aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/main/source/jitter_buffer.cc
blob: bfdd7867d96f356218801154e2c4099c19055184 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "webrtc/modules/video_coding/main/source/jitter_buffer.h"

#include <assert.h>

#include <algorithm>
#include <utility>

#include "webrtc/base/checks.h"
#include "webrtc/base/trace_event.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp_defines.h"
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/modules/video_coding/main/source/frame_buffer.h"
#include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
#include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
#include "webrtc/modules/video_coding/main/source/packet.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
#include "webrtc/system_wrappers/include/event_wrapper.h"
#include "webrtc/system_wrappers/include/logging.h"
#include "webrtc/system_wrappers/include/metrics.h"

namespace webrtc {

// Interval for updating SS data.
static const uint32_t kSsCleanupIntervalSec = 60;

// Use this rtt if no value has been reported.
static const int64_t kDefaultRtt = 200;

typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;

bool IsKeyFrame(FrameListPair pair) {
  return pair.second->FrameType() == kVideoFrameKey;
}

bool HasNonEmptyState(FrameListPair pair) {
  return pair.second->GetState() != kStateEmpty;
}

void FrameList::InsertFrame(VCMFrameBuffer* frame) {
  insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
}

VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
  FrameList::iterator it = find(timestamp);
  if (it == end())
    return NULL;
  VCMFrameBuffer* frame = it->second;
  erase(it);
  return frame;
}

VCMFrameBuffer* FrameList::Front() const {
  return begin()->second;
}

VCMFrameBuffer* FrameList::Back() const {
  return rbegin()->second;
}

int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
                                          UnorderedFrameList* free_frames) {
  int drop_count = 0;
  FrameList::iterator it = begin();
  while (!empty()) {
    // Throw at least one frame.
    it->second->Reset();
    free_frames->push_back(it->second);
    erase(it++);
    ++drop_count;
    if (it != end() && it->second->FrameType() == kVideoFrameKey) {
      *key_frame_it = it;
      return drop_count;
    }
  }
  *key_frame_it = end();
  return drop_count;
}

void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
                                       UnorderedFrameList* free_frames) {
  while (!empty()) {
    VCMFrameBuffer* oldest_frame = Front();
    bool remove_frame = false;
    if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
      // This frame is empty, try to update the last decoded state and drop it
      // if successful.
      remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
    } else {
      remove_frame = decoding_state->IsOldFrame(oldest_frame);
    }
    if (!remove_frame) {
      break;
    }
    free_frames->push_back(oldest_frame);
    TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
                         oldest_frame->TimeStamp());
    erase(begin());
  }
}

void FrameList::Reset(UnorderedFrameList* free_frames) {
  while (!empty()) {
    begin()->second->Reset();
    free_frames->push_back(begin()->second);
    erase(begin());
  }
}

bool Vp9SsMap::Insert(const VCMPacket& packet) {
  if (!packet.codecSpecificHeader.codecHeader.VP9.ss_data_available)
    return false;

  ss_map_[packet.timestamp] = packet.codecSpecificHeader.codecHeader.VP9.gof;
  return true;
}

void Vp9SsMap::Reset() {
  ss_map_.clear();
}

bool Vp9SsMap::Find(uint32_t timestamp, SsMap::iterator* it_out) {
  bool found = false;
  for (SsMap::iterator it = ss_map_.begin(); it != ss_map_.end(); ++it) {
    if (it->first == timestamp || IsNewerTimestamp(timestamp, it->first)) {
      *it_out = it;
      found = true;
    }
  }
  return found;
}

void Vp9SsMap::RemoveOld(uint32_t timestamp) {
  if (!TimeForCleanup(timestamp))
    return;

  SsMap::iterator it;
  if (!Find(timestamp, &it))
    return;

  ss_map_.erase(ss_map_.begin(), it);
  AdvanceFront(timestamp);
}

bool Vp9SsMap::TimeForCleanup(uint32_t timestamp) const {
  if (ss_map_.empty() || !IsNewerTimestamp(timestamp, ss_map_.begin()->first))
    return false;

  uint32_t diff = timestamp - ss_map_.begin()->first;
  return diff / kVideoPayloadTypeFrequency >= kSsCleanupIntervalSec;
}

void Vp9SsMap::AdvanceFront(uint32_t timestamp) {
  RTC_DCHECK(!ss_map_.empty());
  GofInfoVP9 gof = ss_map_.begin()->second;
  ss_map_.erase(ss_map_.begin());
  ss_map_[timestamp] = gof;
}

bool Vp9SsMap::UpdatePacket(VCMPacket* packet) {
  uint8_t gof_idx = packet->codecSpecificHeader.codecHeader.VP9.gof_idx;
  if (gof_idx == kNoGofIdx)
    return false;  // No update needed.

  SsMap::iterator it;
  if (!Find(packet->timestamp, &it))
    return false;  // Corresponding SS not yet received.

  if (gof_idx >= it->second.num_frames_in_gof)
    return false;  // Assume corresponding SS not yet received.

  RTPVideoHeaderVP9* vp9 = &packet->codecSpecificHeader.codecHeader.VP9;
  vp9->temporal_idx = it->second.temporal_idx[gof_idx];
  vp9->temporal_up_switch = it->second.temporal_up_switch[gof_idx];

  // TODO(asapersson): Set vp9.ref_picture_id[i] and add usage.
  vp9->num_ref_pics = it->second.num_ref_pics[gof_idx];
  for (size_t i = 0; i < it->second.num_ref_pics[gof_idx]; ++i) {
    vp9->pid_diff[i] = it->second.pid_diff[gof_idx][i];
  }
  return true;
}

void Vp9SsMap::UpdateFrames(FrameList* frames) {
  for (const auto& frame_it : *frames) {
    uint8_t gof_idx =
        frame_it.second->CodecSpecific()->codecSpecific.VP9.gof_idx;
    if (gof_idx == kNoGofIdx) {
      continue;
    }
    SsMap::iterator ss_it;
    if (Find(frame_it.second->TimeStamp(), &ss_it)) {
      if (gof_idx >= ss_it->second.num_frames_in_gof) {
        continue;  // Assume corresponding SS not yet received.
      }
      frame_it.second->SetGofInfo(ss_it->second, gof_idx);
    }
  }
}

VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
                                 rtc::scoped_ptr<EventWrapper> event)
    : clock_(clock),
      running_(false),
      crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
      frame_event_(event.Pass()),
      max_number_of_frames_(kStartNumberOfFrames),
      free_frames_(),
      decodable_frames_(),
      incomplete_frames_(),
      last_decoded_state_(),
      first_packet_since_reset_(true),
      stats_callback_(NULL),
      incoming_frame_rate_(0),
      incoming_frame_count_(0),
      time_last_incoming_frame_count_(0),
      incoming_bit_count_(0),
      incoming_bit_rate_(0),
      num_consecutive_old_packets_(0),
      num_packets_(0),
      num_duplicated_packets_(0),
      num_discarded_packets_(0),
      time_first_packet_ms_(0),
      jitter_estimate_(clock),
      inter_frame_delay_(clock_->TimeInMilliseconds()),
      rtt_ms_(kDefaultRtt),
      nack_mode_(kNoNack),
      low_rtt_nack_threshold_ms_(-1),
      high_rtt_nack_threshold_ms_(-1),
      missing_sequence_numbers_(SequenceNumberLessThan()),
      max_nack_list_size_(0),
      max_packet_age_to_nack_(0),
      max_incomplete_time_ms_(0),
      decode_error_mode_(kNoErrors),
      average_packets_per_frame_(0.0f),
      frame_counter_(0) {
  for (int i = 0; i < kStartNumberOfFrames; i++)
    free_frames_.push_back(new VCMFrameBuffer());
}

VCMJitterBuffer::~VCMJitterBuffer() {
  Stop();
  for (UnorderedFrameList::iterator it = free_frames_.begin();
       it != free_frames_.end(); ++it) {
    delete *it;
  }
  for (FrameList::iterator it = incomplete_frames_.begin();
       it != incomplete_frames_.end(); ++it) {
    delete it->second;
  }
  for (FrameList::iterator it = decodable_frames_.begin();
       it != decodable_frames_.end(); ++it) {
    delete it->second;
  }
  delete crit_sect_;
}

void VCMJitterBuffer::UpdateHistograms() {
  if (num_packets_ <= 0 || !running_) {
    return;
  }
  int64_t elapsed_sec =
      (clock_->TimeInMilliseconds() - time_first_packet_ms_) / 1000;
  if (elapsed_sec < metrics::kMinRunTimeInSeconds) {
    return;
  }

  RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DiscardedPacketsInPercent",
      num_discarded_packets_ * 100 / num_packets_);
  RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DuplicatedPacketsInPercent",
      num_duplicated_packets_ * 100 / num_packets_);

  int total_frames =
      receive_statistics_.key_frames + receive_statistics_.delta_frames;
  if (total_frames > 0) {
    RTC_HISTOGRAM_COUNTS_100("WebRTC.Video.CompleteFramesReceivedPerSecond",
        static_cast<int>((total_frames / elapsed_sec) + 0.5f));
    RTC_HISTOGRAM_COUNTS_1000(
        "WebRTC.Video.KeyFramesReceivedInPermille",
        static_cast<int>(
            (receive_statistics_.key_frames * 1000.0f / total_frames) + 0.5f));
  }
}

void VCMJitterBuffer::Start() {
  CriticalSectionScoped cs(crit_sect_);
  running_ = true;
  incoming_frame_count_ = 0;
  incoming_frame_rate_ = 0;
  incoming_bit_count_ = 0;
  incoming_bit_rate_ = 0;
  time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
  receive_statistics_ = FrameCounts();

  num_consecutive_old_packets_ = 0;
  num_packets_ = 0;
  num_duplicated_packets_ = 0;
  num_discarded_packets_ = 0;
  time_first_packet_ms_ = 0;

  // Start in a non-signaled state.
  waiting_for_completion_.frame_size = 0;
  waiting_for_completion_.timestamp = 0;
  waiting_for_completion_.latest_packet_time = -1;
  first_packet_since_reset_ = true;
  rtt_ms_ = kDefaultRtt;
  last_decoded_state_.Reset();
  vp9_ss_map_.Reset();
}

void VCMJitterBuffer::Stop() {
  crit_sect_->Enter();
  UpdateHistograms();
  running_ = false;
  last_decoded_state_.Reset();
  vp9_ss_map_.Reset();

  // Make sure all frames are free and reset.
  for (FrameList::iterator it = decodable_frames_.begin();
       it != decodable_frames_.end(); ++it) {
    free_frames_.push_back(it->second);
  }
  for (FrameList::iterator it = incomplete_frames_.begin();
       it != incomplete_frames_.end(); ++it) {
    free_frames_.push_back(it->second);
  }
  for (UnorderedFrameList::iterator it = free_frames_.begin();
       it != free_frames_.end(); ++it) {
    (*it)->Reset();
  }
  decodable_frames_.clear();
  incomplete_frames_.clear();
  crit_sect_->Leave();
  // Make sure we wake up any threads waiting on these events.
  frame_event_->Set();
}

bool VCMJitterBuffer::Running() const {
  CriticalSectionScoped cs(crit_sect_);
  return running_;
}

void VCMJitterBuffer::Flush() {
  CriticalSectionScoped cs(crit_sect_);
  decodable_frames_.Reset(&free_frames_);
  incomplete_frames_.Reset(&free_frames_);
  last_decoded_state_.Reset();  // TODO(mikhal): sync reset.
  vp9_ss_map_.Reset();
  num_consecutive_old_packets_ = 0;
  // Also reset the jitter and delay estimates
  jitter_estimate_.Reset();
  inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
  waiting_for_completion_.frame_size = 0;
  waiting_for_completion_.timestamp = 0;
  waiting_for_completion_.latest_packet_time = -1;
  first_packet_since_reset_ = true;
  missing_sequence_numbers_.clear();
}

// Get received key and delta frames
FrameCounts VCMJitterBuffer::FrameStatistics() const {
  CriticalSectionScoped cs(crit_sect_);
  return receive_statistics_;
}

int VCMJitterBuffer::num_packets() const {
  CriticalSectionScoped cs(crit_sect_);
  return num_packets_;
}

int VCMJitterBuffer::num_duplicated_packets() const {
  CriticalSectionScoped cs(crit_sect_);
  return num_duplicated_packets_;
}

int VCMJitterBuffer::num_discarded_packets() const {
  CriticalSectionScoped cs(crit_sect_);
  return num_discarded_packets_;
}

// Calculate framerate and bitrate.
void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
                                             unsigned int* bitrate) {
  assert(framerate);
  assert(bitrate);
  CriticalSectionScoped cs(crit_sect_);
  const int64_t now = clock_->TimeInMilliseconds();
  int64_t diff = now - time_last_incoming_frame_count_;
  if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
    // Make sure we report something even though less than
    // 1 second has passed since last update.
    *framerate = incoming_frame_rate_;
    *bitrate = incoming_bit_rate_;
  } else if (incoming_frame_count_ != 0) {
    // We have received frame(s) since last call to this function

    // Prepare calculations
    if (diff <= 0) {
      diff = 1;
    }
    // we add 0.5f for rounding
    float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
    if (rate < 1.0f) {
      rate = 1.0f;
    }

    // Calculate frame rate
    // Let r be rate.
    // r(0) = 1000*framecount/delta_time.
    // (I.e. frames per second since last calculation.)
    // frame_rate = r(0)/2 + r(-1)/2
    // (I.e. fr/s average this and the previous calculation.)
    *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
    incoming_frame_rate_ = static_cast<unsigned int>(rate);

    // Calculate bit rate
    if (incoming_bit_count_ == 0) {
      *bitrate = 0;
    } else {
      *bitrate = 10 * ((100 * incoming_bit_count_) /
                       static_cast<unsigned int>(diff));
    }
    incoming_bit_rate_ = *bitrate;

    // Reset count
    incoming_frame_count_ = 0;
    incoming_bit_count_ = 0;
    time_last_incoming_frame_count_ = now;

  } else {
    // No frames since last call
    time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
    *framerate = 0;
    *bitrate = 0;
    incoming_frame_rate_ = 0;
    incoming_bit_rate_ = 0;
  }
}

// Answers the question:
// Will the packet sequence be complete if the next frame is grabbed for
// decoding right now? That is, have we lost a frame between the last decoded
// frame and the next, or is the next
// frame missing one or more packets?
bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
  CriticalSectionScoped cs(crit_sect_);
  // Finding oldest frame ready for decoder, check sequence number and size
  CleanUpOldOrEmptyFrames();
  if (!decodable_frames_.empty()) {
    if (decodable_frames_.Front()->GetState() == kStateComplete) {
      return true;
    }
  } else if (incomplete_frames_.size() <= 1) {
    // Frame not ready to be decoded.
    return true;
  }
  return false;
}

// Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
// complete frame, |max_wait_time_ms| decided by caller.
bool VCMJitterBuffer::NextCompleteTimestamp(
    uint32_t max_wait_time_ms, uint32_t* timestamp) {
  crit_sect_->Enter();
  if (!running_) {
    crit_sect_->Leave();
    return false;
  }
  CleanUpOldOrEmptyFrames();

  if (decodable_frames_.empty() ||
      decodable_frames_.Front()->GetState() != kStateComplete) {
    const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
        max_wait_time_ms;
    int64_t wait_time_ms = max_wait_time_ms;
    while (wait_time_ms > 0) {
      crit_sect_->Leave();
      const EventTypeWrapper ret =
        frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
      crit_sect_->Enter();
      if (ret == kEventSignaled) {
        // Are we shutting down the jitter buffer?
        if (!running_) {
          crit_sect_->Leave();
          return false;
        }
        // Finding oldest frame ready for decoder.
        CleanUpOldOrEmptyFrames();
        if (decodable_frames_.empty() ||
            decodable_frames_.Front()->GetState() != kStateComplete) {
          wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
        } else {
          break;
        }
      } else {
        break;
      }
    }
  }
  if (decodable_frames_.empty() ||
      decodable_frames_.Front()->GetState() != kStateComplete) {
    crit_sect_->Leave();
    return false;
  }
  *timestamp = decodable_frames_.Front()->TimeStamp();
  crit_sect_->Leave();
  return true;
}

bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
  CriticalSectionScoped cs(crit_sect_);
  if (!running_) {
    return false;
  }
  if (decode_error_mode_ == kNoErrors) {
    // No point to continue, as we are not decoding with errors.
    return false;
  }

  CleanUpOldOrEmptyFrames();

  if (decodable_frames_.empty()) {
    return false;
  }
  VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
  // If we have exactly one frame in the buffer, release it only if it is
  // complete. We know decodable_frames_ is  not empty due to the previous
  // check.
  if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
      && oldest_frame->GetState() != kStateComplete) {
    return false;
  }

  *timestamp = oldest_frame->TimeStamp();
  return true;
}

VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
  CriticalSectionScoped cs(crit_sect_);
  if (!running_) {
    return NULL;
  }
  // Extract the frame with the desired timestamp.
  VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
  bool continuous = true;
  if (!frame) {
    frame = incomplete_frames_.PopFrame(timestamp);
    if (frame)
      continuous = last_decoded_state_.ContinuousFrame(frame);
    else
      return NULL;
  }
  TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
  // Frame pulled out from jitter buffer, update the jitter estimate.
  const bool retransmitted = (frame->GetNackCount() > 0);
  if (retransmitted) {
    jitter_estimate_.FrameNacked();
  } else if (frame->Length() > 0) {
    // Ignore retransmitted and empty frames.
    if (waiting_for_completion_.latest_packet_time >= 0) {
      UpdateJitterEstimate(waiting_for_completion_, true);
    }
    if (frame->GetState() == kStateComplete) {
      UpdateJitterEstimate(*frame, false);
    } else {
      // Wait for this one to get complete.
      waiting_for_completion_.frame_size = frame->Length();
      waiting_for_completion_.latest_packet_time =
          frame->LatestPacketTimeMs();
      waiting_for_completion_.timestamp = frame->TimeStamp();
    }
  }

  // The state must be changed to decoding before cleaning up zero sized
  // frames to avoid empty frames being cleaned up and then given to the
  // decoder. Propagates the missing_frame bit.
  frame->PrepareForDecode(continuous);

  // We have a frame - update the last decoded state and nack list.
  last_decoded_state_.SetState(frame);
  DropPacketsFromNackList(last_decoded_state_.sequence_num());

  if ((*frame).IsSessionComplete())
    UpdateAveragePacketsPerFrame(frame->NumPackets());

  return frame;
}

// Release frame when done with decoding. Should never be used to release
// frames from within the jitter buffer.
void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
  CriticalSectionScoped cs(crit_sect_);
  VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
  if (frame_buffer) {
    free_frames_.push_back(frame_buffer);
  }
}

// Gets frame to use for this timestamp. If no match, get empty frame.
VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
                                             VCMFrameBuffer** frame,
                                             FrameList** frame_list) {
  *frame = incomplete_frames_.PopFrame(packet.timestamp);
  if (*frame != NULL) {
    *frame_list = &incomplete_frames_;
    return kNoError;
  }
  *frame = decodable_frames_.PopFrame(packet.timestamp);
  if (*frame != NULL) {
    *frame_list = &decodable_frames_;
    return kNoError;
  }

  *frame_list = NULL;
  // No match, return empty frame.
  *frame = GetEmptyFrame();
  if (*frame == NULL) {
    // No free frame! Try to reclaim some...
    LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
    bool found_key_frame = RecycleFramesUntilKeyFrame();
    *frame = GetEmptyFrame();
    assert(*frame);
    if (!found_key_frame) {
      free_frames_.push_back(*frame);
      return kFlushIndicator;
    }
  }
  (*frame)->Reset();
  return kNoError;
}

int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
                                        bool* retransmitted) const {
  assert(retransmitted);
  CriticalSectionScoped cs(crit_sect_);
  const VCMFrameBuffer* frame_buffer =
      static_cast<const VCMFrameBuffer*>(frame);
  *retransmitted = (frame_buffer->GetNackCount() > 0);
  return frame_buffer->LatestPacketTimeMs();
}

VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
                                                 bool* retransmitted) {
  CriticalSectionScoped cs(crit_sect_);

  ++num_packets_;
  if (num_packets_ == 1) {
    time_first_packet_ms_ = clock_->TimeInMilliseconds();
  }
  // Does this packet belong to an old frame?
  if (last_decoded_state_.IsOldPacket(&packet)) {
    // Account only for media packets.
    if (packet.sizeBytes > 0) {
      num_discarded_packets_++;
      num_consecutive_old_packets_++;
      if (stats_callback_ != NULL)
        stats_callback_->OnDiscardedPacketsUpdated(num_discarded_packets_);
    }
    // Update last decoded sequence number if the packet arrived late and
    // belongs to a frame with a timestamp equal to the last decoded
    // timestamp.
    last_decoded_state_.UpdateOldPacket(&packet);
    DropPacketsFromNackList(last_decoded_state_.sequence_num());

    // Also see if this old packet made more incomplete frames continuous.
    FindAndInsertContinuousFramesWithState(last_decoded_state_);

    if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
      LOG(LS_WARNING)
          << num_consecutive_old_packets_
          << " consecutive old packets received. Flushing the jitter buffer.";
      Flush();
      return kFlushIndicator;
    }
    return kOldPacket;
  }

  num_consecutive_old_packets_ = 0;

  if (packet.codec == kVideoCodecVP9) {
    if (packet.codecSpecificHeader.codecHeader.VP9.flexible_mode) {
      // TODO(asapersson): Add support for flexible mode.
      return kGeneralError;
    }
    if (!packet.codecSpecificHeader.codecHeader.VP9.flexible_mode) {
      if (vp9_ss_map_.Insert(packet))
        vp9_ss_map_.UpdateFrames(&incomplete_frames_);

      vp9_ss_map_.UpdatePacket(const_cast<VCMPacket*>(&packet));
    }
    if (!last_decoded_state_.in_initial_state())
      vp9_ss_map_.RemoveOld(last_decoded_state_.time_stamp());
  }

  VCMFrameBuffer* frame;
  FrameList* frame_list;
  const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
  if (error != kNoError)
    return error;

  int64_t now_ms = clock_->TimeInMilliseconds();
  // We are keeping track of the first and latest seq numbers, and
  // the number of wraps to be able to calculate how many packets we expect.
  if (first_packet_since_reset_) {
    // Now it's time to start estimating jitter
    // reset the delay estimate.
    inter_frame_delay_.Reset(now_ms);
  }

  // Empty packets may bias the jitter estimate (lacking size component),
  // therefore don't let empty packet trigger the following updates:
  if (packet.frameType != kEmptyFrame) {
    if (waiting_for_completion_.timestamp == packet.timestamp) {
      // This can get bad if we have a lot of duplicate packets,
      // we will then count some packet multiple times.
      waiting_for_completion_.frame_size += packet.sizeBytes;
      waiting_for_completion_.latest_packet_time = now_ms;
    } else if (waiting_for_completion_.latest_packet_time >= 0 &&
               waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
      // A packet should never be more than two seconds late
      UpdateJitterEstimate(waiting_for_completion_, true);
      waiting_for_completion_.latest_packet_time = -1;
      waiting_for_completion_.frame_size = 0;
      waiting_for_completion_.timestamp = 0;
    }
  }

  VCMFrameBufferStateEnum previous_state = frame->GetState();
  // Insert packet.
  FrameData frame_data;
  frame_data.rtt_ms = rtt_ms_;
  frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
  VCMFrameBufferEnum buffer_state =
      frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data);

  if (previous_state != kStateComplete) {
    TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
                             "timestamp", frame->TimeStamp());
  }

  if (buffer_state > 0) {
    incoming_bit_count_ += packet.sizeBytes << 3;
    if (first_packet_since_reset_) {
      latest_received_sequence_number_ = packet.seqNum;
      first_packet_since_reset_ = false;
    } else {
      if (IsPacketRetransmitted(packet)) {
        frame->IncrementNackCount();
      }
      if (!UpdateNackList(packet.seqNum) &&
          packet.frameType != kVideoFrameKey) {
        buffer_state = kFlushIndicator;
      }

      latest_received_sequence_number_ = LatestSequenceNumber(
          latest_received_sequence_number_, packet.seqNum);
    }
  }

  // Is the frame already in the decodable list?
  bool continuous = IsContinuous(*frame);
  switch (buffer_state) {
    case kGeneralError:
    case kTimeStampError:
    case kSizeError: {
      free_frames_.push_back(frame);
      break;
    }
    case kCompleteSession: {
      if (previous_state != kStateDecodable &&
          previous_state != kStateComplete) {
        CountFrame(*frame);
        if (continuous) {
          // Signal that we have a complete session.
          frame_event_->Set();
        }
      }
      FALLTHROUGH();
    }
    // Note: There is no break here - continuing to kDecodableSession.
    case kDecodableSession: {
      *retransmitted = (frame->GetNackCount() > 0);
      if (continuous) {
        decodable_frames_.InsertFrame(frame);
        FindAndInsertContinuousFrames(*frame);
      } else {
        incomplete_frames_.InsertFrame(frame);
      }
      break;
    }
    case kIncomplete: {
      if (frame->GetState() == kStateEmpty &&
          last_decoded_state_.UpdateEmptyFrame(frame)) {
        free_frames_.push_back(frame);
        return kNoError;
      } else {
        incomplete_frames_.InsertFrame(frame);
      }
      break;
    }
    case kNoError:
    case kOutOfBoundsPacket:
    case kDuplicatePacket: {
      // Put back the frame where it came from.
      if (frame_list != NULL) {
        frame_list->InsertFrame(frame);
      } else {
        free_frames_.push_back(frame);
      }
      ++num_duplicated_packets_;
      break;
    }
    case kFlushIndicator:
      free_frames_.push_back(frame);
      return kFlushIndicator;
    default: assert(false);
  }
  return buffer_state;
}

bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
    const VCMDecodingState& decoding_state) const {
  if (decode_error_mode_ == kWithErrors)
    return true;
  // Is this frame (complete or decodable) and continuous?
  // kStateDecodable will never be set when decode_error_mode_ is false
  // as SessionInfo determines this state based on the error mode (and frame
  // completeness).
  return (frame.GetState() == kStateComplete ||
          frame.GetState() == kStateDecodable) &&
         decoding_state.ContinuousFrame(&frame);
}

bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
  if (IsContinuousInState(frame, last_decoded_state_)) {
    return true;
  }
  VCMDecodingState decoding_state;
  decoding_state.CopyFrom(last_decoded_state_);
  for (FrameList::const_iterator it = decodable_frames_.begin();
       it != decodable_frames_.end(); ++it)  {
    VCMFrameBuffer* decodable_frame = it->second;
    if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
      break;
    }
    decoding_state.SetState(decodable_frame);
    if (IsContinuousInState(frame, decoding_state)) {
      return true;
    }
  }
  return false;
}

void VCMJitterBuffer::FindAndInsertContinuousFrames(
    const VCMFrameBuffer& new_frame) {
  VCMDecodingState decoding_state;
  decoding_state.CopyFrom(last_decoded_state_);
  decoding_state.SetState(&new_frame);
  FindAndInsertContinuousFramesWithState(decoding_state);
}

void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
    const VCMDecodingState& original_decoded_state) {
  // Copy original_decoded_state so we can move the state forward with each
  // decodable frame we find.
  VCMDecodingState decoding_state;
  decoding_state.CopyFrom(original_decoded_state);

  // When temporal layers are available, we search for a complete or decodable
  // frame until we hit one of the following:
  // 1. Continuous base or sync layer.
  // 2. The end of the list was reached.
  for (FrameList::iterator it = incomplete_frames_.begin();
       it != incomplete_frames_.end();)  {
    VCMFrameBuffer* frame = it->second;
    if (IsNewerTimestamp(original_decoded_state.time_stamp(),
                         frame->TimeStamp())) {
      ++it;
      continue;
    }
    if (IsContinuousInState(*frame, decoding_state)) {
      decodable_frames_.InsertFrame(frame);
      incomplete_frames_.erase(it++);
      decoding_state.SetState(frame);
    } else if (frame->TemporalId() <= 0) {
      break;
    } else {
      ++it;
    }
  }
}

uint32_t VCMJitterBuffer::EstimatedJitterMs() {
  CriticalSectionScoped cs(crit_sect_);
  // Compute RTT multiplier for estimation.
  // low_rtt_nackThresholdMs_ == -1 means no FEC.
  double rtt_mult = 1.0f;
  if (low_rtt_nack_threshold_ms_ >= 0 &&
      rtt_ms_ >= low_rtt_nack_threshold_ms_) {
    // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
    // when waiting for retransmissions.
    rtt_mult = 0.0f;
  }
  return jitter_estimate_.GetJitterEstimate(rtt_mult);
}

void VCMJitterBuffer::UpdateRtt(int64_t rtt_ms) {
  CriticalSectionScoped cs(crit_sect_);
  rtt_ms_ = rtt_ms;
  jitter_estimate_.UpdateRtt(rtt_ms);
}

void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
                                  int64_t low_rtt_nack_threshold_ms,
                                  int64_t high_rtt_nack_threshold_ms) {
  CriticalSectionScoped cs(crit_sect_);
  nack_mode_ = mode;
  if (mode == kNoNack) {
    missing_sequence_numbers_.clear();
  }
  assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
  assert(high_rtt_nack_threshold_ms == -1 ||
         low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
  assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
  low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
  high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
  // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
  // disable NACK in |kNack| mode.
  if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
    rtt_ms_ = 0;
  }
  if (!WaitForRetransmissions()) {
    jitter_estimate_.ResetNackCount();
  }
}

void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
                                      int max_packet_age_to_nack,
                                      int max_incomplete_time_ms) {
  CriticalSectionScoped cs(crit_sect_);
  assert(max_packet_age_to_nack >= 0);
  assert(max_incomplete_time_ms_ >= 0);
  max_nack_list_size_ = max_nack_list_size;
  max_packet_age_to_nack_ = max_packet_age_to_nack;
  max_incomplete_time_ms_ = max_incomplete_time_ms;
}

VCMNackMode VCMJitterBuffer::nack_mode() const {
  CriticalSectionScoped cs(crit_sect_);
  return nack_mode_;
}

int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
  if (incomplete_frames_.empty()) {
    return 0;
  }
  uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
  if (!decodable_frames_.empty()) {
    start_timestamp = decodable_frames_.Back()->TimeStamp();
  }
  return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
}

uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
    const VCMFrameBuffer& frame) const {
  assert(frame.GetLowSeqNum() >= 0);
  if (frame.HaveFirstPacket())
    return frame.GetLowSeqNum();

  // This estimate is not accurate if more than one packet with lower sequence
  // number is lost.
  return frame.GetLowSeqNum() - 1;
}

std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
  CriticalSectionScoped cs(crit_sect_);
  *request_key_frame = false;
  if (nack_mode_ == kNoNack) {
    return std::vector<uint16_t>();
  }
  if (last_decoded_state_.in_initial_state()) {
    VCMFrameBuffer* next_frame = NextFrame();
    const bool first_frame_is_key = next_frame &&
        next_frame->FrameType() == kVideoFrameKey &&
        next_frame->HaveFirstPacket();
    if (!first_frame_is_key) {
      bool have_non_empty_frame = decodable_frames_.end() != find_if(
          decodable_frames_.begin(), decodable_frames_.end(),
          HasNonEmptyState);
      if (!have_non_empty_frame) {
        have_non_empty_frame = incomplete_frames_.end() != find_if(
            incomplete_frames_.begin(), incomplete_frames_.end(),
            HasNonEmptyState);
      }
      bool found_key_frame = RecycleFramesUntilKeyFrame();
      if (!found_key_frame) {
        *request_key_frame = have_non_empty_frame;
        return std::vector<uint16_t>();
      }
    }
  }
  if (TooLargeNackList()) {
    *request_key_frame = !HandleTooLargeNackList();
  }
  if (max_incomplete_time_ms_ > 0) {
    int non_continuous_incomplete_duration =
        NonContinuousOrIncompleteDuration();
    if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
      LOG_F(LS_WARNING) << "Too long non-decodable duration: "
                        << non_continuous_incomplete_duration << " > "
                        << 90 * max_incomplete_time_ms_;
      FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
          incomplete_frames_.rend(), IsKeyFrame);
      if (rit == incomplete_frames_.rend()) {
        // Request a key frame if we don't have one already.
        *request_key_frame = true;
        return std::vector<uint16_t>();
      } else {
        // Skip to the last key frame. If it's incomplete we will start
        // NACKing it.
        // Note that the estimated low sequence number is correct for VP8
        // streams because only the first packet of a key frame is marked.
        last_decoded_state_.Reset();
        DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
      }
    }
  }
  std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
                                  missing_sequence_numbers_.end());
  return nack_list;
}

void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
  CriticalSectionScoped cs(crit_sect_);
  decode_error_mode_ = error_mode;
}

VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
  if (!decodable_frames_.empty())
    return decodable_frames_.Front();
  if (!incomplete_frames_.empty())
    return incomplete_frames_.Front();
  return NULL;
}

bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
  if (nack_mode_ == kNoNack) {
    return true;
  }
  // Make sure we don't add packets which are already too old to be decoded.
  if (!last_decoded_state_.in_initial_state()) {
    latest_received_sequence_number_ = LatestSequenceNumber(
        latest_received_sequence_number_,
        last_decoded_state_.sequence_num());
  }
  if (IsNewerSequenceNumber(sequence_number,
                            latest_received_sequence_number_)) {
    // Push any missing sequence numbers to the NACK list.
    for (uint16_t i = latest_received_sequence_number_ + 1;
         IsNewerSequenceNumber(sequence_number, i); ++i) {
      missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
      TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack",
                           "seqnum", i);
    }
    if (TooLargeNackList() && !HandleTooLargeNackList()) {
      LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
      return false;
    }
    if (MissingTooOldPacket(sequence_number) &&
        !HandleTooOldPackets(sequence_number)) {
      LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
      return false;
    }
  } else {
    missing_sequence_numbers_.erase(sequence_number);
    TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RemoveNack",
                         "seqnum", sequence_number);
  }
  return true;
}

bool VCMJitterBuffer::TooLargeNackList() const {
  return missing_sequence_numbers_.size() > max_nack_list_size_;
}

bool VCMJitterBuffer::HandleTooLargeNackList() {
  // Recycle frames until the NACK list is small enough. It is likely cheaper to
  // request a key frame than to retransmit this many missing packets.
  LOG_F(LS_WARNING) << "NACK list has grown too large: "
                    << missing_sequence_numbers_.size() << " > "
                    << max_nack_list_size_;
  bool key_frame_found = false;
  while (TooLargeNackList()) {
    key_frame_found = RecycleFramesUntilKeyFrame();
  }
  return key_frame_found;
}

bool VCMJitterBuffer::MissingTooOldPacket(
    uint16_t latest_sequence_number) const {
  if (missing_sequence_numbers_.empty()) {
    return false;
  }
  const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
      *missing_sequence_numbers_.begin();
  // Recycle frames if the NACK list contains too old sequence numbers as
  // the packets may have already been dropped by the sender.
  return age_of_oldest_missing_packet > max_packet_age_to_nack_;
}

bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
  bool key_frame_found = false;
  const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
      *missing_sequence_numbers_.begin();
  LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
                    << age_of_oldest_missing_packet << " > "
                    << max_packet_age_to_nack_;
  while (MissingTooOldPacket(latest_sequence_number)) {
    key_frame_found = RecycleFramesUntilKeyFrame();
  }
  return key_frame_found;
}

void VCMJitterBuffer::DropPacketsFromNackList(
    uint16_t last_decoded_sequence_number) {
  // Erase all sequence numbers from the NACK list which we won't need any
  // longer.
  missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
                                  missing_sequence_numbers_.upper_bound(
                                      last_decoded_sequence_number));
}

int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
  CriticalSectionScoped cs(crit_sect_);
  return last_decoded_state_.time_stamp();
}

void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
                                       uint32_t* timestamp_end) {
  CriticalSectionScoped cs(crit_sect_);
  CleanUpOldOrEmptyFrames();
  *timestamp_start = 0;
  *timestamp_end = 0;
  if (decodable_frames_.empty()) {
    return;
  }
  *timestamp_start = decodable_frames_.Front()->TimeStamp();
  *timestamp_end = decodable_frames_.Back()->TimeStamp();
}

void VCMJitterBuffer::RegisterStatsCallback(
    VCMReceiveStatisticsCallback* callback) {
  CriticalSectionScoped cs(crit_sect_);
  stats_callback_ = callback;
}

VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
  if (free_frames_.empty()) {
    if (!TryToIncreaseJitterBufferSize()) {
      return NULL;
    }
  }
  VCMFrameBuffer* frame = free_frames_.front();
  free_frames_.pop_front();
  return frame;
}

bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
  if (max_number_of_frames_ >= kMaxNumberOfFrames)
    return false;
  free_frames_.push_back(new VCMFrameBuffer());
  ++max_number_of_frames_;
  TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
  return true;
}

// Recycle oldest frames up to a key frame, used if jitter buffer is completely
// full.
bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
  // First release incomplete frames, and only release decodable frames if there
  // are no incomplete ones.
  FrameList::iterator key_frame_it;
  bool key_frame_found = false;
  int dropped_frames = 0;
  dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
      &key_frame_it, &free_frames_);
  key_frame_found = key_frame_it != incomplete_frames_.end();
  if (dropped_frames == 0) {
    dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
        &key_frame_it, &free_frames_);
    key_frame_found = key_frame_it != decodable_frames_.end();
  }
  TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
  if (key_frame_found) {
    LOG(LS_INFO) << "Found key frame while dropping frames.";
    // Reset last decoded state to make sure the next frame decoded is a key
    // frame, and start NACKing from here.
    last_decoded_state_.Reset();
    DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
  } else if (decodable_frames_.empty()) {
    // All frames dropped. Reset the decoding state and clear missing sequence
    // numbers as we're starting fresh.
    last_decoded_state_.Reset();
    missing_sequence_numbers_.clear();
  }
  return key_frame_found;
}

// Must be called under the critical section |crit_sect_|.
void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
  incoming_frame_count_++;

  if (frame.FrameType() == kVideoFrameKey) {
    TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
                            frame.TimeStamp(), "KeyComplete");
  } else {
    TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
                            frame.TimeStamp(), "DeltaComplete");
  }

  // Update receive statistics. We count all layers, thus when you use layers
  // adding all key and delta frames might differ from frame count.
  if (frame.IsSessionComplete()) {
    if (frame.FrameType() == kVideoFrameKey) {
      ++receive_statistics_.key_frames;
    } else {
      ++receive_statistics_.delta_frames;
    }
    if (stats_callback_ != NULL)
      stats_callback_->OnFrameCountsUpdated(receive_statistics_);
  }
}

void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
  if (frame_counter_ > kFastConvergeThreshold) {
    average_packets_per_frame_ = average_packets_per_frame_
              * (1 - kNormalConvergeMultiplier)
            + current_number_packets * kNormalConvergeMultiplier;
  } else if (frame_counter_ > 0) {
    average_packets_per_frame_ = average_packets_per_frame_
              * (1 - kFastConvergeMultiplier)
            + current_number_packets * kFastConvergeMultiplier;
    frame_counter_++;
  } else {
    average_packets_per_frame_ = current_number_packets;
    frame_counter_++;
  }
}

// Must be called under the critical section |crit_sect_|.
void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
  decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
                                            &free_frames_);
  incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
                                             &free_frames_);
  if (!last_decoded_state_.in_initial_state()) {
    DropPacketsFromNackList(last_decoded_state_.sequence_num());
  }
}

// Must be called from within |crit_sect_|.
bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
  return missing_sequence_numbers_.find(packet.seqNum) !=
      missing_sequence_numbers_.end();
}

// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
                                           bool incomplete_frame) {
  if (sample.latest_packet_time == -1) {
    return;
  }
  UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
                       sample.frame_size, incomplete_frame);
}

// Must be called under the critical section crit_sect_. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
                                           bool incomplete_frame) {
  if (frame.LatestPacketTimeMs() == -1) {
    return;
  }
  // No retransmitted frames should be a part of the jitter
  // estimate.
  UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
                       frame.Length(), incomplete_frame);
}

// Must be called under the critical section |crit_sect_|. Should never be
// called with retransmitted frames, they must be filtered out before this
// function is called.
void VCMJitterBuffer::UpdateJitterEstimate(
    int64_t latest_packet_time_ms,
    uint32_t timestamp,
    unsigned int frame_size,
    bool incomplete_frame) {
  if (latest_packet_time_ms == -1) {
    return;
  }
  int64_t frame_delay;
  bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
                                                      &frame_delay,
                                                      latest_packet_time_ms);
  // Filter out frames which have been reordered in time by the network
  if (not_reordered) {
    // Update the jitter estimate with the new samples
    jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
  }
}

bool VCMJitterBuffer::WaitForRetransmissions() {
  if (nack_mode_ == kNoNack) {
    // NACK disabled -> don't wait for retransmissions.
    return false;
  }
  // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
  // that case we don't wait for retransmissions.
  if (high_rtt_nack_threshold_ms_ >= 0 &&
      rtt_ms_ >= high_rtt_nack_threshold_ms_) {
    return false;
  }
  return true;
}
}  // namespace webrtc