aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/main/source/receiver.cc
blob: 0707a9c3cde8122cfc95f2f61bfb0e4350d7e410 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/video_coding/main/source/receiver.h"

#include <assert.h>

#include <cstdlib>

#include "webrtc/base/trace_event.h"
#include "webrtc/modules/video_coding/main/source/encoded_frame.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/media_opt_util.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/logging.h"

namespace webrtc {

enum { kMaxReceiverDelayMs = 10000 };

VCMReceiver::VCMReceiver(VCMTiming* timing,
                         Clock* clock,
                         EventFactory* event_factory)
    : VCMReceiver(timing,
                  clock,
                  rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent()),
                  rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent())) {
}

VCMReceiver::VCMReceiver(VCMTiming* timing,
                         Clock* clock,
                         rtc::scoped_ptr<EventWrapper> receiver_event,
                         rtc::scoped_ptr<EventWrapper> jitter_buffer_event)
    : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
      clock_(clock),
      jitter_buffer_(clock_, jitter_buffer_event.Pass()),
      timing_(timing),
      render_wait_event_(receiver_event.Pass()),
      max_video_delay_ms_(kMaxVideoDelayMs) {
  Reset();
}

VCMReceiver::~VCMReceiver() {
  render_wait_event_->Set();
  delete crit_sect_;
}

void VCMReceiver::Reset() {
  CriticalSectionScoped cs(crit_sect_);
  if (!jitter_buffer_.Running()) {
    jitter_buffer_.Start();
  } else {
    jitter_buffer_.Flush();
  }
}

void VCMReceiver::UpdateRtt(int64_t rtt) {
  jitter_buffer_.UpdateRtt(rtt);
}

int32_t VCMReceiver::InsertPacket(const VCMPacket& packet,
                                  uint16_t frame_width,
                                  uint16_t frame_height) {
  // Insert the packet into the jitter buffer. The packet can either be empty or
  // contain media at this point.
  bool retransmitted = false;
  const VCMFrameBufferEnum ret = jitter_buffer_.InsertPacket(packet,
                                                             &retransmitted);
  if (ret == kOldPacket) {
    return VCM_OK;
  } else if (ret == kFlushIndicator) {
    return VCM_FLUSH_INDICATOR;
  } else if (ret < 0) {
    return VCM_JITTER_BUFFER_ERROR;
  }
  if (ret == kCompleteSession && !retransmitted) {
    // We don't want to include timestamps which have suffered from
    // retransmission here, since we compensate with extra retransmission
    // delay within the jitter estimate.
    timing_->IncomingTimestamp(packet.timestamp, clock_->TimeInMilliseconds());
  }
  return VCM_OK;
}

void VCMReceiver::TriggerDecoderShutdown() {
  jitter_buffer_.Stop();
  render_wait_event_->Set();
}

VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms,
                                               int64_t& next_render_time_ms,
                                               bool render_timing) {
  const int64_t start_time_ms = clock_->TimeInMilliseconds();
  uint32_t frame_timestamp = 0;
  // Exhaust wait time to get a complete frame for decoding.
  bool found_frame = jitter_buffer_.NextCompleteTimestamp(
      max_wait_time_ms, &frame_timestamp);

  if (!found_frame)
    found_frame = jitter_buffer_.NextMaybeIncompleteTimestamp(&frame_timestamp);

  if (!found_frame)
    return NULL;

  // We have a frame - Set timing and render timestamp.
  timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs());
  const int64_t now_ms = clock_->TimeInMilliseconds();
  timing_->UpdateCurrentDelay(frame_timestamp);
  next_render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms);
  // Check render timing.
  bool timing_error = false;
  // Assume that render timing errors are due to changes in the video stream.
  if (next_render_time_ms < 0) {
    timing_error = true;
  } else if (std::abs(next_render_time_ms - now_ms) > max_video_delay_ms_) {
    int frame_delay = static_cast<int>(std::abs(next_render_time_ms - now_ms));
    LOG(LS_WARNING) << "A frame about to be decoded is out of the configured "
                    << "delay bounds (" << frame_delay << " > "
                    << max_video_delay_ms_
                    << "). Resetting the video jitter buffer.";
    timing_error = true;
  } else if (static_cast<int>(timing_->TargetVideoDelay()) >
             max_video_delay_ms_) {
    LOG(LS_WARNING) << "The video target delay has grown larger than "
                    << max_video_delay_ms_ << " ms. Resetting jitter buffer.";
    timing_error = true;
  }

  if (timing_error) {
    // Timing error => reset timing and flush the jitter buffer.
    jitter_buffer_.Flush();
    timing_->Reset();
    return NULL;
  }

  if (!render_timing) {
    // Decode frame as close as possible to the render timestamp.
    const int32_t available_wait_time = max_wait_time_ms -
        static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms);
    uint16_t new_max_wait_time = static_cast<uint16_t>(
        VCM_MAX(available_wait_time, 0));
    uint32_t wait_time_ms = timing_->MaxWaitingTime(
        next_render_time_ms, clock_->TimeInMilliseconds());
    if (new_max_wait_time < wait_time_ms) {
      // We're not allowed to wait until the frame is supposed to be rendered,
      // waiting as long as we're allowed to avoid busy looping, and then return
      // NULL. Next call to this function might return the frame.
      render_wait_event_->Wait(new_max_wait_time);
      return NULL;
    }
    // Wait until it's time to render.
    render_wait_event_->Wait(wait_time_ms);
  }

  // Extract the frame from the jitter buffer and set the render time.
  VCMEncodedFrame* frame = jitter_buffer_.ExtractAndSetDecode(frame_timestamp);
  if (frame == NULL) {
    return NULL;
  }
  frame->SetRenderTime(next_render_time_ms);
  TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", frame->TimeStamp(),
                          "SetRenderTS", "render_time", next_render_time_ms);
  if (!frame->Complete()) {
    // Update stats for incomplete frames.
    bool retransmitted = false;
    const int64_t last_packet_time_ms =
        jitter_buffer_.LastPacketTime(frame, &retransmitted);
    if (last_packet_time_ms >= 0 && !retransmitted) {
      // We don't want to include timestamps which have suffered from
      // retransmission here, since we compensate with extra retransmission
      // delay within the jitter estimate.
      timing_->IncomingTimestamp(frame_timestamp, last_packet_time_ms);
    }
  }
  return frame;
}

void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) {
  jitter_buffer_.ReleaseFrame(frame);
}

void VCMReceiver::ReceiveStatistics(uint32_t* bitrate,
                                    uint32_t* framerate) {
  assert(bitrate);
  assert(framerate);
  jitter_buffer_.IncomingRateStatistics(framerate, bitrate);
}

uint32_t VCMReceiver::DiscardedPackets() const {
  return jitter_buffer_.num_discarded_packets();
}

void VCMReceiver::SetNackMode(VCMNackMode nackMode,
                              int64_t low_rtt_nack_threshold_ms,
                              int64_t high_rtt_nack_threshold_ms) {
  CriticalSectionScoped cs(crit_sect_);
  // Default to always having NACK enabled in hybrid mode.
  jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms,
                             high_rtt_nack_threshold_ms);
}

void VCMReceiver::SetNackSettings(size_t max_nack_list_size,
                                  int max_packet_age_to_nack,
                                  int max_incomplete_time_ms) {
  jitter_buffer_.SetNackSettings(max_nack_list_size,
                                 max_packet_age_to_nack,
                                 max_incomplete_time_ms);
}

VCMNackMode VCMReceiver::NackMode() const {
  CriticalSectionScoped cs(crit_sect_);
  return jitter_buffer_.nack_mode();
}

std::vector<uint16_t> VCMReceiver::NackList(bool* request_key_frame) {
  return jitter_buffer_.GetNackList(request_key_frame);
}

void VCMReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) {
  jitter_buffer_.SetDecodeErrorMode(decode_error_mode);
}

VCMDecodeErrorMode VCMReceiver::DecodeErrorMode() const {
  return jitter_buffer_.decode_error_mode();
}

int VCMReceiver::SetMinReceiverDelay(int desired_delay_ms) {
  CriticalSectionScoped cs(crit_sect_);
  if (desired_delay_ms < 0 || desired_delay_ms > kMaxReceiverDelayMs) {
    return -1;
  }
  max_video_delay_ms_ = desired_delay_ms + kMaxVideoDelayMs;
  // Initializing timing to the desired delay.
  timing_->set_min_playout_delay(desired_delay_ms);
  return 0;
}

int VCMReceiver::RenderBufferSizeMs() {
  uint32_t timestamp_start = 0u;
  uint32_t timestamp_end = 0u;
  // Render timestamps are computed just prior to decoding. Therefore this is
  // only an estimate based on frames' timestamps and current timing state.
  jitter_buffer_.RenderBufferSize(&timestamp_start, &timestamp_end);
  if (timestamp_start == timestamp_end) {
    return 0;
  }
  // Update timing.
  const int64_t now_ms = clock_->TimeInMilliseconds();
  timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs());
  // Get render timestamps.
  uint32_t render_start = timing_->RenderTimeMs(timestamp_start, now_ms);
  uint32_t render_end = timing_->RenderTimeMs(timestamp_end, now_ms);
  return render_end - render_start;
}

void VCMReceiver::RegisterStatsCallback(
    VCMReceiveStatisticsCallback* callback) {
  jitter_buffer_.RegisterStatsCallback(callback);
}

}  // namespace webrtc