
  EXPECT_TRUE(bf->IsInBeam(AzimuthToSphericalPoint(
      target_azimuth_radians - NonlinearBeamformer::kHalfBeamWidthRadians +
      0.001f)));
  EXPECT_TRUE(bf->IsInBeam(AzimuthToSphericalPoint(
      target_azimuth_radians + NonlinearBeamformer::kHalfBeamWidthRadians -
      0.001f)));
  EXPECT_FALSE(bf->IsInBeam(AzimuthToSphericalPoint(
      target_azimuth_radians - NonlinearBeamformer::kHalfBeamWidthRadians -
      0.001f)));
  EXPECT_FALSE(bf->IsInBeam(AzimuthToSphericalPoint(
      target_azimuth_radians + NonlinearBeamformer::kHalfBeamWidthRadians +
      0.001f)));
}

void AimAndVerify(NonlinearBeamformer* bf, float target_azimuth_radians) {
  bf->AimAt(AzimuthToSphericalPoint(target_azimuth_radians));
  Verify(bf, target_azimuth_radians);
}

}  // namespace

TEST(NonlinearBeamformerTest, AimingModifiesBeam) {
  std::vector<Point> array_geometry;
  array_geometry.push_back(Point(-0.025f, 0.f, 0.f));
  array_geometry.push_back(Point(0.025f, 0.f, 0.f));
  NonlinearBeamformer bf(array_geometry);
  bf.Initialize(kChunkSizeMs, kSampleRateHz);
  // The default constructor parameter sets the target angle to PI / 2.
  Verify(&bf, static_cast<float>(M_PI) / 2.f);
  AimAndVerify(&bf, static_cast<float>(M_PI) / 3.f);
  AimAndVerify(&bf, 3.f * static_cast<float>(M_PI) / 4.f);
  AimAndVerify(&bf, static_cast<float>(M_PI) / 6.f);
  AimAndVerify(&bf, static_cast<float>(M_PI));
}

TEST(NonlinearBeamformerTest, InterfAnglesTakeAmbiguityIntoAccount) {
  {
    // For linear arrays there is ambiguity.
    std::vector<Point> array_geometry;
    array_geometry.push_back(Point(-0.1f, 0.f, 0.f));
    array_geometry.push_back(Point(0.f, 0.f, 0.f));
    array_geometry.push_back(Point(0.2f, 0.f, 0.f));
    NonlinearBeamformer bf(array_geometry);
    bf.Initialize(kChunkSizeMs, kSampleRateHz);
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(M_PI / 2.f + bf.away_radians_,
                    bf.interf_angles_radians_[1]);
    bf.AimAt(AzimuthToSphericalPoint(bf.away_radians_ / 2.f));
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI - bf.away_radians_ / 2.f,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(3.f * bf.away_radians_ / 2.f, bf.interf_angles_radians_[1]);
  }
  {
    // For planar arrays with normal in the xy-plane there is ambiguity.
    std::vector<Point> array_geometry;
    array_geometry.push_back(Point(-0.1f, 0.f, 0.f));
    array_geometry.push_back(Point(0.f, 0.f, 0.f));
    array_geometry.push_back(Point(0.2f, 0.f, 0.f));
    array_geometry.push_back(Point(0.1f, 0.f, 0.2f));
    array_geometry.push_back(Point(0.f, 0.f, -0.1f));
    NonlinearBeamformer bf(array_geometry);
    bf.Initialize(kChunkSizeMs, kSampleRateHz);
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(M_PI / 2.f + bf.away_radians_,
                    bf.interf_angles_radians_[1]);
    bf.AimAt(AzimuthToSphericalPoint(bf.away_radians_ / 2.f));
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI - bf.away_radians_ / 2.f,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(3.f * bf.away_radians_ / 2.f, bf.interf_angles_radians_[1]);
  }
  {
    // For planar arrays with normal not in the xy-plane there is no ambiguity.
    std::vector<Point> array_geometry;
    array_geometry.push_back(Point(0.f, 0.f, 0.f));
    array_geometry.push_back(Point(0.2f, 0.f, 0.f));
    array_geometry.push_back(Point(0.f, 0.1f, -0.2f));
    NonlinearBeamformer bf(array_geometry);
    bf.Initialize(kChunkSizeMs, kSampleRateHz);
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(M_PI / 2.f + bf.away_radians_,
                    bf.interf_angles_radians_[1]);
    bf.AimAt(AzimuthToSphericalPoint(bf.away_radians_ / 2.f));
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(-bf.away_radians_ / 2.f, bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(3.f * bf.away_radians_ / 2.f, bf.interf_angles_radians_[1]);
  }
  {
    // For arrays which are not linear or planar there is no ambiguity.
    std::vector<Point> array_geometry;
    array_geometry.push_back(Point(0.f, 0.f, 0.f));
    array_geometry.push_back(Point(0.1f, 0.f, 0.f));
    array_geometry.push_back(Point(0.f, 0.2f, 0.f));
    array_geometry.push_back(Point(0.f, 0.f, 0.3f));
    NonlinearBeamformer bf(array_geometry);
    bf.Initialize(kChunkSizeMs, kSampleRateHz);
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
                    bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(M_PI / 2.f + bf.away_radians_,
                    bf.interf_angles_radians_[1]);
    bf.AimAt(AzimuthToSphericalPoint(bf.away_radians_ / 2.f));
    EXPECT_EQ(2u, bf.interf_angles_radians_.size());
    EXPECT_FLOAT_EQ(-bf.away_radians_ / 2.f, bf.interf_angles_radians_[0]);
    EXPECT_FLOAT_EQ(3.f * bf.away_radians_ / 2.f, bf.interf_angles_radians_[1]);
  }
}

}  // namespace webrtc