aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/remote_bitrate_estimator/test/estimators/nada_unittest.cc
blob: a0f56b73b7d5cdc7ad704e88daa74f36b14c1bd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"

#include <algorithm>
#include <numeric>

#include "webrtc/base/common.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/remote_bitrate_estimator/test/packet_sender.h"
#include "webrtc/test/testsupport/fileutils.h"

namespace webrtc {
namespace testing {
namespace bwe {

class FilterTest : public ::testing::Test {
 public:
  void MedianFilterConstantArray() {
    std::fill_n(raw_signal_, kNumElements, kSignalValue);
    for (int i = 0; i < kNumElements; ++i) {
      int size = std::min(5, i + 1);
      median_filtered_[i] =
          NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size);
    }
  }

  void MedianFilterIntermittentNoise() {
    const int kValue = 500;
    const int kNoise = 100;

    for (int i = 0; i < kNumElements; ++i) {
      raw_signal_[i] = kValue + kNoise * (i % 10 == 9 ? 1 : 0);
    }
    for (int i = 0; i < kNumElements; ++i) {
      int size = std::min(5, i + 1);
      median_filtered_[i] =
          NadaBweReceiver::MedianFilter(&raw_signal_[i + 1 - size], size);
      EXPECT_EQ(median_filtered_[i], kValue);
    }
  }

  void ExponentialSmoothingFilter(const int64_t raw_signal_[],
                                  int num_elements,
                                  int64_t exp_smoothed[]) {
    exp_smoothed[0] =
        NadaBweReceiver::ExponentialSmoothingFilter(raw_signal_[0], -1, kAlpha);
    for (int i = 1; i < num_elements; ++i) {
      exp_smoothed[i] = NadaBweReceiver::ExponentialSmoothingFilter(
          raw_signal_[i], exp_smoothed[i - 1], kAlpha);
    }
  }

  void ExponentialSmoothingConstantArray(int64_t exp_smoothed[]) {
    std::fill_n(raw_signal_, kNumElements, kSignalValue);
    ExponentialSmoothingFilter(raw_signal_, kNumElements, exp_smoothed);
  }

 protected:
  static const int kNumElements = 1000;
  static const int64_t kSignalValue;
  static const float kAlpha;
  int64_t raw_signal_[kNumElements];
  int64_t median_filtered_[kNumElements];
};

const int64_t FilterTest::kSignalValue = 200;
const float FilterTest::kAlpha = 0.1f;

class TestBitrateObserver : public BitrateObserver {
 public:
  TestBitrateObserver()
      : last_bitrate_(0), last_fraction_loss_(0), last_rtt_(0) {}

  virtual void OnNetworkChanged(uint32_t bitrate,
                                uint8_t fraction_loss,
                                int64_t rtt) {
    last_bitrate_ = bitrate;
    last_fraction_loss_ = fraction_loss;
    last_rtt_ = rtt;
  }
  uint32_t last_bitrate_;
  uint8_t last_fraction_loss_;
  int64_t last_rtt_;
};

class NadaSenderSideTest : public ::testing::Test {
 public:
  NadaSenderSideTest()
      : observer_(),
        simulated_clock_(0),
        nada_sender_(&observer_, &simulated_clock_) {}
  ~NadaSenderSideTest() {}

 private:
  TestBitrateObserver observer_;
  SimulatedClock simulated_clock_;

 protected:
  NadaBweSender nada_sender_;
};

class NadaReceiverSideTest : public ::testing::Test {
 public:
  NadaReceiverSideTest() : nada_receiver_(kFlowId) {}
  ~NadaReceiverSideTest() {}

 protected:
  const int kFlowId = 1;  // Arbitrary.
  NadaBweReceiver nada_receiver_;
};

class NadaFbGenerator {
 public:
  NadaFbGenerator();

  static NadaFeedback NotCongestedFb(size_t receiving_rate,
                                     int64_t ref_signal_ms,
                                     int64_t send_time_ms) {
    int64_t exp_smoothed_delay_ms = ref_signal_ms;
    int64_t est_queuing_delay_signal_ms = ref_signal_ms;
    int64_t congestion_signal_ms = ref_signal_ms;
    float derivative = 0.0f;
    return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
                        est_queuing_delay_signal_ms, congestion_signal_ms,
                        derivative, receiving_rate, send_time_ms);
  }

  static NadaFeedback CongestedFb(size_t receiving_rate, int64_t send_time_ms) {
    int64_t exp_smoothed_delay_ms = 1000;
    int64_t est_queuing_delay_signal_ms = 800;
    int64_t congestion_signal_ms = 1000;
    float derivative = 1.0f;
    return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
                        est_queuing_delay_signal_ms, congestion_signal_ms,
                        derivative, receiving_rate, send_time_ms);
  }

  static NadaFeedback ExtremelyCongestedFb(size_t receiving_rate,
                                           int64_t send_time_ms) {
    int64_t exp_smoothed_delay_ms = 100000;
    int64_t est_queuing_delay_signal_ms = 0;
    int64_t congestion_signal_ms = 100000;
    float derivative = 10000.0f;
    return NadaFeedback(kFlowId, kNowMs, exp_smoothed_delay_ms,
                        est_queuing_delay_signal_ms, congestion_signal_ms,
                        derivative, receiving_rate, send_time_ms);
  }

 private:
  // Arbitrary values, won't change these test results.
  static const int kFlowId = 2;
  static const int64_t kNowMs = 1000;
};

// Verify if AcceleratedRampUp is called and that bitrate increases.
TEST_F(NadaSenderSideTest, AcceleratedRampUp) {
  const int64_t kRefSignalMs = 1;
  const int64_t kOneWayDelayMs = 50;
  int original_bitrate = 2 * kMinBitrateKbps;
  size_t receiving_rate = static_cast<size_t>(original_bitrate);
  int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;

  NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
      receiving_rate, kRefSignalMs, send_time_ms);

  nada_sender_.set_original_operating_mode(true);
  nada_sender_.set_bitrate_kbps(original_bitrate);

  // Trigger AcceleratedRampUp mode.
  nada_sender_.GiveFeedback(not_congested_fb);
  int bitrate_1_kbps = nada_sender_.bitrate_kbps();
  EXPECT_GT(bitrate_1_kbps, original_bitrate);
  // Updates the bitrate according to the receiving rate and other constant
  // parameters.
  nada_sender_.AcceleratedRampUp(not_congested_fb);
  EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps);

  nada_sender_.set_original_operating_mode(false);
  nada_sender_.set_bitrate_kbps(original_bitrate);
  // Trigger AcceleratedRampUp mode.
  nada_sender_.GiveFeedback(not_congested_fb);
  bitrate_1_kbps = nada_sender_.bitrate_kbps();
  EXPECT_GT(bitrate_1_kbps, original_bitrate);
  nada_sender_.AcceleratedRampUp(not_congested_fb);
  EXPECT_EQ(nada_sender_.bitrate_kbps(), bitrate_1_kbps);
}

// Verify if AcceleratedRampDown is called and if bitrate decreases.
TEST_F(NadaSenderSideTest, AcceleratedRampDown) {
  const int64_t kOneWayDelayMs = 50;
  int original_bitrate = 3 * kMinBitrateKbps;
  size_t receiving_rate = static_cast<size_t>(original_bitrate);
  int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;

  NadaFeedback congested_fb =
      NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);

  nada_sender_.set_original_operating_mode(false);
  nada_sender_.set_bitrate_kbps(original_bitrate);
  nada_sender_.GiveFeedback(congested_fb);  // Trigger AcceleratedRampDown mode.
  int bitrate_1_kbps = nada_sender_.bitrate_kbps();
  EXPECT_LE(bitrate_1_kbps, original_bitrate * 0.9f + 0.5f);
  EXPECT_LT(bitrate_1_kbps, original_bitrate);

  // Updates the bitrate according to the receiving rate and other constant
  // parameters.
  nada_sender_.AcceleratedRampDown(congested_fb);
  int bitrate_2_kbps = std::max(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
  EXPECT_EQ(bitrate_2_kbps, bitrate_1_kbps);
}

TEST_F(NadaSenderSideTest, GradualRateUpdate) {
  const int64_t kDeltaSMs = 20;
  const int64_t kRefSignalMs = 20;
  const int64_t kOneWayDelayMs = 50;
  int original_bitrate = 2 * kMinBitrateKbps;
  size_t receiving_rate = static_cast<size_t>(original_bitrate);
  int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;

  NadaFeedback congested_fb =
      NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);
  NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
      original_bitrate, kRefSignalMs, send_time_ms);

  nada_sender_.set_bitrate_kbps(original_bitrate);
  double smoothing_factor = 0.0;
  nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor);
  EXPECT_EQ(nada_sender_.bitrate_kbps(), original_bitrate);

  smoothing_factor = 1.0;
  nada_sender_.GradualRateUpdate(congested_fb, kDeltaSMs, smoothing_factor);
  EXPECT_LT(nada_sender_.bitrate_kbps(), original_bitrate);

  nada_sender_.set_bitrate_kbps(original_bitrate);
  nada_sender_.GradualRateUpdate(not_congested_fb, kDeltaSMs, smoothing_factor);
  EXPECT_GT(nada_sender_.bitrate_kbps(), original_bitrate);
}

// Sending bitrate should decrease and reach its Min bound.
TEST_F(NadaSenderSideTest, VeryLowBandwith) {
  const int64_t kOneWayDelayMs = 50;

  size_t receiving_rate = static_cast<size_t>(kMinBitrateKbps);
  int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;

  NadaFeedback extremely_congested_fb =
      NadaFbGenerator::ExtremelyCongestedFb(receiving_rate, send_time_ms);
  NadaFeedback congested_fb =
      NadaFbGenerator::CongestedFb(receiving_rate, send_time_ms);

  nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);
  nada_sender_.set_original_operating_mode(true);
  for (int i = 0; i < 100; ++i) {
    // Trigger GradualRateUpdate mode.
    nada_sender_.GiveFeedback(extremely_congested_fb);
  }
  // The original implementation doesn't allow the bitrate to stay at kMin,
  // even if the congestion signal is very high.
  EXPECT_GE(nada_sender_.bitrate_kbps(), kMinBitrateKbps);

  nada_sender_.set_original_operating_mode(false);
  nada_sender_.set_bitrate_kbps(5 * kMinBitrateKbps);

  for (int i = 0; i < 1000; ++i) {
    int previous_bitrate = nada_sender_.bitrate_kbps();
    // Trigger AcceleratedRampDown mode.
    nada_sender_.GiveFeedback(congested_fb);
    EXPECT_LE(nada_sender_.bitrate_kbps(), previous_bitrate);
  }
  EXPECT_EQ(nada_sender_.bitrate_kbps(), kMinBitrateKbps);
}

// Sending bitrate should increase and reach its Max bound.
TEST_F(NadaSenderSideTest, VeryHighBandwith) {
  const int64_t kOneWayDelayMs = 50;
  const size_t kRecentReceivingRate = static_cast<size_t>(kMaxBitrateKbps);
  const int64_t kRefSignalMs = 1;
  int64_t send_time_ms = nada_sender_.NowMs() - kOneWayDelayMs;

  NadaFeedback not_congested_fb = NadaFbGenerator::NotCongestedFb(
      kRecentReceivingRate, kRefSignalMs, send_time_ms);

  nada_sender_.set_original_operating_mode(true);
  for (int i = 0; i < 100; ++i) {
    int previous_bitrate = nada_sender_.bitrate_kbps();
    nada_sender_.GiveFeedback(not_congested_fb);
    EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
  }
  EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);

  nada_sender_.set_original_operating_mode(false);
  nada_sender_.set_bitrate_kbps(kMinBitrateKbps);

  for (int i = 0; i < 100; ++i) {
    int previous_bitrate = nada_sender_.bitrate_kbps();
    nada_sender_.GiveFeedback(not_congested_fb);
    EXPECT_GE(nada_sender_.bitrate_kbps(), previous_bitrate);
  }
  EXPECT_EQ(nada_sender_.bitrate_kbps(), kMaxBitrateKbps);
}

TEST_F(NadaReceiverSideTest, FeedbackInitialCases) {
  rtc::scoped_ptr<NadaFeedback> nada_feedback(
      static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(0)));
  EXPECT_EQ(nada_feedback, nullptr);

  nada_feedback.reset(
      static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(100)));
  EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), -1);
  EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
  EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
  EXPECT_EQ(nada_feedback->derivative(), 0.0f);
  EXPECT_EQ(nada_feedback->receiving_rate(), 0.0f);
}

TEST_F(NadaReceiverSideTest, FeedbackEmptyQueues) {
  const int64_t kTimeGapMs = 50;  // Between each packet.
  const int64_t kOneWayDelayMs = 50;

  // No added latency, delay = kOneWayDelayMs.
  for (int i = 1; i < 10; ++i) {
    int64_t send_time_us = i * kTimeGapMs * 1000;
    int64_t arrival_time_ms = send_time_us / 1000 + kOneWayDelayMs;
    uint16_t sequence_number = static_cast<uint16_t>(i);
    // Payload sizes are not important here.
    const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
    nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);
  }

  // Baseline delay will be equal kOneWayDelayMs.
  rtc::scoped_ptr<NadaFeedback> nada_feedback(
      static_cast<NadaFeedback*>(nada_receiver_.GetFeedback(500)));
  EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(), 0L);
  EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(), 0L);
  EXPECT_EQ(nada_feedback->congestion_signal(), 0L);
  EXPECT_EQ(nada_feedback->derivative(), 0.0f);
}

TEST_F(NadaReceiverSideTest, FeedbackIncreasingDelay) {
  // Since packets are 100ms apart, each one corresponds to a feedback.
  const int64_t kTimeGapMs = 100;  // Between each packet.

  // Raw delays are = [10 20 30 40 50 60 70 80] ms.
  // Baseline delay will be 50 ms.
  // Delay signals should be: [0 10 20 30 40 50 60 70] ms.
  const int64_t kMedianFilteredDelaysMs[] = {0, 5, 10, 15, 20, 30, 40, 50};
  const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
  const float kAlpha = 0.1f;  // Used for exponential smoothing.

  int64_t exp_smoothed_delays_ms[kNumPackets];
  exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];

  for (int i = 1; i < kNumPackets; ++i) {
    exp_smoothed_delays_ms[i] = static_cast<int64_t>(
        kAlpha * kMedianFilteredDelaysMs[i] +
        (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
  }

  for (int i = 0; i < kNumPackets; ++i) {
    int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
    int64_t arrival_time_ms = send_time_us / 1000 + 10 * (i + 1);
    uint16_t sequence_number = static_cast<uint16_t>(i + 1);
    // Payload sizes are not important here.
    const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
    nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);

    rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
        nada_receiver_.GetFeedback(arrival_time_ms)));
    EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
              exp_smoothed_delays_ms[i]);
    // Since delay signals are lower than 50ms, they will not be non-linearly
    // warped.
    EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
              exp_smoothed_delays_ms[i]);
    // Zero loss, congestion signal = queuing_delay
    EXPECT_EQ(nada_feedback->congestion_signal(), exp_smoothed_delays_ms[i]);
    if (i == 0) {
      EXPECT_NEAR(nada_feedback->derivative(),
                  static_cast<float>(exp_smoothed_delays_ms[i]) / kTimeGapMs,
                  0.005f);
    } else {
      EXPECT_NEAR(nada_feedback->derivative(),
                  static_cast<float>(exp_smoothed_delays_ms[i] -
                                     exp_smoothed_delays_ms[i - 1]) /
                      kTimeGapMs,
                  0.005f);
    }
  }
}

int64_t Warp(int64_t input) {
  const int64_t kMinThreshold = 50;   // Referred as d_th.
  const int64_t kMaxThreshold = 400;  // Referred as d_max.
  if (input < kMinThreshold) {
    return input;
  } else if (input < kMaxThreshold) {
    return static_cast<int64_t>(
        pow((static_cast<double>(kMaxThreshold - input)) /
                (kMaxThreshold - kMinThreshold),
            4.0) *
        kMinThreshold);
  } else {
    return 0L;
  }
}

TEST_F(NadaReceiverSideTest, FeedbackWarpedDelay) {
  // Since packets are 100ms apart, each one corresponds to a feedback.
  const int64_t kTimeGapMs = 100;  // Between each packet.

  // Raw delays are = [50 250 450 650 850 1050 1250 1450] ms.
  // Baseline delay will be 50 ms.
  // Delay signals should be: [0 200 400 600 800 1000 1200 1400] ms.
  const int64_t kMedianFilteredDelaysMs[] = {
      0, 100, 200, 300, 400, 600, 800, 1000};
  const int kNumPackets = ARRAY_SIZE(kMedianFilteredDelaysMs);
  const float kAlpha = 0.1f;  // Used for exponential smoothing.

  int64_t exp_smoothed_delays_ms[kNumPackets];
  exp_smoothed_delays_ms[0] = kMedianFilteredDelaysMs[0];

  for (int i = 1; i < kNumPackets; ++i) {
    exp_smoothed_delays_ms[i] = static_cast<int64_t>(
        kAlpha * kMedianFilteredDelaysMs[i] +
        (1.0f - kAlpha) * exp_smoothed_delays_ms[i - 1] + 0.5f);
  }

  for (int i = 0; i < kNumPackets; ++i) {
    int64_t send_time_us = (i + 1) * kTimeGapMs * 1000;
    int64_t arrival_time_ms = send_time_us / 1000 + 50 + 200 * i;
    uint16_t sequence_number = static_cast<uint16_t>(i + 1);
    // Payload sizes are not important here.
    const MediaPacket media_packet(kFlowId, send_time_us, 0, sequence_number);
    nada_receiver_.ReceivePacket(arrival_time_ms, media_packet);

    rtc::scoped_ptr<NadaFeedback> nada_feedback(static_cast<NadaFeedback*>(
        nada_receiver_.GetFeedback(arrival_time_ms)));
    EXPECT_EQ(nada_feedback->exp_smoothed_delay_ms(),
              exp_smoothed_delays_ms[i]);
    // Delays can be non-linearly warped.
    EXPECT_EQ(nada_feedback->est_queuing_delay_signal_ms(),
              Warp(exp_smoothed_delays_ms[i]));
    // Zero loss, congestion signal = queuing_delay
    EXPECT_EQ(nada_feedback->congestion_signal(),
              Warp(exp_smoothed_delays_ms[i]));
  }
}

TEST_F(FilterTest, MedianConstantArray) {
  MedianFilterConstantArray();
  for (int i = 0; i < kNumElements; ++i) {
    EXPECT_EQ(median_filtered_[i], raw_signal_[i]);
  }
}

TEST_F(FilterTest, MedianIntermittentNoise) {
  MedianFilterIntermittentNoise();
}

TEST_F(FilterTest, ExponentialSmoothingConstantArray) {
  int64_t exp_smoothed[kNumElements];
  ExponentialSmoothingConstantArray(exp_smoothed);
  for (int i = 0; i < kNumElements; ++i) {
    EXPECT_EQ(exp_smoothed[i], kSignalValue);
  }
}

TEST_F(FilterTest, ExponentialSmoothingInitialPertubation) {
  const int64_t kSignal[] = {90000, 0, 0, 0, 0, 0};
  const int kNumElements = ARRAY_SIZE(kSignal);
  int64_t exp_smoothed[kNumElements];
  ExponentialSmoothingFilter(kSignal, kNumElements, exp_smoothed);
  for (int i = 1; i < kNumElements; ++i) {
    EXPECT_EQ(
        exp_smoothed[i],
        static_cast<int64_t>(exp_smoothed[i - 1] * (1.0f - kAlpha) + 0.5f));
  }
}

}  // namespace bwe
}  // namespace testing
}  // namespace webrtc