aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/rtp_rtcp/source/rtp_format_h264.cc
blob: c422577c812cd80278daf73d3d0d64257fc50256 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <string.h>

#include "webrtc/base/logging.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/h264_sps_parser.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"

namespace webrtc {
namespace {

enum Nalu {
  kSlice = 1,
  kIdr = 5,
  kSei = 6,
  kSps = 7,
  kPps = 8,
  kStapA = 24,
  kFuA = 28
};

static const size_t kNalHeaderSize = 1;
static const size_t kFuAHeaderSize = 2;
static const size_t kLengthFieldSize = 2;
static const size_t kStapAHeaderSize = kNalHeaderSize + kLengthFieldSize;

// Bit masks for FU (A and B) indicators.
enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };

// Bit masks for FU (A and B) headers.
enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };

// TODO(pbos): Avoid parsing this here as well as inside the jitter buffer.
bool VerifyStapANaluLengths(const uint8_t* nalu_ptr, size_t length_remaining) {
  while (length_remaining > 0) {
    // Buffer doesn't contain room for additional nalu length.
    if (length_remaining < sizeof(uint16_t))
      return false;
    uint16_t nalu_size = nalu_ptr[0] << 8 | nalu_ptr[1];
    nalu_ptr += sizeof(uint16_t);
    length_remaining -= sizeof(uint16_t);
    if (nalu_size > length_remaining)
      return false;
    nalu_ptr += nalu_size;
    length_remaining -= nalu_size;
  }
  return true;
}

bool ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
                     const uint8_t* payload_data,
                     size_t payload_data_length) {
  parsed_payload->type.Video.width = 0;
  parsed_payload->type.Video.height = 0;
  parsed_payload->type.Video.codec = kRtpVideoH264;
  parsed_payload->type.Video.isFirstPacket = true;
  RTPVideoHeaderH264* h264_header =
      &parsed_payload->type.Video.codecHeader.H264;

  const uint8_t* nalu_start = payload_data + kNalHeaderSize;
  size_t nalu_length = payload_data_length - kNalHeaderSize;
  uint8_t nal_type = payload_data[0] & kTypeMask;
  if (nal_type == kStapA) {
    // Skip the StapA header (StapA nal type + length).
    if (payload_data_length <= kStapAHeaderSize) {
      LOG(LS_ERROR) << "StapA header truncated.";
      return false;
    }
    if (!VerifyStapANaluLengths(nalu_start, nalu_length)) {
      LOG(LS_ERROR) << "StapA packet with incorrect NALU packet lengths.";
      return false;
    }

    nal_type = payload_data[kStapAHeaderSize] & kTypeMask;
    nalu_start += kStapAHeaderSize;
    nalu_length -= kStapAHeaderSize;
    h264_header->packetization_type = kH264StapA;
  } else {
    h264_header->packetization_type = kH264SingleNalu;
  }
  h264_header->nalu_type = nal_type;

  // We can read resolution out of sps packets.
  if (nal_type == kSps) {
    H264SpsParser parser(nalu_start, nalu_length);
    if (parser.Parse()) {
      parsed_payload->type.Video.width = parser.width();
      parsed_payload->type.Video.height = parser.height();
    }
  }
  switch (nal_type) {
    case kSps:
    case kPps:
    case kIdr:
      parsed_payload->frame_type = kVideoFrameKey;
      break;
    default:
      parsed_payload->frame_type = kVideoFrameDelta;
      break;
  }
  return true;
}

bool ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
                  const uint8_t* payload_data,
                  size_t payload_data_length,
                  size_t* offset) {
  if (payload_data_length < kFuAHeaderSize) {
    LOG(LS_ERROR) << "FU-A NAL units truncated.";
    return false;
  }
  uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
  uint8_t original_nal_type = payload_data[1] & kTypeMask;
  bool first_fragment = (payload_data[1] & kSBit) > 0;

  uint8_t original_nal_header = fnri | original_nal_type;
  if (first_fragment) {
    *offset = kNalHeaderSize;
    uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
    payload[0] = original_nal_header;
  } else {
    *offset = kFuAHeaderSize;
  }

  if (original_nal_type == kIdr) {
    parsed_payload->frame_type = kVideoFrameKey;
  } else {
    parsed_payload->frame_type = kVideoFrameDelta;
  }
  parsed_payload->type.Video.width = 0;
  parsed_payload->type.Video.height = 0;
  parsed_payload->type.Video.codec = kRtpVideoH264;
  parsed_payload->type.Video.isFirstPacket = first_fragment;
  RTPVideoHeaderH264* h264_header =
      &parsed_payload->type.Video.codecHeader.H264;
  h264_header->packetization_type = kH264FuA;
  h264_header->nalu_type = original_nal_type;
  return true;
}
}  // namespace

RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
                                     size_t max_payload_len)
    : payload_data_(NULL),
      payload_size_(0),
      max_payload_len_(max_payload_len) {
}

RtpPacketizerH264::~RtpPacketizerH264() {
}

void RtpPacketizerH264::SetPayloadData(
    const uint8_t* payload_data,
    size_t payload_size,
    const RTPFragmentationHeader* fragmentation) {
  assert(packets_.empty());
  assert(fragmentation);
  payload_data_ = payload_data;
  payload_size_ = payload_size;
  fragmentation_.CopyFrom(*fragmentation);
  GeneratePackets();
}

void RtpPacketizerH264::GeneratePackets() {
  for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) {
    size_t fragment_offset = fragmentation_.fragmentationOffset[i];
    size_t fragment_length = fragmentation_.fragmentationLength[i];
    if (fragment_length > max_payload_len_) {
      PacketizeFuA(fragment_offset, fragment_length);
      ++i;
    } else {
      i = PacketizeStapA(i, fragment_offset, fragment_length);
    }
  }
}

void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset,
                                     size_t fragment_length) {
  // Fragment payload into packets (FU-A).
  // Strip out the original header and leave room for the FU-A header.
  fragment_length -= kNalHeaderSize;
  size_t offset = fragment_offset + kNalHeaderSize;
  size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
  size_t fragments =
      (fragment_length + (bytes_available - 1)) / bytes_available;
  size_t avg_size = (fragment_length + fragments - 1) / fragments;
  while (fragment_length > 0) {
    size_t packet_length = avg_size;
    if (fragment_length < avg_size)
      packet_length = fragment_length;
    uint8_t header = payload_data_[fragment_offset];
    packets_.push(Packet(offset,
                         packet_length,
                         offset - kNalHeaderSize == fragment_offset,
                         fragment_length == packet_length,
                         false,
                         header));
    offset += packet_length;
    fragment_length -= packet_length;
  }
}

int RtpPacketizerH264::PacketizeStapA(size_t fragment_index,
                                      size_t fragment_offset,
                                      size_t fragment_length) {
  // Aggregate fragments into one packet (STAP-A).
  size_t payload_size_left = max_payload_len_;
  int aggregated_fragments = 0;
  size_t fragment_headers_length = 0;
  assert(payload_size_left >= fragment_length);
  while (payload_size_left >= fragment_length + fragment_headers_length) {
    assert(fragment_length > 0);
    uint8_t header = payload_data_[fragment_offset];
    packets_.push(Packet(fragment_offset,
                         fragment_length,
                         aggregated_fragments == 0,
                         false,
                         true,
                         header));
    payload_size_left -= fragment_length;
    payload_size_left -= fragment_headers_length;

    // Next fragment.
    ++fragment_index;
    if (fragment_index == fragmentation_.fragmentationVectorSize)
      break;
    fragment_offset = fragmentation_.fragmentationOffset[fragment_index];
    fragment_length = fragmentation_.fragmentationLength[fragment_index];

    fragment_headers_length = kLengthFieldSize;
    // If we are going to try to aggregate more fragments into this packet
    // we need to add the STAP-A NALU header and a length field for the first
    // NALU of this packet.
    if (aggregated_fragments == 0)
      fragment_headers_length += kNalHeaderSize + kLengthFieldSize;
    ++aggregated_fragments;
  }
  packets_.back().last_fragment = true;
  return fragment_index;
}

bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
                                   size_t* bytes_to_send,
                                   bool* last_packet) {
  *bytes_to_send = 0;
  if (packets_.empty()) {
    *bytes_to_send = 0;
    *last_packet = true;
    return false;
  }

  Packet packet = packets_.front();

  if (packet.first_fragment && packet.last_fragment) {
    // Single NAL unit packet.
    *bytes_to_send = packet.size;
    memcpy(buffer, &payload_data_[packet.offset], packet.size);
    packets_.pop();
    assert(*bytes_to_send <= max_payload_len_);
  } else if (packet.aggregated) {
    NextAggregatePacket(buffer, bytes_to_send);
    assert(*bytes_to_send <= max_payload_len_);
  } else {
    NextFragmentPacket(buffer, bytes_to_send);
    assert(*bytes_to_send <= max_payload_len_);
  }
  *last_packet = packets_.empty();
  return true;
}

void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
                                            size_t* bytes_to_send) {
  Packet packet = packets_.front();
  assert(packet.first_fragment);
  // STAP-A NALU header.
  buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA;
  int index = kNalHeaderSize;
  *bytes_to_send += kNalHeaderSize;
  while (packet.aggregated) {
    // Add NAL unit length field.
    ByteWriter<uint16_t>::WriteBigEndian(&buffer[index], packet.size);
    index += kLengthFieldSize;
    *bytes_to_send += kLengthFieldSize;
    // Add NAL unit.
    memcpy(&buffer[index], &payload_data_[packet.offset], packet.size);
    index += packet.size;
    *bytes_to_send += packet.size;
    packets_.pop();
    if (packet.last_fragment)
      break;
    packet = packets_.front();
  }
  assert(packet.last_fragment);
}

void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
                                           size_t* bytes_to_send) {
  Packet packet = packets_.front();
  // NAL unit fragmented over multiple packets (FU-A).
  // We do not send original NALU header, so it will be replaced by the
  // FU indicator header of the first packet.
  uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA;
  uint8_t fu_header = 0;

  // S | E | R | 5 bit type.
  fu_header |= (packet.first_fragment ? kSBit : 0);
  fu_header |= (packet.last_fragment ? kEBit : 0);
  uint8_t type = packet.header & kTypeMask;
  fu_header |= type;
  buffer[0] = fu_indicator;
  buffer[1] = fu_header;

  if (packet.last_fragment) {
    *bytes_to_send = packet.size + kFuAHeaderSize;
    memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
  } else {
    *bytes_to_send = packet.size + kFuAHeaderSize;
    memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
  }
  packets_.pop();
}

ProtectionType RtpPacketizerH264::GetProtectionType() {
  return kProtectedPacket;
}

StorageType RtpPacketizerH264::GetStorageType(
    uint32_t retransmission_settings) {
  return kAllowRetransmission;
}

std::string RtpPacketizerH264::ToString() {
  return "RtpPacketizerH264";
}

bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
                                const uint8_t* payload_data,
                                size_t payload_data_length) {
  assert(parsed_payload != NULL);
  if (payload_data_length == 0) {
    LOG(LS_ERROR) << "Empty payload.";
    return false;
  }

  uint8_t nal_type = payload_data[0] & kTypeMask;
  size_t offset = 0;
  if (nal_type == kFuA) {
    // Fragmented NAL units (FU-A).
    if (!ParseFuaNalu(
            parsed_payload, payload_data, payload_data_length, &offset)) {
      return false;
    }
  } else {
    // We handle STAP-A and single NALU's the same way here. The jitter buffer
    // will depacketize the STAP-A into NAL units later.
    if (!ParseSingleNalu(parsed_payload, payload_data, payload_data_length))
      return false;
  }

  parsed_payload->payload = payload_data + offset;
  parsed_payload->payload_length = payload_data_length - offset;
  return true;
}
}  // namespace webrtc