aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/receiver_unittest.cc
blob: 1f3a144badd02ab5a943fe5c27e82fa6b2e7f4b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <string.h>

#include <list>
#include <queue>
#include <vector>

#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/checks.h"
#include "webrtc/modules/video_coding/encoded_frame.h"
#include "webrtc/modules/video_coding/packet.h"
#include "webrtc/modules/video_coding/receiver.h"
#include "webrtc/modules/video_coding/test/stream_generator.h"
#include "webrtc/modules/video_coding/timing.h"
#include "webrtc/modules/video_coding/test/test_util.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"

namespace webrtc {

class TestVCMReceiver : public ::testing::Test {
 protected:
  enum { kWidth = 640 };
  enum { kHeight = 480 };

  TestVCMReceiver()
      : clock_(new SimulatedClock(0)),
        timing_(clock_.get()),
        receiver_(&timing_, clock_.get(), &event_factory_) {
    stream_generator_.reset(
        new StreamGenerator(0, clock_->TimeInMilliseconds()));
  }

  virtual void SetUp() { receiver_.Reset(); }

  int32_t InsertPacket(int index) {
    VCMPacket packet;
    bool packet_available = stream_generator_->GetPacket(&packet, index);
    EXPECT_TRUE(packet_available);
    if (!packet_available)
      return kGeneralError;  // Return here to avoid crashes below.
    return receiver_.InsertPacket(packet, kWidth, kHeight);
  }

  int32_t InsertPacketAndPop(int index) {
    VCMPacket packet;
    bool packet_available = stream_generator_->PopPacket(&packet, index);
    EXPECT_TRUE(packet_available);
    if (!packet_available)
      return kGeneralError;  // Return here to avoid crashes below.
    return receiver_.InsertPacket(packet, kWidth, kHeight);
  }

  int32_t InsertFrame(FrameType frame_type, bool complete) {
    int num_of_packets = complete ? 1 : 2;
    stream_generator_->GenerateFrame(
        frame_type, (frame_type != kEmptyFrame) ? num_of_packets : 0,
        (frame_type == kEmptyFrame) ? 1 : 0, clock_->TimeInMilliseconds());
    int32_t ret = InsertPacketAndPop(0);
    if (!complete) {
      // Drop the second packet.
      VCMPacket packet;
      stream_generator_->PopPacket(&packet, 0);
    }
    clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
    return ret;
  }

  bool DecodeNextFrame() {
    int64_t render_time_ms = 0;
    VCMEncodedFrame* frame =
        receiver_.FrameForDecoding(0, &render_time_ms, false);
    if (!frame)
      return false;
    receiver_.ReleaseFrame(frame);
    return true;
  }

  rtc::scoped_ptr<SimulatedClock> clock_;
  VCMTiming timing_;
  NullEventFactory event_factory_;
  VCMReceiver receiver_;
  rtc::scoped_ptr<StreamGenerator> stream_generator_;
};

TEST_F(TestVCMReceiver, RenderBufferSize_AllComplete) {
  EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  int num_of_frames = 10;
  for (int i = 0; i < num_of_frames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  EXPECT_EQ(num_of_frames * kDefaultFramePeriodMs,
            receiver_.RenderBufferSizeMs());
}

TEST_F(TestVCMReceiver, RenderBufferSize_SkipToKeyFrame) {
  EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
  const int kNumOfNonDecodableFrames = 2;
  for (int i = 0; i < kNumOfNonDecodableFrames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  const int kNumOfFrames = 10;
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  for (int i = 0; i < kNumOfFrames - 1; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  EXPECT_EQ((kNumOfFrames - 1) * kDefaultFramePeriodMs,
            receiver_.RenderBufferSizeMs());
}

TEST_F(TestVCMReceiver, RenderBufferSize_NotAllComplete) {
  EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  int num_of_frames = 10;
  for (int i = 0; i < num_of_frames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  num_of_frames++;
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  for (int i = 0; i < num_of_frames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  EXPECT_EQ((num_of_frames - 1) * kDefaultFramePeriodMs,
            receiver_.RenderBufferSizeMs());
}

TEST_F(TestVCMReceiver, RenderBufferSize_NoKeyFrame) {
  EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
  int num_of_frames = 10;
  for (int i = 0; i < num_of_frames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  int64_t next_render_time_ms = 0;
  VCMEncodedFrame* frame =
      receiver_.FrameForDecoding(10, &next_render_time_ms, false);
  EXPECT_TRUE(frame == NULL);
  receiver_.ReleaseFrame(frame);
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  for (int i = 0; i < num_of_frames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
}

TEST_F(TestVCMReceiver, NonDecodableDuration_Empty) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  const int kMinDelayMs = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Advance time until it's time to decode the key frame.
  clock_->AdvanceTimeMilliseconds(kMinDelayMs);
  EXPECT_TRUE(DecodeNextFrame());
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_FALSE(request_key_frame);
}

TEST_F(TestVCMReceiver, NonDecodableDuration_NoKeyFrame) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  const int kNumFrames = kDefaultFrameRate * kMaxNonDecodableDuration / 1000;
  for (int i = 0; i < kNumFrames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_TRUE(request_key_frame);
}

TEST_F(TestVCMReceiver, NonDecodableDuration_OneIncomplete) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  const int kMaxNonDecodableDurationFrames =
      (kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
  const int kMinDelayMs = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  receiver_.SetMinReceiverDelay(kMinDelayMs);
  int64_t key_frame_inserted = clock_->TimeInMilliseconds();
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Insert an incomplete frame.
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  // Insert enough frames to have too long non-decodable sequence.
  for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  // Advance time until it's time to decode the key frame.
  clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
                                  key_frame_inserted);
  EXPECT_TRUE(DecodeNextFrame());
  // Make sure we get a key frame request.
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_TRUE(request_key_frame);
}

TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  const int kMaxNonDecodableDurationFrames =
      (kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
  const int kMinDelayMs = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  receiver_.SetMinReceiverDelay(kMinDelayMs);
  int64_t key_frame_inserted = clock_->TimeInMilliseconds();
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Insert an incomplete frame.
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  // Insert all but one frame to not trigger a key frame request due to
  // too long duration of non-decodable frames.
  for (int i = 0; i < kMaxNonDecodableDurationFrames - 1; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  // Advance time until it's time to decode the key frame.
  clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
                                  key_frame_inserted);
  EXPECT_TRUE(DecodeNextFrame());
  // Make sure we don't get a key frame request since we haven't generated
  // enough frames.
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_FALSE(request_key_frame);
}

TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger2) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  const int kMaxNonDecodableDurationFrames =
      (kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
  const int kMinDelayMs = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  receiver_.SetMinReceiverDelay(kMinDelayMs);
  int64_t key_frame_inserted = clock_->TimeInMilliseconds();
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Insert enough frames to have too long non-decodable sequence, except that
  // we don't have any losses.
  for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  // Insert an incomplete frame.
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  // Advance time until it's time to decode the key frame.
  clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
                                  key_frame_inserted);
  EXPECT_TRUE(DecodeNextFrame());
  // Make sure we don't get a key frame request since the non-decodable duration
  // is only one frame.
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_FALSE(request_key_frame);
}

TEST_F(TestVCMReceiver, NonDecodableDuration_KeyFrameAfterIncompleteFrames) {
  // Enable NACK and with no RTT thresholds for disabling retransmission delay.
  receiver_.SetNackMode(kNack, -1, -1);
  const size_t kMaxNackListSize = 1000;
  const int kMaxPacketAgeToNack = 1000;
  const int kMaxNonDecodableDuration = 500;
  const int kMaxNonDecodableDurationFrames =
      (kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
  const int kMinDelayMs = 500;
  receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
                            kMaxNonDecodableDuration);
  receiver_.SetMinReceiverDelay(kMinDelayMs);
  int64_t key_frame_inserted = clock_->TimeInMilliseconds();
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Insert an incomplete frame.
  EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
  // Insert enough frames to have too long non-decodable sequence.
  for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
    EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
  }
  EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
  // Advance time until it's time to decode the key frame.
  clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
                                  key_frame_inserted);
  EXPECT_TRUE(DecodeNextFrame());
  // Make sure we don't get a key frame request since we have a key frame
  // in the list.
  bool request_key_frame = false;
  std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
  EXPECT_FALSE(request_key_frame);
}

// A simulated clock, when time elapses, will insert frames into the jitter
// buffer, based on initial settings.
class SimulatedClockWithFrames : public SimulatedClock {
 public:
  SimulatedClockWithFrames(StreamGenerator* stream_generator,
                           VCMReceiver* receiver)
      : SimulatedClock(0),
        stream_generator_(stream_generator),
        receiver_(receiver) {}
  virtual ~SimulatedClockWithFrames() {}

  // If |stop_on_frame| is true and next frame arrives between now and
  // now+|milliseconds|, the clock will be advanced to the arrival time of next
  // frame.
  // Otherwise, the clock will be advanced by |milliseconds|.
  //
  // For both cases, a frame will be inserted into the jitter buffer at the
  // instant when the clock time is timestamps_.front().arrive_time.
  //
  // Return true if some frame arrives between now and now+|milliseconds|.
  bool AdvanceTimeMilliseconds(int64_t milliseconds, bool stop_on_frame) {
    return AdvanceTimeMicroseconds(milliseconds * 1000, stop_on_frame);
  }

  bool AdvanceTimeMicroseconds(int64_t microseconds, bool stop_on_frame) {
    int64_t start_time = TimeInMicroseconds();
    int64_t end_time = start_time + microseconds;
    bool frame_injected = false;
    while (!timestamps_.empty() &&
           timestamps_.front().arrive_time <= end_time) {
      RTC_DCHECK(timestamps_.front().arrive_time >= start_time);

      SimulatedClock::AdvanceTimeMicroseconds(timestamps_.front().arrive_time -
                                              TimeInMicroseconds());
      GenerateAndInsertFrame((timestamps_.front().render_time + 500) / 1000);
      timestamps_.pop();
      frame_injected = true;

      if (stop_on_frame)
        return frame_injected;
    }

    if (TimeInMicroseconds() < end_time) {
      SimulatedClock::AdvanceTimeMicroseconds(end_time - TimeInMicroseconds());
    }
    return frame_injected;
  }

  // Input timestamps are in unit Milliseconds.
  // And |arrive_timestamps| must be positive and in increasing order.
  // |arrive_timestamps| determine when we are going to insert frames into the
  // jitter buffer.
  // |render_timestamps| are the timestamps on the frame.
  void SetFrames(const int64_t* arrive_timestamps,
                 const int64_t* render_timestamps,
                 size_t size) {
    int64_t previous_arrive_timestamp = 0;
    for (size_t i = 0; i < size; i++) {
      RTC_CHECK(arrive_timestamps[i] >= previous_arrive_timestamp);
      timestamps_.push(TimestampPair(arrive_timestamps[i] * 1000,
                                     render_timestamps[i] * 1000));
      previous_arrive_timestamp = arrive_timestamps[i];
    }
  }

 private:
  struct TimestampPair {
    TimestampPair(int64_t arrive_timestamp, int64_t render_timestamp)
        : arrive_time(arrive_timestamp), render_time(render_timestamp) {}

    int64_t arrive_time;
    int64_t render_time;
  };

  void GenerateAndInsertFrame(int64_t render_timestamp_ms) {
    VCMPacket packet;
    stream_generator_->GenerateFrame(FrameType::kVideoFrameKey,
                                     1,  // media packets
                                     0,  // empty packets
                                     render_timestamp_ms);

    bool packet_available = stream_generator_->PopPacket(&packet, 0);
    EXPECT_TRUE(packet_available);
    if (!packet_available)
      return;  // Return here to avoid crashes below.
    receiver_->InsertPacket(packet, 640, 480);
  }

  std::queue<TimestampPair> timestamps_;
  StreamGenerator* stream_generator_;
  VCMReceiver* receiver_;
};

// Use a SimulatedClockWithFrames
// Wait call will do either of these:
// 1. If |stop_on_frame| is true, the clock will be turned to the exact instant
// that the first frame comes and the frame will be inserted into the jitter
// buffer, or the clock will be turned to now + |max_time| if no frame comes in
// the window.
// 2. If |stop_on_frame| is false, the clock will be turn to now + |max_time|,
// and all the frames arriving between now and now + |max_time| will be
// inserted into the jitter buffer.
//
// This is used to simulate the JitterBuffer getting packets from internet as
// time elapses.

class FrameInjectEvent : public EventWrapper {
 public:
  FrameInjectEvent(SimulatedClockWithFrames* clock, bool stop_on_frame)
      : clock_(clock), stop_on_frame_(stop_on_frame) {}

  bool Set() override { return true; }

  EventTypeWrapper Wait(unsigned long max_time) override {  // NOLINT
    if (clock_->AdvanceTimeMilliseconds(max_time, stop_on_frame_) &&
        stop_on_frame_) {
      return EventTypeWrapper::kEventSignaled;
    } else {
      return EventTypeWrapper::kEventTimeout;
    }
  }

 private:
  SimulatedClockWithFrames* clock_;
  bool stop_on_frame_;
};

class VCMReceiverTimingTest : public ::testing::Test {
 protected:
  VCMReceiverTimingTest()

      : clock_(&stream_generator_, &receiver_),
        stream_generator_(0, clock_.TimeInMilliseconds()),
        timing_(&clock_),
        receiver_(
            &timing_,
            &clock_,
            rtc::scoped_ptr<EventWrapper>(new FrameInjectEvent(&clock_, false)),
            rtc::scoped_ptr<EventWrapper>(
                new FrameInjectEvent(&clock_, true))) {}

  virtual void SetUp() { receiver_.Reset(); }

  SimulatedClockWithFrames clock_;
  StreamGenerator stream_generator_;
  VCMTiming timing_;
  VCMReceiver receiver_;
};

// Test whether VCMReceiver::FrameForDecoding handles parameter
// |max_wait_time_ms| correctly:
// 1. The function execution should never take more than |max_wait_time_ms|.
// 2. If the function exit before now + |max_wait_time_ms|, a frame must be
//    returned.
TEST_F(VCMReceiverTimingTest, FrameForDecoding) {
  const size_t kNumFrames = 100;
  const int kFramePeriod = 40;
  int64_t arrive_timestamps[kNumFrames];
  int64_t render_timestamps[kNumFrames];
  int64_t next_render_time;

  // Construct test samples.
  // render_timestamps are the timestamps stored in the Frame;
  // arrive_timestamps controls when the Frame packet got received.
  for (size_t i = 0; i < kNumFrames; i++) {
    // Preset frame rate to 25Hz.
    // But we add a reasonable deviation to arrive_timestamps to mimic Internet
    // fluctuation.
    arrive_timestamps[i] =
        (i + 1) * kFramePeriod + (i % 10) * ((i % 2) ? 1 : -1);
    render_timestamps[i] = (i + 1) * kFramePeriod;
  }

  clock_.SetFrames(arrive_timestamps, render_timestamps, kNumFrames);

  // Record how many frames we finally get out of the receiver.
  size_t num_frames_return = 0;

  const int64_t kMaxWaitTime = 30;

  // Ideally, we should get all frames that we input in InitializeFrames.
  // In the case that FrameForDecoding kills frames by error, we rely on the
  // build bot to kill the test.
  while (num_frames_return < kNumFrames) {
    int64_t start_time = clock_.TimeInMilliseconds();
    VCMEncodedFrame* frame =
        receiver_.FrameForDecoding(kMaxWaitTime, &next_render_time, false);
    int64_t end_time = clock_.TimeInMilliseconds();

    // In any case the FrameForDecoding should not wait longer than
    // max_wait_time.
    // In the case that we did not get a frame, it should have been waiting for
    // exactly max_wait_time. (By the testing samples we constructed above, we
    // are sure there is no timing error, so the only case it returns with NULL
    // is that it runs out of time.)
    if (frame) {
      receiver_.ReleaseFrame(frame);
      ++num_frames_return;
      EXPECT_GE(kMaxWaitTime, end_time - start_time);
    } else {
      EXPECT_EQ(kMaxWaitTime, end_time - start_time);
    }
  }
}

// Test whether VCMReceiver::FrameForDecoding handles parameter
// |prefer_late_decoding| and |max_wait_time_ms| correctly:
// 1. The function execution should never take more than |max_wait_time_ms|.
// 2. If the function exit before now + |max_wait_time_ms|, a frame must be
//    returned and the end time must be equal to the render timestamp - delay
//    for decoding and rendering.
TEST_F(VCMReceiverTimingTest, FrameForDecodingPreferLateDecoding) {
  const size_t kNumFrames = 100;
  const int kFramePeriod = 40;

  int64_t arrive_timestamps[kNumFrames];
  int64_t render_timestamps[kNumFrames];
  int64_t next_render_time;

  int render_delay_ms;
  int max_decode_ms;
  int dummy;
  timing_.GetTimings(&dummy, &max_decode_ms, &dummy, &dummy, &dummy, &dummy,
                     &render_delay_ms);

  // Construct test samples.
  // render_timestamps are the timestamps stored in the Frame;
  // arrive_timestamps controls when the Frame packet got received.
  for (size_t i = 0; i < kNumFrames; i++) {
    // Preset frame rate to 25Hz.
    // But we add a reasonable deviation to arrive_timestamps to mimic Internet
    // fluctuation.
    arrive_timestamps[i] =
        (i + 1) * kFramePeriod + (i % 10) * ((i % 2) ? 1 : -1);
    render_timestamps[i] = (i + 1) * kFramePeriod;
  }

  clock_.SetFrames(arrive_timestamps, render_timestamps, kNumFrames);

  // Record how many frames we finally get out of the receiver.
  size_t num_frames_return = 0;
  const int64_t kMaxWaitTime = 30;
  bool prefer_late_decoding = true;
  while (num_frames_return < kNumFrames) {
    int64_t start_time = clock_.TimeInMilliseconds();

    VCMEncodedFrame* frame = receiver_.FrameForDecoding(
        kMaxWaitTime, &next_render_time, prefer_late_decoding);
    int64_t end_time = clock_.TimeInMilliseconds();
    if (frame) {
      EXPECT_EQ(frame->RenderTimeMs() - max_decode_ms - render_delay_ms,
                end_time);
      receiver_.ReleaseFrame(frame);
      ++num_frames_return;
    } else {
      EXPECT_EQ(kMaxWaitTime, end_time - start_time);
    }
  }
}

}  // namespace webrtc