aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_coding/utility/frame_dropper.cc
blob: a0aa67be4e3caf50c7e20319ef237ff5379b58a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/video_coding/utility/frame_dropper.h"

#include "webrtc/system_wrappers/include/trace.h"

namespace webrtc {

const float kDefaultKeyFrameSizeAvgKBits = 0.9f;
const float kDefaultKeyFrameRatio = 0.99f;
const float kDefaultDropRatioAlpha = 0.9f;
const float kDefaultDropRatioMax = 0.96f;
const float kDefaultMaxTimeToDropFrames = 4.0f;  // In seconds.

FrameDropper::FrameDropper()
    : _keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
      _keyFrameRatio(kDefaultKeyFrameRatio),
      _dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
      _enabled(true),
      _max_time_drops(kDefaultMaxTimeToDropFrames) {
  Reset();
}

FrameDropper::FrameDropper(float max_time_drops)
    : _keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
      _keyFrameRatio(kDefaultKeyFrameRatio),
      _dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
      _enabled(true),
      _max_time_drops(max_time_drops) {
  Reset();
}

void FrameDropper::Reset() {
  _keyFrameRatio.Reset(0.99f);
  _keyFrameRatio.Apply(
      1.0f, 1.0f / 300.0f);  // 1 key frame every 10th second in 30 fps
  _keyFrameSizeAvgKbits.Reset(0.9f);
  _keyFrameCount = 0;
  _accumulator = 0.0f;
  _accumulatorMax = 150.0f;  // assume 300 kb/s and 0.5 s window
  _targetBitRate = 300.0f;
  _incoming_frame_rate = 30;
  _keyFrameSpreadFrames = 0.5f * _incoming_frame_rate;
  _dropNext = false;
  _dropRatio.Reset(0.9f);
  _dropRatio.Apply(0.0f, 0.0f);  // Initialize to 0
  _dropCount = 0;
  _windowSize = 0.5f;
  _wasBelowMax = true;
  _fastMode = false;  // start with normal (non-aggressive) mode
  // Cap for the encoder buffer level/accumulator, in secs.
  _cap_buffer_size = 3.0f;
  // Cap on maximum amount of dropped frames between kept frames, in secs.
  _max_time_drops = 4.0f;
}

void FrameDropper::Enable(bool enable) {
  _enabled = enable;
}

void FrameDropper::Fill(size_t frameSizeBytes, bool deltaFrame) {
  if (!_enabled) {
    return;
  }
  float frameSizeKbits = 8.0f * static_cast<float>(frameSizeBytes) / 1000.0f;
  if (!deltaFrame &&
      !_fastMode) {  // fast mode does not treat key-frames any different
    _keyFrameSizeAvgKbits.Apply(1, frameSizeKbits);
    _keyFrameRatio.Apply(1.0, 1.0);
    if (frameSizeKbits > _keyFrameSizeAvgKbits.filtered()) {
      // Remove the average key frame size since we
      // compensate for key frames when adding delta
      // frames.
      frameSizeKbits -= _keyFrameSizeAvgKbits.filtered();
    } else {
      // Shouldn't be negative, so zero is the lower bound.
      frameSizeKbits = 0;
    }
    if (_keyFrameRatio.filtered() > 1e-5 &&
        1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames) {
      // We are sending key frames more often than our upper bound for
      // how much we allow the key frame compensation to be spread
      // out in time. Therefor we must use the key frame ratio rather
      // than keyFrameSpreadFrames.
      _keyFrameCount =
          static_cast<int32_t>(1 / _keyFrameRatio.filtered() + 0.5);
    } else {
      // Compensate for the key frame the following frames
      _keyFrameCount = static_cast<int32_t>(_keyFrameSpreadFrames + 0.5);
    }
  } else {
    // Decrease the keyFrameRatio
    _keyFrameRatio.Apply(1.0, 0.0);
  }
  // Change the level of the accumulator (bucket)
  _accumulator += frameSizeKbits;
  CapAccumulator();
}

void FrameDropper::Leak(uint32_t inputFrameRate) {
  if (!_enabled) {
    return;
  }
  if (inputFrameRate < 1) {
    return;
  }
  if (_targetBitRate < 0.0f) {
    return;
  }
  _keyFrameSpreadFrames = 0.5f * inputFrameRate;
  // T is the expected bits per frame (target). If all frames were the same
  // size,
  // we would get T bits per frame. Notice that T is also weighted to be able to
  // force a lower frame rate if wanted.
  float T = _targetBitRate / inputFrameRate;
  if (_keyFrameCount > 0) {
    // Perform the key frame compensation
    if (_keyFrameRatio.filtered() > 0 &&
        1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames) {
      T -= _keyFrameSizeAvgKbits.filtered() * _keyFrameRatio.filtered();
    } else {
      T -= _keyFrameSizeAvgKbits.filtered() / _keyFrameSpreadFrames;
    }
    _keyFrameCount--;
  }
  _accumulator -= T;
  if (_accumulator < 0.0f) {
    _accumulator = 0.0f;
  }
  UpdateRatio();
}

void FrameDropper::UpdateNack(uint32_t nackBytes) {
  if (!_enabled) {
    return;
  }
  _accumulator += static_cast<float>(nackBytes) * 8.0f / 1000.0f;
}

void FrameDropper::FillBucket(float inKbits, float outKbits) {
  _accumulator += (inKbits - outKbits);
}

void FrameDropper::UpdateRatio() {
  if (_accumulator > 1.3f * _accumulatorMax) {
    // Too far above accumulator max, react faster
    _dropRatio.UpdateBase(0.8f);
  } else {
    // Go back to normal reaction
    _dropRatio.UpdateBase(0.9f);
  }
  if (_accumulator > _accumulatorMax) {
    // We are above accumulator max, and should ideally
    // drop a frame. Increase the dropRatio and drop
    // the frame later.
    if (_wasBelowMax) {
      _dropNext = true;
    }
    if (_fastMode) {
      // always drop in aggressive mode
      _dropNext = true;
    }

    _dropRatio.Apply(1.0f, 1.0f);
    _dropRatio.UpdateBase(0.9f);
  } else {
    _dropRatio.Apply(1.0f, 0.0f);
  }
  _wasBelowMax = _accumulator < _accumulatorMax;
}

// This function signals when to drop frames to the caller. It makes use of the
// dropRatio
// to smooth out the drops over time.
bool FrameDropper::DropFrame() {
  if (!_enabled) {
    return false;
  }
  if (_dropNext) {
    _dropNext = false;
    _dropCount = 0;
  }

  if (_dropRatio.filtered() >= 0.5f) {  // Drops per keep
    // limit is the number of frames we should drop between each kept frame
    // to keep our drop ratio. limit is positive in this case.
    float denom = 1.0f - _dropRatio.filtered();
    if (denom < 1e-5) {
      denom = 1e-5f;
    }
    int32_t limit = static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
    // Put a bound on the max amount of dropped frames between each kept
    // frame, in terms of frame rate and window size (secs).
    int max_limit = static_cast<int>(_incoming_frame_rate * _max_time_drops);
    if (limit > max_limit) {
      limit = max_limit;
    }
    if (_dropCount < 0) {
      // Reset the _dropCount since it was negative and should be positive.
      if (_dropRatio.filtered() > 0.4f) {
        _dropCount = -_dropCount;
      } else {
        _dropCount = 0;
      }
    }
    if (_dropCount < limit) {
      // As long we are below the limit we should drop frames.
      _dropCount++;
      return true;
    } else {
      // Only when we reset _dropCount a frame should be kept.
      _dropCount = 0;
      return false;
    }
  } else if (_dropRatio.filtered() > 0.0f &&
             _dropRatio.filtered() < 0.5f) {  // Keeps per drop
    // limit is the number of frames we should keep between each drop
    // in order to keep the drop ratio. limit is negative in this case,
    // and the _dropCount is also negative.
    float denom = _dropRatio.filtered();
    if (denom < 1e-5) {
      denom = 1e-5f;
    }
    int32_t limit = -static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
    if (_dropCount > 0) {
      // Reset the _dropCount since we have a positive
      // _dropCount, and it should be negative.
      if (_dropRatio.filtered() < 0.6f) {
        _dropCount = -_dropCount;
      } else {
        _dropCount = 0;
      }
    }
    if (_dropCount > limit) {
      if (_dropCount == 0) {
        // Drop frames when we reset _dropCount.
        _dropCount--;
        return true;
      } else {
        // Keep frames as long as we haven't reached limit.
        _dropCount--;
        return false;
      }
    } else {
      _dropCount = 0;
      return false;
    }
  }
  _dropCount = 0;
  return false;

  // A simpler version, unfiltered and quicker
  // bool dropNext = _dropNext;
  // _dropNext = false;
  // return dropNext;
}

void FrameDropper::SetRates(float bitRate, float incoming_frame_rate) {
  // Bit rate of -1 means infinite bandwidth.
  _accumulatorMax = bitRate * _windowSize;  // bitRate * windowSize (in seconds)
  if (_targetBitRate > 0.0f && bitRate < _targetBitRate &&
      _accumulator > _accumulatorMax) {
    // Rescale the accumulator level if the accumulator max decreases
    _accumulator = bitRate / _targetBitRate * _accumulator;
  }
  _targetBitRate = bitRate;
  CapAccumulator();
  _incoming_frame_rate = incoming_frame_rate;
}

float FrameDropper::ActualFrameRate(uint32_t inputFrameRate) const {
  if (!_enabled) {
    return static_cast<float>(inputFrameRate);
  }
  return inputFrameRate * (1.0f - _dropRatio.filtered());
}

// Put a cap on the accumulator, i.e., don't let it grow beyond some level.
// This is a temporary fix for screencasting where very large frames from
// encoder will cause very slow response (too many frame drops).
void FrameDropper::CapAccumulator() {
  float max_accumulator = _targetBitRate * _cap_buffer_size;
  if (_accumulator > max_accumulator) {
    _accumulator = max_accumulator;
  }
}
}  // namespace webrtc