aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.cc
blob: b78b96dc8677ded2560ddcfdcb7d68ad0a9da043 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "webrtc/modules/rtp_rtcp/source/h264_bitstream_parser.h"

#include <vector>

#include "webrtc/base/bitbuffer.h"
#include "webrtc/base/bytebuffer.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/scoped_ptr.h"

namespace webrtc {
namespace {
// The size of a NALU header {0 0 0 1}.
static const size_t kNaluHeaderSize = 4;

// The size of a NALU header plus the type byte.
static const size_t kNaluHeaderAndTypeSize = kNaluHeaderSize + 1;

// The NALU type.
static const uint8_t kNaluSps = 0x7;
static const uint8_t kNaluPps = 0x8;
static const uint8_t kNaluIdr = 0x5;
static const uint8_t kNaluTypeMask = 0x1F;

static const uint8_t kSliceTypeP = 0x0;
static const uint8_t kSliceTypeB = 0x1;
static const uint8_t kSliceTypeSp = 0x3;

// Returns a vector of the NALU start sequences (0 0 0 1) in the given buffer.
std::vector<size_t> FindNaluStartSequences(const uint8_t* buffer,
                                           size_t buffer_size) {
  std::vector<size_t> sequences;
  // This is sorta like Boyer-Moore, but with only the first optimization step:
  // given a 4-byte sequence we're looking at, if the 4th byte isn't 1 or 0,
  // skip ahead to the next 4-byte sequence. 0s and 1s are relatively rare, so
  // this will skip the majority of reads/checks.
  const uint8_t* end = buffer + buffer_size - 4;
  for (const uint8_t* head = buffer; head < end;) {
    if (head[3] > 1) {
      head += 4;
    } else if (head[3] == 1 && head[2] == 0 && head[1] == 0 && head[0] == 0) {
      sequences.push_back(static_cast<size_t>(head - buffer));
      head += 4;
    } else {
      head++;
    }
  }

  return sequences;
}
}  // namespace

// Parses RBSP from source bytes. Removes emulation bytes, but leaves the
// rbsp_trailing_bits() in the stream, since none of the parsing reads all the
// way to the end of a parsed RBSP sequence. When writing, that means the
// rbsp_trailing_bits() should be preserved and don't need to be restored (i.e.
// the rbsp_stop_one_bit, which is just a 1, then zero padded), and alignment
// should "just work".
// TODO(pbos): Make parsing RBSP something that can be integrated into BitBuffer
// so we don't have to copy the entire frames when only interested in the
// headers.
rtc::ByteBuffer* ParseRbsp(const uint8_t* bytes, size_t length) {
  // Copied from webrtc::H264SpsParser::Parse.
  rtc::ByteBuffer* rbsp_buffer = new rtc::ByteBuffer;
  for (size_t i = 0; i < length;) {
    if (length - i >= 3 && bytes[i] == 0 && bytes[i + 1] == 0 &&
        bytes[i + 2] == 3) {
      rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 2);
      i += 3;
    } else {
      rbsp_buffer->WriteBytes(reinterpret_cast<const char*>(bytes) + i, 1);
      i++;
    }
  }
  return rbsp_buffer;
}

#define RETURN_FALSE_ON_FAIL(x)       \
  if (!(x)) {                         \
    LOG_F(LS_ERROR) << "FAILED: " #x; \
    return false;                     \
  }

H264BitstreamParser::PpsState::PpsState() {}

H264BitstreamParser::SpsState::SpsState() {}

// These functions are similar to webrtc::H264SpsParser::Parse, and based on the
// same version of the H.264 standard. You can find it here:
// http://www.itu.int/rec/T-REC-H.264
bool H264BitstreamParser::ParseSpsNalu(const uint8_t* sps, size_t length) {
  // Reset SPS state.
  sps_ = SpsState();
  sps_parsed_ = false;
  // Parse out the SPS RBSP. It should be small, so it's ok that we create a
  // copy. We'll eventually write this back.
  rtc::scoped_ptr<rtc::ByteBuffer> sps_rbsp(
      ParseRbsp(sps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
  rtc::BitBuffer sps_parser(reinterpret_cast<const uint8_t*>(sps_rbsp->Data()),
                            sps_rbsp->Length());

  uint8_t byte_tmp;
  uint32_t golomb_tmp;
  uint32_t bits_tmp;

  // profile_idc: u(8).
  uint8_t profile_idc;
  RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&profile_idc));
  // constraint_set0_flag through constraint_set5_flag + reserved_zero_2bits
  // 1 bit each for the flags + 2 bits = 8 bits = 1 byte.
  RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
  // level_idc: u(8)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadUInt8(&byte_tmp));
  // seq_parameter_set_id: ue(v)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
  sps_.separate_colour_plane_flag = 0;
  // See if profile_idc has chroma format information.
  if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 ||
      profile_idc == 244 || profile_idc == 44 || profile_idc == 83 ||
      profile_idc == 86 || profile_idc == 118 || profile_idc == 128 ||
      profile_idc == 138 || profile_idc == 139 || profile_idc == 134) {
    // chroma_format_idc: ue(v)
    uint32_t chroma_format_idc;
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&chroma_format_idc));
    if (chroma_format_idc == 3) {
      // separate_colour_plane_flag: u(1)
      RETURN_FALSE_ON_FAIL(
          sps_parser.ReadBits(&sps_.separate_colour_plane_flag, 1));
    }
    // bit_depth_luma_minus8: ue(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
    // bit_depth_chroma_minus8: ue(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
    // qpprime_y_zero_transform_bypass_flag: u(1)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
    // seq_scaling_matrix_present_flag: u(1)
    uint32_t seq_scaling_matrix_present_flag;
    RETURN_FALSE_ON_FAIL(
        sps_parser.ReadBits(&seq_scaling_matrix_present_flag, 1));
    if (seq_scaling_matrix_present_flag) {
      // seq_scaling_list_present_flags. Either 8 or 12, depending on
      // chroma_format_idc.
      uint32_t seq_scaling_list_present_flags;
      if (chroma_format_idc != 3) {
        RETURN_FALSE_ON_FAIL(
            sps_parser.ReadBits(&seq_scaling_list_present_flags, 8));
      } else {
        RETURN_FALSE_ON_FAIL(
            sps_parser.ReadBits(&seq_scaling_list_present_flags, 12));
      }
      // TODO(pbos): Support parsing scaling lists if they're seen in practice.
      RTC_CHECK(seq_scaling_list_present_flags == 0)
          << "SPS contains scaling lists, which are unsupported.";
    }
  }
  // log2_max_frame_num_minus4: ue(v)
  RETURN_FALSE_ON_FAIL(
      sps_parser.ReadExponentialGolomb(&sps_.log2_max_frame_num_minus4));
  // pic_order_cnt_type: ue(v)
  RETURN_FALSE_ON_FAIL(
      sps_parser.ReadExponentialGolomb(&sps_.pic_order_cnt_type));

  if (sps_.pic_order_cnt_type == 0) {
    // log2_max_pic_order_cnt_lsb_minus4: ue(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
        &sps_.log2_max_pic_order_cnt_lsb_minus4));
  } else if (sps_.pic_order_cnt_type == 1) {
    // delta_pic_order_always_zero_flag: u(1)
    RETURN_FALSE_ON_FAIL(
        sps_parser.ReadBits(&sps_.delta_pic_order_always_zero_flag, 1));
    // offset_for_non_ref_pic: se(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
    // offset_for_top_to_bottom_field: se(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
    uint32_t num_ref_frames_in_pic_order_cnt_cycle;
    // num_ref_frames_in_pic_order_cnt_cycle: ue(v)
    RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(
        &num_ref_frames_in_pic_order_cnt_cycle));
    for (uint32_t i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) {
      // offset_for_ref_frame[i]: se(v)
      RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
    }
  }
  // max_num_ref_frames: ue(v)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
  // gaps_in_frame_num_value_allowed_flag: u(1)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&bits_tmp, 1));
  // pic_width_in_mbs_minus1: ue(v)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
  // pic_height_in_map_units_minus1: ue(v)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadExponentialGolomb(&golomb_tmp));
  // frame_mbs_only_flag: u(1)
  RETURN_FALSE_ON_FAIL(sps_parser.ReadBits(&sps_.frame_mbs_only_flag, 1));
  sps_parsed_ = true;
  return true;
}

bool H264BitstreamParser::ParsePpsNalu(const uint8_t* pps, size_t length) {
  RTC_CHECK(sps_parsed_);
  // We're starting a new stream, so reset picture type rewriting values.
  pps_ = PpsState();
  pps_parsed_ = false;
  rtc::scoped_ptr<rtc::ByteBuffer> buffer(
      ParseRbsp(pps + kNaluHeaderAndTypeSize, length - kNaluHeaderAndTypeSize));
  rtc::BitBuffer parser(reinterpret_cast<const uint8_t*>(buffer->Data()),
                        buffer->Length());

  uint32_t bits_tmp;
  uint32_t golomb_ignored;
  // pic_parameter_set_id: ue(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // seq_parameter_set_id: ue(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // entropy_coding_mode_flag: u(1)
  uint32_t entropy_coding_mode_flag;
  RETURN_FALSE_ON_FAIL(parser.ReadBits(&entropy_coding_mode_flag, 1));
  // TODO(pbos): Implement CABAC support if spotted in the wild.
  RTC_CHECK(entropy_coding_mode_flag == 0)
      << "Don't know how to parse CABAC streams.";
  // bottom_field_pic_order_in_frame_present_flag: u(1)
  uint32_t bottom_field_pic_order_in_frame_present_flag;
  RETURN_FALSE_ON_FAIL(
      parser.ReadBits(&bottom_field_pic_order_in_frame_present_flag, 1));
  pps_.bottom_field_pic_order_in_frame_present_flag =
      bottom_field_pic_order_in_frame_present_flag != 0;

  // num_slice_groups_minus1: ue(v)
  uint32_t num_slice_groups_minus1;
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&num_slice_groups_minus1));
  if (num_slice_groups_minus1 > 0) {
    uint32_t slice_group_map_type;
    // slice_group_map_type: ue(v)
    RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&slice_group_map_type));
    if (slice_group_map_type == 0) {
      for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
           ++i_group) {
        // run_length_minus1[iGroup]: ue(v)
        RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
      }
    } else if (slice_group_map_type == 2) {
      for (uint32_t i_group = 0; i_group <= num_slice_groups_minus1;
           ++i_group) {
        // top_left[iGroup]: ue(v)
        RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
        // bottom_right[iGroup]: ue(v)
        RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
      }
    } else if (slice_group_map_type == 3 || slice_group_map_type == 4 ||
               slice_group_map_type == 5) {
      // slice_group_change_direction_flag: u(1)
      RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 1));
      // slice_group_change_rate_minus1: ue(v)
      RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
    } else if (slice_group_map_type == 6) {
      // pic_size_in_map_units_minus1: ue(v)
      uint32_t pic_size_in_map_units_minus1;
      RETURN_FALSE_ON_FAIL(
          parser.ReadExponentialGolomb(&pic_size_in_map_units_minus1));
      uint32_t slice_group_id_bits = 0;
      uint32_t num_slice_groups = num_slice_groups_minus1 + 1;
      // If num_slice_groups is not a power of two an additional bit is required
      // to account for the ceil() of log2() below.
      if ((num_slice_groups & (num_slice_groups - 1)) != 0)
        ++slice_group_id_bits;
      while (num_slice_groups > 0) {
        num_slice_groups >>= 1;
        ++slice_group_id_bits;
      }
      for (uint32_t i = 0; i <= pic_size_in_map_units_minus1; i++) {
        // slice_group_id[i]: u(v)
        // Represented by ceil(log2(num_slice_groups_minus1 + 1)) bits.
        RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, slice_group_id_bits));
      }
    }
  }
  // num_ref_idx_l0_default_active_minus1: ue(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // num_ref_idx_l1_default_active_minus1: ue(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // weighted_pred_flag: u(1)
  uint32_t weighted_pred_flag;
  RETURN_FALSE_ON_FAIL(parser.ReadBits(&weighted_pred_flag, 1));
  pps_.weighted_pred_flag = weighted_pred_flag != 0;
  // weighted_bipred_idc: u(2)
  RETURN_FALSE_ON_FAIL(parser.ReadBits(&pps_.weighted_bipred_idc, 2));

  // pic_init_qp_minus26: se(v)
  RETURN_FALSE_ON_FAIL(
      parser.ReadSignedExponentialGolomb(&pps_.pic_init_qp_minus26));
  // pic_init_qs_minus26: se(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // chroma_qp_index_offset: se(v)
  RETURN_FALSE_ON_FAIL(parser.ReadExponentialGolomb(&golomb_ignored));
  // deblocking_filter_control_present_flag: u(1)
  // constrained_intra_pred_flag: u(1)
  RETURN_FALSE_ON_FAIL(parser.ReadBits(&bits_tmp, 2));
  // redundant_pic_cnt_present_flag: u(1)
  RETURN_FALSE_ON_FAIL(
      parser.ReadBits(&pps_.redundant_pic_cnt_present_flag, 1));

  pps_parsed_ = true;
  return true;
}

bool H264BitstreamParser::ParseNonParameterSetNalu(const uint8_t* source,
                                                   size_t source_length,
                                                   uint8_t nalu_type) {
  RTC_CHECK(sps_parsed_);
  RTC_CHECK(pps_parsed_);
  last_slice_qp_delta_parsed_ = false;
  rtc::scoped_ptr<rtc::ByteBuffer> slice_rbsp(ParseRbsp(
      source + kNaluHeaderAndTypeSize, source_length - kNaluHeaderAndTypeSize));
  rtc::BitBuffer slice_reader(
      reinterpret_cast<const uint8_t*>(slice_rbsp->Data()),
      slice_rbsp->Length());
  // Check to see if this is an IDR slice, which has an extra field to parse
  // out.
  bool is_idr = (source[kNaluHeaderSize] & 0x0F) == kNaluIdr;
  uint8_t nal_ref_idc = (source[kNaluHeaderSize] & 0x60) >> 5;
  uint32_t golomb_tmp;
  uint32_t bits_tmp;

  // first_mb_in_slice: ue(v)
  RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
  // slice_type: ue(v)
  uint32_t slice_type;
  RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&slice_type));
  // slice_type's 5..9 range is used to indicate that all slices of a picture
  // have the same value of slice_type % 5, we don't care about that, so we map
  // to the corresponding 0..4 range.
  slice_type %= 5;
  // pic_parameter_set_id: ue(v)
  RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
  if (sps_.separate_colour_plane_flag == 1) {
    // colour_plane_id
    RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2));
  }
  // frame_num: u(v)
  // Represented by log2_max_frame_num_minus4 + 4 bits.
  RETURN_FALSE_ON_FAIL(
      slice_reader.ReadBits(&bits_tmp, sps_.log2_max_frame_num_minus4 + 4));
  uint32_t field_pic_flag = 0;
  if (sps_.frame_mbs_only_flag == 0) {
    // field_pic_flag: u(1)
    RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&field_pic_flag, 1));
    if (field_pic_flag != 0) {
      // bottom_field_flag: u(1)
      RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
    }
  }
  if (is_idr) {
    // idr_pic_id: ue(v)
    RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
  }
  // pic_order_cnt_lsb: u(v)
  // Represented by sps_.log2_max_pic_order_cnt_lsb_minus4 + 4 bits.
  if (sps_.pic_order_cnt_type == 0) {
    RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(
        &bits_tmp, sps_.log2_max_pic_order_cnt_lsb_minus4 + 4));
    if (pps_.bottom_field_pic_order_in_frame_present_flag &&
        field_pic_flag == 0) {
      // delta_pic_order_cnt_bottom: se(v)
      RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
    }
  }
  if (sps_.pic_order_cnt_type == 1 && !sps_.delta_pic_order_always_zero_flag) {
    // delta_pic_order_cnt[0]: se(v)
    RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
    if (pps_.bottom_field_pic_order_in_frame_present_flag && !field_pic_flag) {
      // delta_pic_order_cnt[1]: se(v)
      RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
    }
  }
  if (pps_.redundant_pic_cnt_present_flag) {
    // redundant_pic_cnt: ue(v)
    RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
  }
  if (slice_type == kSliceTypeB) {
    // direct_spatial_mv_pred_flag: u(1)
    RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 1));
  }
  if (slice_type == kSliceTypeP || slice_type == kSliceTypeSp ||
      slice_type == kSliceTypeB) {
    uint32_t num_ref_idx_active_override_flag;
    // num_ref_idx_active_override_flag: u(1)
    RETURN_FALSE_ON_FAIL(
        slice_reader.ReadBits(&num_ref_idx_active_override_flag, 1));
    if (num_ref_idx_active_override_flag != 0) {
      // num_ref_idx_l0_active_minus1: ue(v)
      RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
      if (slice_type == kSliceTypeB) {
        // num_ref_idx_l1_active_minus1: ue(v)
        RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(&golomb_tmp));
      }
    }
  }
  // assume nal_unit_type != 20 && nal_unit_type != 21:
  RTC_CHECK_NE(nalu_type, 20);
  RTC_CHECK_NE(nalu_type, 21);
  // if (nal_unit_type == 20 || nal_unit_type == 21)
  //   ref_pic_list_mvc_modification()
  // else
  {
    // ref_pic_list_modification():
    // |slice_type| checks here don't use named constants as they aren't named
    // in the spec for this segment. Keeping them consistent makes it easier to
    // verify that they are both the same.
    if (slice_type % 5 != 2 && slice_type % 5 != 4) {
      // ref_pic_list_modification_flag_l0: u(1)
      uint32_t ref_pic_list_modification_flag_l0;
      RETURN_FALSE_ON_FAIL(
          slice_reader.ReadBits(&ref_pic_list_modification_flag_l0, 1));
      if (ref_pic_list_modification_flag_l0) {
        uint32_t modification_of_pic_nums_idc;
        do {
          // modification_of_pic_nums_idc: ue(v)
          RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
              &modification_of_pic_nums_idc));
          if (modification_of_pic_nums_idc == 0 ||
              modification_of_pic_nums_idc == 1) {
            // abs_diff_pic_num_minus1: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          } else if (modification_of_pic_nums_idc == 2) {
            // long_term_pic_num: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
        } while (modification_of_pic_nums_idc != 3);
      }
    }
    if (slice_type % 5 == 1) {
      // ref_pic_list_modification_flag_l1: u(1)
      uint32_t ref_pic_list_modification_flag_l1;
      RETURN_FALSE_ON_FAIL(
          slice_reader.ReadBits(&ref_pic_list_modification_flag_l1, 1));
      if (ref_pic_list_modification_flag_l1) {
        uint32_t modification_of_pic_nums_idc;
        do {
          // modification_of_pic_nums_idc: ue(v)
          RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
              &modification_of_pic_nums_idc));
          if (modification_of_pic_nums_idc == 0 ||
              modification_of_pic_nums_idc == 1) {
            // abs_diff_pic_num_minus1: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          } else if (modification_of_pic_nums_idc == 2) {
            // long_term_pic_num: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
        } while (modification_of_pic_nums_idc != 3);
      }
    }
  }
  // TODO(pbos): Do we need support for pred_weight_table()?
  RTC_CHECK(!((pps_.weighted_pred_flag &&
               (slice_type == kSliceTypeP || slice_type == kSliceTypeSp)) ||
              (pps_.weighted_bipred_idc != 0 && slice_type == kSliceTypeB)))
      << "Missing support for pred_weight_table().";
  // if ((weighted_pred_flag && (slice_type == P || slice_type == SP)) ||
  //    (weighted_bipred_idc == 1 && slice_type == B)) {
  //  pred_weight_table()
  // }
  if (nal_ref_idc != 0) {
    // dec_ref_pic_marking():
    if (is_idr) {
      // no_output_of_prior_pics_flag: u(1)
      // long_term_reference_flag: u(1)
      RETURN_FALSE_ON_FAIL(slice_reader.ReadBits(&bits_tmp, 2));
    } else {
      // adaptive_ref_pic_marking_mode_flag: u(1)
      uint32_t adaptive_ref_pic_marking_mode_flag;
      RETURN_FALSE_ON_FAIL(
          slice_reader.ReadBits(&adaptive_ref_pic_marking_mode_flag, 1));
      if (adaptive_ref_pic_marking_mode_flag) {
        uint32_t memory_management_control_operation;
        do {
          // memory_management_control_operation: ue(v)
          RETURN_FALSE_ON_FAIL(slice_reader.ReadExponentialGolomb(
              &memory_management_control_operation));
          if (memory_management_control_operation == 1 ||
              memory_management_control_operation == 3) {
            // difference_of_pic_nums_minus1: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
          if (memory_management_control_operation == 2) {
            // long_term_pic_num: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
          if (memory_management_control_operation == 3 ||
              memory_management_control_operation == 6) {
            // long_term_frame_idx: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
          if (memory_management_control_operation == 4) {
            // max_long_term_frame_idx_plus1: ue(v)
            RETURN_FALSE_ON_FAIL(
                slice_reader.ReadExponentialGolomb(&golomb_tmp));
          }
        } while (memory_management_control_operation != 0);
      }
    }
  }
  // cabac not supported: entropy_coding_mode_flag == 0 asserted above.
  // if (entropy_coding_mode_flag && slice_type != I && slice_type != SI)
  //   cabac_init_idc
  RETURN_FALSE_ON_FAIL(
      slice_reader.ReadSignedExponentialGolomb(&last_slice_qp_delta_));
  last_slice_qp_delta_parsed_ = true;
  return true;
}

void H264BitstreamParser::ParseSlice(const uint8_t* slice, size_t length) {
  uint8_t nalu_type = slice[4] & kNaluTypeMask;
  switch (nalu_type) {
    case kNaluSps:
      RTC_CHECK(ParseSpsNalu(slice, length))
          << "Failed to parse bitstream SPS.";
      break;
    case kNaluPps:
      RTC_CHECK(ParsePpsNalu(slice, length))
          << "Failed to parse bitstream PPS.";
      break;
    default:
      RTC_CHECK(ParseNonParameterSetNalu(slice, length, nalu_type))
          << "Failed to parse picture slice.";
      break;
  }
}

void H264BitstreamParser::ParseBitstream(const uint8_t* bitstream,
                                         size_t length) {
  RTC_CHECK_GE(length, 4u);
  std::vector<size_t> slice_markers = FindNaluStartSequences(bitstream, length);
  RTC_CHECK(!slice_markers.empty());
  for (size_t i = 0; i < slice_markers.size() - 1; ++i) {
    ParseSlice(bitstream + slice_markers[i],
               slice_markers[i + 1] - slice_markers[i]);
  }
  // Parse the last slice.
  ParseSlice(bitstream + slice_markers.back(), length - slice_markers.back());
}

bool H264BitstreamParser::GetLastSliceQp(int* qp) const {
  if (!last_slice_qp_delta_parsed_)
    return false;
  *qp = 26 + pps_.pic_init_qp_minus26 + last_slice_qp_delta_;
  return true;
}

}  // namespace webrtc