aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/remote_bitrate_estimator/aimd_rate_control.cc
blob: 2d5573228d4655f685693b463e3162f5ab860c6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/remote_bitrate_estimator/aimd_rate_control.h"

#include <algorithm>
#include <cassert>
#include <cmath>

#include "webrtc/base/checks.h"

#include "webrtc/modules/remote_bitrate_estimator/overuse_detector.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"

namespace webrtc {

static const int64_t kDefaultRttMs = 200;
static const int64_t kLogIntervalMs = 1000;
static const double kWithinIncomingBitrateHysteresis = 1.05;
static const int64_t kMaxFeedbackIntervalMs = 1000;

AimdRateControl::AimdRateControl()
    : min_configured_bitrate_bps_(
          RemoteBitrateEstimator::kDefaultMinBitrateBps),
      max_configured_bitrate_bps_(30000000),
      current_bitrate_bps_(max_configured_bitrate_bps_),
      avg_max_bitrate_kbps_(-1.0f),
      var_max_bitrate_kbps_(0.4f),
      rate_control_state_(kRcHold),
      rate_control_region_(kRcMaxUnknown),
      time_last_bitrate_change_(-1),
      current_input_(kBwNormal, 0, 1.0),
      updated_(false),
      time_first_incoming_estimate_(-1),
      bitrate_is_initialized_(false),
      beta_(0.85f),
      rtt_(kDefaultRttMs),
      time_of_last_log_(-1),
      in_experiment_(AdaptiveThresholdExperimentIsEnabled()) {}

void AimdRateControl::SetMinBitrate(int min_bitrate_bps) {
  min_configured_bitrate_bps_ = min_bitrate_bps;
  current_bitrate_bps_ = std::max<int>(min_bitrate_bps, current_bitrate_bps_);
}

bool AimdRateControl::ValidEstimate() const {
  return bitrate_is_initialized_;
}

int64_t AimdRateControl::GetFeedbackInterval() const {
  // Estimate how often we can send RTCP if we allocate up to 5% of bandwidth
  // to feedback.
  static const int kRtcpSize = 80;
  int64_t interval = static_cast<int64_t>(
      kRtcpSize * 8.0 * 1000.0 / (0.05 * current_bitrate_bps_) + 0.5);
  const int64_t kMinFeedbackIntervalMs = 200;
  return std::min(std::max(interval, kMinFeedbackIntervalMs),
                  kMaxFeedbackIntervalMs);
}

bool AimdRateControl::TimeToReduceFurther(int64_t time_now,
                                          uint32_t incoming_bitrate_bps) const {
  const int64_t bitrate_reduction_interval =
      std::max<int64_t>(std::min<int64_t>(rtt_, 200), 10);
  if (time_now - time_last_bitrate_change_ >= bitrate_reduction_interval) {
    return true;
  }
  if (ValidEstimate()) {
    const int threshold = static_cast<int>(kWithinIncomingBitrateHysteresis *
                                           incoming_bitrate_bps);
    const int bitrate_difference = LatestEstimate() - incoming_bitrate_bps;
    return bitrate_difference > threshold;
  }
  return false;
}

uint32_t AimdRateControl::LatestEstimate() const {
  return current_bitrate_bps_;
}

uint32_t AimdRateControl::UpdateBandwidthEstimate(int64_t now_ms) {
  current_bitrate_bps_ = ChangeBitrate(current_bitrate_bps_,
                                       current_input_._incomingBitRate,
                                       now_ms);
  if (now_ms - time_of_last_log_ > kLogIntervalMs) {
    time_of_last_log_ = now_ms;
  }
  return current_bitrate_bps_;
}

void AimdRateControl::SetRtt(int64_t rtt) {
  rtt_ = rtt;
}

void AimdRateControl::Update(const RateControlInput* input, int64_t now_ms) {
  assert(input);

  // Set the initial bit rate value to what we're receiving the first half
  // second.
  if (!bitrate_is_initialized_) {
    const int64_t kInitializationTimeMs = 5000;
    RTC_DCHECK_LE(kBitrateWindowMs, kInitializationTimeMs);
    if (time_first_incoming_estimate_ < 0) {
      if (input->_incomingBitRate > 0) {
        time_first_incoming_estimate_ = now_ms;
      }
    } else if (now_ms - time_first_incoming_estimate_ > kInitializationTimeMs &&
               input->_incomingBitRate > 0) {
      current_bitrate_bps_ = input->_incomingBitRate;
      bitrate_is_initialized_ = true;
    }
  }

  if (updated_ && current_input_._bwState == kBwOverusing) {
    // Only update delay factor and incoming bit rate. We always want to react
    // on an over-use.
    current_input_._noiseVar = input->_noiseVar;
    current_input_._incomingBitRate = input->_incomingBitRate;
  } else {
    updated_ = true;
    current_input_ = *input;
  }
}

void AimdRateControl::SetEstimate(int bitrate_bps, int64_t now_ms) {
  updated_ = true;
  bitrate_is_initialized_ = true;
  current_bitrate_bps_ = ChangeBitrate(bitrate_bps, bitrate_bps, now_ms);
}

uint32_t AimdRateControl::ChangeBitrate(uint32_t current_bitrate_bps,
                                        uint32_t incoming_bitrate_bps,
                                        int64_t now_ms) {
  if (!updated_) {
    return current_bitrate_bps_;
  }
  // An over-use should always trigger us to reduce the bitrate, even though
  // we have not yet established our first estimate. By acting on the over-use,
  // we will end up with a valid estimate.
  if (!bitrate_is_initialized_ && current_input_._bwState != kBwOverusing)
    return current_bitrate_bps_;
  updated_ = false;
  ChangeState(current_input_, now_ms);
  // Calculated here because it's used in multiple places.
  const float incoming_bitrate_kbps = incoming_bitrate_bps / 1000.0f;
  // Calculate the max bit rate std dev given the normalized
  // variance and the current incoming bit rate.
  const float std_max_bit_rate = sqrt(var_max_bitrate_kbps_ *
                                      avg_max_bitrate_kbps_);
  switch (rate_control_state_) {
    case kRcHold:
      break;

    case kRcIncrease:
      if (avg_max_bitrate_kbps_ >= 0 &&
          incoming_bitrate_kbps >
              avg_max_bitrate_kbps_ + 3 * std_max_bit_rate) {
        ChangeRegion(kRcMaxUnknown);
        avg_max_bitrate_kbps_ = -1.0;
      }
      if (rate_control_region_ == kRcNearMax) {
        // Approximate the over-use estimator delay to 100 ms.
        const int64_t response_time = rtt_ + 100;
        uint32_t additive_increase_bps = AdditiveRateIncrease(
            now_ms, time_last_bitrate_change_, response_time);
        current_bitrate_bps += additive_increase_bps;

      } else {
        uint32_t multiplicative_increase_bps = MultiplicativeRateIncrease(
            now_ms, time_last_bitrate_change_, current_bitrate_bps);
        current_bitrate_bps += multiplicative_increase_bps;
      }

      time_last_bitrate_change_ = now_ms;
      break;

    case kRcDecrease:
      bitrate_is_initialized_ = true;
      if (incoming_bitrate_bps < min_configured_bitrate_bps_) {
        current_bitrate_bps = min_configured_bitrate_bps_;
      } else {
        // Set bit rate to something slightly lower than max
        // to get rid of any self-induced delay.
        current_bitrate_bps = static_cast<uint32_t>(beta_ *
                                                    incoming_bitrate_bps + 0.5);
        if (current_bitrate_bps > current_bitrate_bps_) {
          // Avoid increasing the rate when over-using.
          if (rate_control_region_ != kRcMaxUnknown) {
            current_bitrate_bps = static_cast<uint32_t>(
                beta_ * avg_max_bitrate_kbps_ * 1000 + 0.5f);
          }
          current_bitrate_bps = std::min(current_bitrate_bps,
                                         current_bitrate_bps_);
        }
        ChangeRegion(kRcNearMax);

        if (incoming_bitrate_kbps < avg_max_bitrate_kbps_ -
            3 * std_max_bit_rate) {
          avg_max_bitrate_kbps_ = -1.0f;
        }

        UpdateMaxBitRateEstimate(incoming_bitrate_kbps);
      }
      // Stay on hold until the pipes are cleared.
      ChangeState(kRcHold);
      time_last_bitrate_change_ = now_ms;
      break;

    default:
      assert(false);
  }
  if ((incoming_bitrate_bps > 100000 || current_bitrate_bps > 150000) &&
      current_bitrate_bps > 1.5 * incoming_bitrate_bps) {
    // Allow changing the bit rate if we are operating at very low rates
    // Don't change the bit rate if the send side is too far off
    current_bitrate_bps = current_bitrate_bps_;
    time_last_bitrate_change_ = now_ms;
  }
  return current_bitrate_bps;
}

uint32_t AimdRateControl::MultiplicativeRateIncrease(
    int64_t now_ms, int64_t last_ms, uint32_t current_bitrate_bps) const {
  double alpha = 1.08;
  if (last_ms > -1) {
    int time_since_last_update_ms = std::min(static_cast<int>(now_ms - last_ms),
                                             1000);
    alpha = pow(alpha,  time_since_last_update_ms / 1000.0);
  }
  uint32_t multiplicative_increase_bps = std::max(
      current_bitrate_bps * (alpha - 1.0), 1000.0);
  return multiplicative_increase_bps;
}

uint32_t AimdRateControl::AdditiveRateIncrease(
    int64_t now_ms, int64_t last_ms, int64_t response_time_ms) const {
  assert(response_time_ms > 0);
  double beta = 0.0;
  if (last_ms > 0) {
    beta = std::min((now_ms - last_ms) / static_cast<double>(response_time_ms),
                    1.0);
    if (in_experiment_)
      beta /= 2.0;
  }
  double bits_per_frame = static_cast<double>(current_bitrate_bps_) / 30.0;
  double packets_per_frame = std::ceil(bits_per_frame / (8.0 * 1200.0));
  double avg_packet_size_bits = bits_per_frame / packets_per_frame;
  uint32_t additive_increase_bps = std::max(
      1000.0, beta * avg_packet_size_bits);
  return additive_increase_bps;
}

void AimdRateControl::UpdateMaxBitRateEstimate(float incoming_bitrate_kbps) {
  const float alpha = 0.05f;
  if (avg_max_bitrate_kbps_ == -1.0f) {
    avg_max_bitrate_kbps_ = incoming_bitrate_kbps;
  } else {
    avg_max_bitrate_kbps_ = (1 - alpha) * avg_max_bitrate_kbps_ +
        alpha * incoming_bitrate_kbps;
  }
  // Estimate the max bit rate variance and normalize the variance
  // with the average max bit rate.
  const float norm = std::max(avg_max_bitrate_kbps_, 1.0f);
  var_max_bitrate_kbps_ = (1 - alpha) * var_max_bitrate_kbps_ +
      alpha * (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) *
          (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) / norm;
  // 0.4 ~= 14 kbit/s at 500 kbit/s
  if (var_max_bitrate_kbps_ < 0.4f) {
    var_max_bitrate_kbps_ = 0.4f;
  }
  // 2.5f ~= 35 kbit/s at 500 kbit/s
  if (var_max_bitrate_kbps_ > 2.5f) {
    var_max_bitrate_kbps_ = 2.5f;
  }
}

void AimdRateControl::ChangeState(const RateControlInput& input,
                                  int64_t now_ms) {
  switch (current_input_._bwState) {
    case kBwNormal:
      if (rate_control_state_ == kRcHold) {
        time_last_bitrate_change_ = now_ms;
        ChangeState(kRcIncrease);
      }
      break;
    case kBwOverusing:
      if (rate_control_state_ != kRcDecrease) {
        ChangeState(kRcDecrease);
      }
      break;
    case kBwUnderusing:
      ChangeState(kRcHold);
      break;
    default:
      assert(false);
  }
}

void AimdRateControl::ChangeRegion(RateControlRegion region) {
  rate_control_region_ = region;
}

void AimdRateControl::ChangeState(RateControlState new_state) {
  rate_control_state_ = new_state;
}
}  // namespace webrtc