aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/remote_bitrate_estimator/overuse_estimator.cc
blob: 83917912e8824ce34d186d5dab470e1b52e38dd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/remote_bitrate_estimator/overuse_estimator.h"

#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#include <algorithm>

#include "webrtc/base/logging.h"
#include "webrtc/modules/remote_bitrate_estimator/include/bwe_defines.h"

namespace webrtc {

enum { kMinFramePeriodHistoryLength = 60 };
enum { kDeltaCounterMax = 1000 };

OveruseEstimator::OveruseEstimator(const OverUseDetectorOptions& options)
    : options_(options),
      num_of_deltas_(0),
      slope_(options_.initial_slope),
      offset_(options_.initial_offset),
      prev_offset_(options_.initial_offset),
      E_(),
      process_noise_(),
      avg_noise_(options_.initial_avg_noise),
      var_noise_(options_.initial_var_noise),
      ts_delta_hist_() {
  memcpy(E_, options_.initial_e, sizeof(E_));
  memcpy(process_noise_, options_.initial_process_noise,
         sizeof(process_noise_));
}

OveruseEstimator::~OveruseEstimator() {
  ts_delta_hist_.clear();
}

void OveruseEstimator::Update(int64_t t_delta,
                              double ts_delta,
                              int size_delta,
                              BandwidthUsage current_hypothesis) {
  const double min_frame_period = UpdateMinFramePeriod(ts_delta);
  const double t_ts_delta = t_delta - ts_delta;
  double fs_delta = size_delta;

  ++num_of_deltas_;
  if (num_of_deltas_ > kDeltaCounterMax) {
    num_of_deltas_ = kDeltaCounterMax;
  }

  // Update the Kalman filter.
  E_[0][0] += process_noise_[0];
  E_[1][1] += process_noise_[1];

  if ((current_hypothesis == kBwOverusing && offset_ < prev_offset_) ||
      (current_hypothesis == kBwUnderusing && offset_ > prev_offset_)) {
    E_[1][1] += 10 * process_noise_[1];
  }

  const double h[2] = {fs_delta, 1.0};
  const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1],
                        E_[1][0]*h[0] + E_[1][1]*h[1]};

  const double residual = t_ts_delta - slope_*h[0] - offset_;

  const bool in_stable_state = (current_hypothesis == kBwNormal);
  const double max_residual = 3.0 * sqrt(var_noise_);
  // We try to filter out very late frames. For instance periodic key
  // frames doesn't fit the Gaussian model well.
  if (fabs(residual) < max_residual) {
    UpdateNoiseEstimate(residual, min_frame_period, in_stable_state);
  } else {
    UpdateNoiseEstimate(residual < 0 ? -max_residual : max_residual,
                        min_frame_period, in_stable_state);
  }

  const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1];

  const double K[2] = {Eh[0] / denom,
                       Eh[1] / denom};

  const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
                            {-K[1]*h[0], 1.0 - K[1]*h[1]}};
  const double e00 = E_[0][0];
  const double e01 = E_[0][1];

  // Update state.
  E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
  E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
  E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
  E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];

  // The covariance matrix must be positive semi-definite.
  bool positive_semi_definite = E_[0][0] + E_[1][1] >= 0 &&
      E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 && E_[0][0] >= 0;
  assert(positive_semi_definite);
  if (!positive_semi_definite) {
    LOG(LS_ERROR) << "The over-use estimator's covariance matrix is no longer "
                     "semi-definite.";
  }

  slope_ = slope_ + K[0] * residual;
  prev_offset_ = offset_;
  offset_ = offset_ + K[1] * residual;
}

double OveruseEstimator::UpdateMinFramePeriod(double ts_delta) {
  double min_frame_period = ts_delta;
  if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) {
    ts_delta_hist_.pop_front();
  }
  std::list<double>::iterator it = ts_delta_hist_.begin();
  for (; it != ts_delta_hist_.end(); it++) {
    min_frame_period = std::min(*it, min_frame_period);
  }
  ts_delta_hist_.push_back(ts_delta);
  return min_frame_period;
}

void OveruseEstimator::UpdateNoiseEstimate(double residual,
                                           double ts_delta,
                                           bool stable_state) {
  if (!stable_state) {
    return;
  }
  // Faster filter during startup to faster adapt to the jitter level
  // of the network. |alpha| is tuned for 30 frames per second, but is scaled
  // according to |ts_delta|.
  double alpha = 0.01;
  if (num_of_deltas_ > 10*30) {
    alpha = 0.002;
  }
  // Only update the noise estimate if we're not over-using. |beta| is a
  // function of alpha and the time delta since the previous update.
  const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0);
  avg_noise_ = beta * avg_noise_
              + (1 - beta) * residual;
  var_noise_ = beta * var_noise_
              + (1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual);
  if (var_noise_ < 1) {
    var_noise_ = 1;
  }
}
}  // namespace webrtc