aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/remote_bitrate_estimator/test/estimators/nada.cc
blob: d77447f1ea11cddab05cf8d7f1997ca2e8d90dd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 *
 */

//  Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal.
//  Version according to Draft Document (mentioned in references)
//  http://tools.ietf.org/html/draft-zhu-rmcat-nada-06
//  From March 26, 2015.

#include <math.h>
#include <algorithm>
#include <vector>

#include "webrtc/base/common.h"
#include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "webrtc/modules/rtp_rtcp/interface/receive_statistics.h"

namespace webrtc {
namespace testing {
namespace bwe {

const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs = 500;

NadaBweReceiver::NadaBweReceiver(int flow_id)
    : BweReceiver(flow_id, kReceivingRateTimeWindowMs),
      clock_(0),
      last_feedback_ms_(0),
      recv_stats_(ReceiveStatistics::Create(&clock_)),
      baseline_delay_ms_(10000),  // Initialized as an upper bound.
      delay_signal_ms_(0),
      last_congestion_signal_ms_(0),
      last_delays_index_(0),
      exp_smoothed_delay_ms_(-1),
      est_queuing_delay_signal_ms_(0) {
}

NadaBweReceiver::~NadaBweReceiver() {
}

void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
                                    const MediaPacket& media_packet) {
  const float kAlpha = 0.1f;                 // Used for exponential smoothing.
  const int64_t kDelayLowThresholdMs = 50;   // Referred as d_th.
  const int64_t kDelayMaxThresholdMs = 400;  // Referred as d_max.

  clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
  recv_stats_->IncomingPacket(media_packet.header(),
                              media_packet.payload_size(), false);
  // Refered as x_n.
  int64_t delay_ms = arrival_time_ms - media_packet.sender_timestamp_ms();

  // The min should be updated within the first 10 minutes.
  if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
    baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
  }

  delay_signal_ms_ = delay_ms - baseline_delay_ms_;  // Refered as d_n.
  const int kMedian = ARRAY_SIZE(last_delays_ms_);
  last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
  int size = std::min(last_delays_index_, kMedian);

  int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
  exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
      median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);

  if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
    est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
  } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
    est_queuing_delay_signal_ms_ = static_cast<int64_t>(
        pow((static_cast<double>(kDelayMaxThresholdMs -
                                 exp_smoothed_delay_ms_)) /
                (kDelayMaxThresholdMs - kDelayLowThresholdMs),
            4.0) *
        kDelayLowThresholdMs);
  } else {
    est_queuing_delay_signal_ms_ = 0;
  }

  // Log received packet information.
  BweReceiver::ReceivePacket(arrival_time_ms, media_packet);
}

FeedbackPacket* NadaBweReceiver::GetFeedback(int64_t now_ms) {
  const int64_t kPacketLossPenaltyMs = 1000;  // Referred as d_L.

  if (now_ms - last_feedback_ms_ < 100) {
    return NULL;
  }

  float loss_fraction = RecentPacketLossRatio();

  int64_t loss_signal_ms =
      static_cast<int64_t>(loss_fraction * kPacketLossPenaltyMs + 0.5f);
  int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;

  float derivative = 0.0f;
  if (last_feedback_ms_ > 0) {
    derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
                 static_cast<float>(now_ms - last_feedback_ms_);
  }
  last_feedback_ms_ = now_ms;
  last_congestion_signal_ms_ = congestion_signal_ms;

  int64_t corrected_send_time_ms = 0L;

  if (!received_packets_.empty()) {
    PacketIdentifierNode* latest = *(received_packets_.begin());
    corrected_send_time_ms =
        latest->send_time_ms + now_ms - latest->arrival_time_ms;
  }

  // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
  // R_r> and additional information.
  return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
                          est_queuing_delay_signal_ms_, congestion_signal_ms,
                          derivative, RecentKbps(), corrected_send_time_ms);
}

// If size is even, the median is the average of the two middlemost numbers.
int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
  std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
  std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
                   array_copy.end());
  if (size % 2 == 1) {
    // Typically, size = 5. For odd size values, right and left are equal.
    return array_copy.at(size / 2);
  }
  int64_t right = array_copy.at(size / 2);
  std::nth_element(array_copy.begin(), array_copy.begin() + (size - 1) / 2,
                   array_copy.end());
  int64_t left = array_copy.at((size - 1) / 2);
  return (left + right + 1) / 2;
}

int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
                                                    int64_t last_smoothed_value,
                                                    float alpha) {
  if (last_smoothed_value < 0) {
    return new_value;  // Handling initial case.
  }
  return static_cast<int64_t>(alpha * new_value +
                              (1.0f - alpha) * last_smoothed_value + 0.5f);
}

// Implementation according to Cisco's proposal by default.
NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
    : BweSender(kbps),  // Referred as "Reference Rate" = R_n.,
      clock_(clock),
      observer_(observer),
      original_operating_mode_(true) {
}

NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
    : BweSender(kMinBitrateKbps),  // Referred as "Reference Rate" = R_n.
      clock_(clock),
      observer_(observer),
      original_operating_mode_(true) {
}

NadaBweSender::~NadaBweSender() {
}

int NadaBweSender::GetFeedbackIntervalMs() const {
  return 100;
}

void NadaBweSender::GiveFeedback(const FeedbackPacket& feedback) {
  const NadaFeedback& fb = static_cast<const NadaFeedback&>(feedback);

  // Following parameters might be optimized.
  const int64_t kQueuingDelayUpperBoundMs = 10;
  const float kDerivativeUpperBound = 10.0f / min_feedback_delay_ms_;
  // In the modified version, a higher kMinUpperBound allows a higher d_hat
  // upper bound for calling AcceleratedRampUp.
  const float kProportionalityDelayBits = 20.0f;

  int64_t now_ms = clock_->TimeInMilliseconds();
  float delta_s = now_ms - last_feedback_ms_;
  last_feedback_ms_ = now_ms;
  // Update delta_0.
  min_feedback_delay_ms_ =
      std::min(min_feedback_delay_ms_, static_cast<int64_t>(delta_s));

  // Update RTT_0.
  int64_t rtt_ms = now_ms - fb.latest_send_time_ms();
  min_round_trip_time_ms_ = std::min(min_round_trip_time_ms_, rtt_ms);

  // Independent limits for AcceleratedRampUp conditions variables:
  // x_n, d_tilde and x'_n in the original implementation, plus
  // d_hat and receiving_rate in the modified one.
  // There should be no packet losses/marking, hence x_n == d_tilde.
  if (original_operating_mode_) {
    // Original if conditions and rate update.
    if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
        fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
        fb.derivative() < kDerivativeUpperBound) {
      AcceleratedRampUp(fb);
    } else {
      GradualRateUpdate(fb, delta_s, 1.0);
    }
  } else {
    // Modified if conditions and rate update; new ramp down mode.
    if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
        fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
        fb.exp_smoothed_delay_ms() <
            kMinBitrateKbps / kProportionalityDelayBits &&
        fb.derivative() < kDerivativeUpperBound &&
        fb.receiving_rate() > kMinBitrateKbps) {
      AcceleratedRampUp(fb);
    } else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
               fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
      AcceleratedRampDown(fb);
    } else {
      double bitrate_reference =
          (2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinBitrateKbps);
      double smoothing_factor = pow(bitrate_reference, 0.75);
      GradualRateUpdate(fb, delta_s, smoothing_factor);
    }
  }

  bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
  bitrate_kbps_ = std::max(bitrate_kbps_, kMinBitrateKbps);

  observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
}

int64_t NadaBweSender::TimeUntilNextProcess() {
  return 100;
}

int NadaBweSender::Process() {
  return 0;
}

void NadaBweSender::AcceleratedRampUp(const NadaFeedback& fb) {
  const int kMaxRampUpQueuingDelayMs = 50;  // Referred as T_th.
  const float kGamma0 = 0.5f;               // Referred as gamma_0.

  float gamma =
      std::min(kGamma0, static_cast<float>(kMaxRampUpQueuingDelayMs) /
                            (min_round_trip_time_ms_ + min_feedback_delay_ms_));

  bitrate_kbps_ = static_cast<int>((1.0f + gamma) * fb.receiving_rate() + 0.5f);
}

void NadaBweSender::AcceleratedRampDown(const NadaFeedback& fb) {
  const float kGamma0 = 0.9f;
  float gamma = 3.0f * kMaxCongestionSignalMs /
                (fb.congestion_signal() + fb.exp_smoothed_delay_ms());
  gamma = std::min(gamma, kGamma0);
  bitrate_kbps_ = gamma * fb.receiving_rate() + 0.5f;
}

void NadaBweSender::GradualRateUpdate(const NadaFeedback& fb,
                                      float delta_s,
                                      double smoothing_factor) {
  const float kTauOMs = 500.0f;           // Referred as tau_o.
  const float kEta = 2.0f;                // Referred as eta.
  const float kKappa = 1.0f;              // Referred as kappa.
  const float kReferenceDelayMs = 10.0f;  // Referred as x_ref.
  const float kPriorityWeight = 1.0f;     // Referred as w.

  float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();

  float kTheta =
      kPriorityWeight * (kMaxBitrateKbps - kMinBitrateKbps) * kReferenceDelayMs;

  int original_increase =
      static_cast<int>((kKappa * delta_s *
                        (kTheta - (bitrate_kbps_ - kMinBitrateKbps) * x_hat)) /
                           (kTauOMs * kTauOMs) +
                       0.5f);

  bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
}

}  // namespace bwe
}  // namespace testing
}  // namespace webrtc