aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/rtp_rtcp/source/byte_io_unittest.cc
blob: 8b626189a018bfe3fd90152ff958c380ee045af0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <limits>

#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"

namespace webrtc {
namespace {

class ByteIoTest : public ::testing::Test {
 protected:
  ByteIoTest() {}
  virtual ~ByteIoTest() {}

  enum { kAlignments = sizeof(uint64_t) - 1 };

  // Method to create a test value that is not the same when byte reversed.
  template <typename T>
  T CreateTestValue(bool negative, uint8_t num_bytes) {
    T val = 0;
    for (uint8_t i = 0; i != num_bytes; ++i) {
      val = (val << 8) + (negative ? (0xFF - i) : (i + 1));
    }
    if (negative && std::numeric_limits<T>::is_signed) {
      val |= static_cast<T>(-1) << (8 * num_bytes);
    }
    return val;
  }

  // Populate byte buffer with value, in big endian format.
  template <typename T>
  void PopulateTestData(uint8_t* data, T value, int num_bytes, bool bigendian) {
    if (bigendian) {
      for (int i = 0; i < num_bytes; ++i) {
        data[i] = (value >> ((num_bytes - i - 1) * 8)) & 0xFF;
      }
    } else {
      for (int i = 0; i < num_bytes; ++i) {
        data[i] = (value >> (i * 8)) & 0xFF;
      }
    }
  }

  // Test reading big endian numbers.
  // Template arguments: Type T, read method RM(buffer), B bytes of data.
  template <typename T, T (*RM)(const uint8_t*), int B>
  void TestRead(bool big_endian) {
    // Test both for values that are positive and negative (if signed)
    for (int neg = 0; neg < 2; ++neg) {
      bool negative = neg > 0;

      // Write test value to byte buffer, in big endian format.
      T test_value = CreateTestValue<T>(negative, B);
      uint8_t bytes[B + kAlignments];

      // Make one test for each alignment.
      for (int i = 0; i < kAlignments; ++i) {
        PopulateTestData(bytes + i, test_value, B, big_endian);

        // Check that test value is retrieved from buffer when used read method.
        EXPECT_EQ(test_value, RM(bytes + i));
      }
    }
  }

  // Test writing big endian numbers.
  // Template arguments: Type T, write method WM(buffer, value), B bytes of data
  template <typename T, void (*WM)(uint8_t*, T), int B>
  void TestWrite(bool big_endian) {
    // Test both for values that are positive and negative (if signed).
    for (int neg = 0; neg < 2; ++neg) {
      bool negative = neg > 0;

      // Write test value to byte buffer, in big endian format.
      T test_value = CreateTestValue<T>(negative, B);
      uint8_t expected_bytes[B + kAlignments];
      uint8_t bytes[B + kAlignments];

      // Make one test for each alignment.
      for (int i = 0; i < kAlignments; ++i) {
        PopulateTestData(expected_bytes + i, test_value, B, big_endian);

        // Zero initialize buffer and let WM populate it.
        memset(bytes, 0, B + kAlignments);
        WM(bytes + i, test_value);

        // Check that data produced by WM is big endian as expected.
        for (int j = 0; j < B; ++j) {
          EXPECT_EQ(expected_bytes[i + j], bytes[i + j]);
        }
      }
    }
  }
};

TEST_F(ByteIoTest, Test16UBitBigEndian) {
  TestRead<uint16_t, ByteReader<uint16_t>::ReadBigEndian,
      sizeof(uint16_t)>(true);
  TestWrite<uint16_t, ByteWriter<uint16_t>::WriteBigEndian,
    sizeof(uint16_t)>(true);
}

TEST_F(ByteIoTest, Test24UBitBigEndian) {
  TestRead<uint32_t, ByteReader<uint32_t, 3>::ReadBigEndian, 3>(true);
  TestWrite<uint32_t, ByteWriter<uint32_t, 3>::WriteBigEndian, 3>(true);
}

TEST_F(ByteIoTest, Test32UBitBigEndian) {
  TestRead<uint32_t, ByteReader<uint32_t>::ReadBigEndian,
      sizeof(uint32_t)>(true);
  TestWrite<uint32_t, ByteWriter<uint32_t>::WriteBigEndian,
      sizeof(uint32_t)>(true);
}

TEST_F(ByteIoTest, Test64UBitBigEndian) {
  TestRead<uint64_t, ByteReader<uint64_t>::ReadBigEndian,
      sizeof(uint64_t)>(true);
  TestWrite<uint64_t, ByteWriter<uint64_t>::WriteBigEndian,
      sizeof(uint64_t)>(true);
}

TEST_F(ByteIoTest, Test16SBitBigEndian) {
  TestRead<int16_t, ByteReader<int16_t>::ReadBigEndian,
      sizeof(int16_t)>(true);
  TestWrite<int16_t, ByteWriter<int16_t>::WriteBigEndian,
      sizeof(int16_t)>(true);
}

TEST_F(ByteIoTest, Test24SBitBigEndian) {
  TestRead<int32_t, ByteReader<int32_t, 3>::ReadBigEndian, 3>(true);
  TestWrite<int32_t, ByteWriter<int32_t, 3>::WriteBigEndian, 3>(true);
}

TEST_F(ByteIoTest, Test32SBitBigEndian) {
  TestRead<int32_t, ByteReader<int32_t>::ReadBigEndian,
      sizeof(int32_t)>(true);
  TestWrite<int32_t, ByteWriter<int32_t>::WriteBigEndian,
      sizeof(int32_t)>(true);
}

TEST_F(ByteIoTest, Test64SBitBigEndian) {
  TestRead<int64_t, ByteReader<int64_t>::ReadBigEndian,
      sizeof(int64_t)>(true);
  TestWrite<int64_t, ByteWriter<int64_t>::WriteBigEndian,
      sizeof(int64_t)>(true);
}

TEST_F(ByteIoTest, Test16UBitLittleEndian) {
  TestRead<uint16_t, ByteReader<uint16_t>::ReadLittleEndian,
      sizeof(uint16_t)>(false);
  TestWrite<uint16_t, ByteWriter<uint16_t>::WriteLittleEndian,
      sizeof(uint16_t)>(false);
}

TEST_F(ByteIoTest, Test24UBitLittleEndian) {
  TestRead<uint32_t, ByteReader<uint32_t, 3>::ReadLittleEndian, 3>(false);
  TestWrite<uint32_t, ByteWriter<uint32_t, 3>::WriteLittleEndian, 3>(false);
}

TEST_F(ByteIoTest, Test32UBitLittleEndian) {
  TestRead<uint32_t, ByteReader<uint32_t>::ReadLittleEndian,
      sizeof(uint32_t)>(false);
  TestWrite<uint32_t, ByteWriter<uint32_t>::WriteLittleEndian,
      sizeof(uint32_t)>(false);
}

TEST_F(ByteIoTest, Test64UBitLittleEndian) {
  TestRead<uint64_t, ByteReader<uint64_t>::ReadLittleEndian,
      sizeof(uint64_t)>(false);
  TestWrite<uint64_t, ByteWriter<uint64_t>::WriteLittleEndian,
      sizeof(uint64_t)>(false);
}

TEST_F(ByteIoTest, Test16SBitLittleEndian) {
  TestRead<int16_t, ByteReader<int16_t>::ReadLittleEndian,
      sizeof(int16_t)>(false);
  TestWrite<int16_t, ByteWriter<int16_t>::WriteLittleEndian,
      sizeof(int16_t)>(false);
}

TEST_F(ByteIoTest, Test24SBitLittleEndian) {
  TestRead<int32_t, ByteReader<int32_t, 3>::ReadLittleEndian, 3>(false);
  TestWrite<int32_t, ByteWriter<int32_t, 3>::WriteLittleEndian, 3>(false);
}

TEST_F(ByteIoTest, Test32SBitLittleEndian) {
  TestRead<int32_t, ByteReader<int32_t>::ReadLittleEndian,
      sizeof(int32_t)>(false);
  TestWrite<int32_t, ByteWriter<int32_t>::WriteLittleEndian,
      sizeof(int32_t)>(false);
}

TEST_F(ByteIoTest, Test64SBitLittleEndian) {
  TestRead<int64_t, ByteReader<int64_t>::ReadLittleEndian,
      sizeof(int64_t)>(false);
  TestWrite<int64_t, ByteWriter<int64_t>::WriteLittleEndian,
      sizeof(int64_t)>(false);
}

}  // namespace
}  // namespace webrtc