aboutsummaryrefslogtreecommitdiff
path: root/webrtc/modules/video_processing/main/source/deflickering.cc
blob: 19bc641ac947f21455c02c4e322be24f9b1f8e57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/video_processing/main/source/deflickering.h"

#include <math.h>
#include <stdlib.h>

#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/system_wrappers/include/logging.h"
#include "webrtc/system_wrappers/include/sort.h"

namespace webrtc {

// Detection constants
// (Q4) Maximum allowed deviation for detection.
enum { kFrequencyDeviation = 39 };
// (Q4) Minimum frequency that can be detected.
enum { kMinFrequencyToDetect = 32 };
// Number of flickers before we accept detection
enum { kNumFlickerBeforeDetect = 2 };
enum { kmean_valueScaling = 4 };  // (Q4) In power of 2
// Dead-zone region in terms of pixel values
enum { kZeroCrossingDeadzone = 10 };
// Deflickering constants.
// Compute the quantiles over 1 / DownsamplingFactor of the image.
enum { kDownsamplingFactor = 8 };
enum { kLog2OfDownsamplingFactor = 3 };

// To generate in Matlab:
// >> probUW16 = round(2^11 *
//     [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
// >> fprintf('%d, ', probUW16)
// Resolution reduced to avoid overflow when multiplying with the
// (potentially) large number of pixels.
const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {102, 205, 410, 614,
    819, 1024, 1229, 1434, 1638, 1843, 1946, 1987}; // <Q11>

// To generate in Matlab:
// >> numQuants = 14; maxOnlyLength = 5;
// >> weightUW16 = round(2^15 *
//    [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
// >> fprintf('%d, %d,\n ', weightUW16);
const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] =
    {16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768}; // <Q15>

VPMDeflickering::VPMDeflickering() {
  Reset();
}

VPMDeflickering::~VPMDeflickering() {}

void VPMDeflickering::Reset() {
  mean_buffer_length_ = 0;
  detection_state_ = 0;
  frame_rate_ = 0;

  memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
  memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);

  // Initialize the history with a uniformly distributed histogram.
  quant_hist_uw8_[0][0] = 0;
  quant_hist_uw8_[0][kNumQuants - 1] = 255;
  for (int32_t i = 0; i < kNumProbs; i++) {
    // Unsigned round. <Q0>
    quant_hist_uw8_[0][i + 1] = static_cast<uint8_t>(
        (prob_uw16_[i] * 255 + (1 << 10)) >> 11);
  }

  for (int32_t i = 1; i < kFrameHistory_size; i++) {
    memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
           sizeof(uint8_t) * kNumQuants);
  }
}

int32_t VPMDeflickering::ProcessFrame(
    VideoFrame* frame,
    VideoProcessingModule::FrameStats* stats) {
  assert(frame);
  uint32_t frame_memory;
  uint8_t quant_uw8[kNumQuants];
  uint8_t maxquant_uw8[kNumQuants];
  uint8_t minquant_uw8[kNumQuants];
  uint16_t target_quant_uw16[kNumQuants];
  uint16_t increment_uw16;
  uint8_t map_uw8[256];

  uint16_t tmp_uw16;
  uint32_t tmp_uw32;
  int width = frame->width();
  int height = frame->height();

  if (frame->IsZeroSize()) {
    return VPM_GENERAL_ERROR;
  }

  // Stricter height check due to subsampling size calculation below.
  if (height < 2) {
    LOG(LS_ERROR) << "Invalid frame size.";
    return VPM_GENERAL_ERROR;
  }

  if (!VideoProcessingModule::ValidFrameStats(*stats)) {
    return VPM_GENERAL_ERROR;
  }

  if (PreDetection(frame->timestamp(), *stats) == -1) return VPM_GENERAL_ERROR;

  // Flicker detection
  int32_t det_flicker = DetectFlicker();
  if (det_flicker < 0) {
    return VPM_GENERAL_ERROR;
  } else if (det_flicker != 1) {
    return 0;
  }

  // Size of luminance component.
  const uint32_t y_size = height * width;

  const uint32_t y_sub_size = width * (((height - 1) >>
      kLog2OfDownsamplingFactor) + 1);
  uint8_t* y_sorted = new uint8_t[y_sub_size];
  uint32_t sort_row_idx = 0;
  for (int i = 0; i < height; i += kDownsamplingFactor) {
    memcpy(y_sorted + sort_row_idx * width,
        frame->buffer(kYPlane) + i * width, width);
    sort_row_idx++;
  }

  webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);

  uint32_t prob_idx_uw32 = 0;
  quant_uw8[0] = 0;
  quant_uw8[kNumQuants - 1] = 255;

  // Ensure we won't get an overflow below.
  // In practice, the number of subsampled pixels will not become this large.
  if (y_sub_size > (1 << 21) - 1) {
    LOG(LS_ERROR) << "Subsampled number of pixels too large.";
    return -1;
  }

  for (int32_t i = 0; i < kNumProbs; i++) {
    // <Q0>.
    prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
    quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
  }

  delete [] y_sorted;
  y_sorted = NULL;

  // Shift history for new frame.
  memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
      (kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
  // Store current frame in history.
  memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));

  // We use a frame memory equal to the ceiling of half the frame rate to
  // ensure we capture an entire period of flicker.
  frame_memory = (frame_rate_ + (1 << 5)) >> 5;  // Unsigned ceiling. <Q0>
                                                 // frame_rate_ in Q4.
  if (frame_memory > kFrameHistory_size) {
    frame_memory = kFrameHistory_size;
  }

  // Get maximum and minimum.
  for (int32_t i = 0; i < kNumQuants; i++) {
    maxquant_uw8[i] = 0;
    minquant_uw8[i] = 255;
    for (uint32_t j = 0; j < frame_memory; j++) {
      if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
        maxquant_uw8[i] = quant_hist_uw8_[j][i];
      }

      if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
        minquant_uw8[i] = quant_hist_uw8_[j][i];
      }
    }
  }

  // Get target quantiles.
  for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
    // target = w * maxquant_uw8 + (1 - w) * minquant_uw8
    // Weights w = |weight_uw16_| are in Q15, hence the final output has to be
    // right shifted by 8 to end up in Q7.
    target_quant_uw16[i] = static_cast<uint16_t>((
        weight_uw16_[i] * maxquant_uw8[i] +
        ((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >> 8);  // <Q7>
  }

  for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
    target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
  }

  // Compute the map from input to output pixels.
  uint16_t mapUW16;  // <Q7>
  for (int32_t i = 1; i < kNumQuants; i++) {
    // As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
    tmp_uw32 = static_cast<uint32_t>(target_quant_uw16[i] -
        target_quant_uw16[i - 1]);
    tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]);  // <Q0>

    if (tmp_uw16 > 0) {
      increment_uw16 = static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
          tmp_uw16)); // <Q7>
    } else {
      // The value is irrelevant; the loop below will only iterate once.
      increment_uw16 = 0;
    }

    mapUW16 = target_quant_uw16[i - 1];
    for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
      // Unsigned round. <Q0>
      map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
      mapUW16 += increment_uw16;
    }
  }

  // Map to the output frame.
  uint8_t* buffer = frame->buffer(kYPlane);
  for (uint32_t i = 0; i < y_size; i++) {
    buffer[i] = map_uw8[buffer[i]];
  }

  // Frame was altered, so reset stats.
  VideoProcessingModule::ClearFrameStats(stats);

  return VPM_OK;
}

/**
   Performs some pre-detection operations. Must be called before
   DetectFlicker().

   \param[in] timestamp Timestamp of the current frame.
   \param[in] stats     Statistics of the current frame.

   \return 0: Success\n
           2: Detection not possible due to flickering frequency too close to
              zero.\n
          -1: Error
*/
int32_t VPMDeflickering::PreDetection(const uint32_t timestamp,
  const VideoProcessingModule::FrameStats& stats) {
  int32_t mean_val;  // Mean value of frame (Q4)
  uint32_t frame_rate = 0;
  int32_t meanBufferLength;  // Temp variable.

  mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
  // Update mean value buffer.
  // This should be done even though we might end up in an unreliable detection.
  memmove(mean_buffer_ + 1, mean_buffer_,
      (kMeanBufferLength - 1) * sizeof(int32_t));
  mean_buffer_[0] = mean_val;

  // Update timestamp buffer.
  // This should be done even though we might end up in an unreliable detection.
  memmove(timestamp_buffer_ + 1, timestamp_buffer_, (kMeanBufferLength - 1) *
      sizeof(uint32_t));
  timestamp_buffer_[0] = timestamp;

/* Compute current frame rate (Q4) */
  if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
    frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
    frame_rate /=
        (timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
  } else if (timestamp_buffer_[1] != 0) {
    frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
  }

  /* Determine required size of mean value buffer (mean_buffer_length_) */
  if (frame_rate == 0) {
    meanBufferLength = 1;
  } else {
    meanBufferLength =
        (kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
  }
  /* Sanity check of buffer length */
  if (meanBufferLength >= kMeanBufferLength) {
    /* Too long buffer. The flickering frequency is too close to zero, which
     * makes the estimation unreliable.
     */
    mean_buffer_length_ = 0;
    return 2;
  }
  mean_buffer_length_ = meanBufferLength;

  if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
      (mean_buffer_length_ != 1)) {
    frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
    frame_rate /=
        (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
  } else if (timestamp_buffer_[1] != 0) {
    frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
  }
  frame_rate_ = frame_rate;

  return VPM_OK;
}

/**
   This function detects flicker in the video stream. As a side effect the
   mean value buffer is updated with the new mean value.

   \return 0: No flickering detected\n
           1: Flickering detected\n
           2: Detection not possible due to unreliable frequency interval
          -1: Error
*/
int32_t VPMDeflickering::DetectFlicker() {
  uint32_t  i;
  int32_t  freqEst;       // (Q4) Frequency estimate to base detection upon
  int32_t  ret_val = -1;

  /* Sanity check for mean_buffer_length_ */
  if (mean_buffer_length_ < 2) {
    /* Not possible to estimate frequency */
    return(2);
  }
  // Count zero crossings with a dead zone to be robust against noise. If the
  // noise std is 2 pixel this corresponds to about 95% confidence interval.
  int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling);  // Q4
  int32_t meanOfBuffer = 0;  // Mean value of mean value buffer.
  int32_t numZeros     = 0;  // Number of zeros that cross the dead-zone.
  int32_t cntState     = 0;  // State variable for zero crossing regions.
  int32_t cntStateOld  = 0;  // Previous state for zero crossing regions.

  for (i = 0; i < mean_buffer_length_; i++) {
    meanOfBuffer += mean_buffer_[i];
  }
  meanOfBuffer += (mean_buffer_length_ >> 1);  // Rounding, not truncation.
  meanOfBuffer /= mean_buffer_length_;

  // Count zero crossings.
  cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
  cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
  for (i = 1; i < mean_buffer_length_; i++) {
    cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
    cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
    if (cntStateOld == 0) {
      cntStateOld = -cntState;
    }
    if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
      numZeros++;
      cntStateOld = cntState;
    }
  }
  // END count zero crossings.

  /* Frequency estimation according to:
  * freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
  *
  * Resolution is set to Q4
  */
  freqEst = ((numZeros * 90000) << 3);
  freqEst /=
      (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);

  /* Translate frequency estimate to regions close to 100 and 120 Hz */
  uint8_t freqState = 0;  // Current translation state;
                          // (0) Not in interval,
                          // (1) Within valid interval,
                          // (2) Out of range
  int32_t freqAlias = freqEst;
  if (freqEst > kMinFrequencyToDetect) {
    uint8_t aliasState = 1;
    while(freqState == 0) {
      /* Increase frequency */
      freqAlias += (aliasState * frame_rate_);
      freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
      /* Compute state */
      freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
      freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
      freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
      /* Switch alias state */
      aliasState++;
      aliasState &= 0x01;
    }
  }
  /* Is frequency estimate within detection region? */
  if (freqState == 1) {
    ret_val = 1;
  } else if (freqState == 0) {
    ret_val = 2;
  } else {
    ret_val = 0;
  }
  return ret_val;
}

}  // namespace webrtc