/** * @license * Copyright 2016 Google Inc. All rights reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.security.wycheproof; import java.math.BigInteger; import java.security.AlgorithmParameters; import java.security.GeneralSecurityException; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.NoSuchAlgorithmException; import java.security.interfaces.ECPublicKey; import java.security.spec.ECField; import java.security.spec.ECFieldFp; import java.security.spec.ECGenParameterSpec; import java.security.spec.ECParameterSpec; import java.security.spec.ECPoint; import java.security.spec.ECPublicKeySpec; import java.security.spec.EllipticCurve; import java.security.spec.InvalidParameterSpecException; import java.util.Arrays; /** * Some utilities for testing Elliptic curve crypto. This code is for testing only and hasn't been * reviewed for production. */ public class EcUtil { /** * Returns the ECParameterSpec for a named curve. Not every provider implements the * AlgorithmParameters. Therefore, most test use alternative functions. */ public static ECParameterSpec getCurveSpec(String name) throws NoSuchAlgorithmException, InvalidParameterSpecException { AlgorithmParameters parameters = AlgorithmParameters.getInstance("EC"); parameters.init(new ECGenParameterSpec(name)); return parameters.getParameterSpec(ECParameterSpec.class); } /** * Returns the ECParameterSpec for a named curve. Only a handful curves that are used in the tests * are implemented. */ public static ECParameterSpec getCurveSpecRef(String name) throws NoSuchAlgorithmException { if (name.equals("secp224r1")) { return getNistP224Params(); } else if (name.equals("secp256r1")) { return getNistP256Params(); } else if (name.equals("secp384r1")) { return getNistP384Params(); } else if (name.equals("secp521r1")) { return getNistP521Params(); } else if (name.equals("brainpoolp256r1")) { return getBrainpoolP256r1Params(); } else { throw new NoSuchAlgorithmException("Curve not implemented:" + name); } } public static ECParameterSpec getNistCurveSpec( String decimalP, String decimalN, String hexB, String hexGX, String hexGY) { final BigInteger p = new BigInteger(decimalP); final BigInteger n = new BigInteger(decimalN); final BigInteger three = new BigInteger("3"); final BigInteger a = p.subtract(three); final BigInteger b = new BigInteger(hexB, 16); final BigInteger gx = new BigInteger(hexGX, 16); final BigInteger gy = new BigInteger(hexGY, 16); final int h = 1; ECFieldFp fp = new ECFieldFp(p); java.security.spec.EllipticCurve curveSpec = new java.security.spec.EllipticCurve(fp, a, b); ECPoint g = new ECPoint(gx, gy); ECParameterSpec ecSpec = new ECParameterSpec(curveSpec, g, n, h); return ecSpec; } public static ECParameterSpec getNistP224Params() { return getNistCurveSpec( "26959946667150639794667015087019630673557916260026308143510066298881", "26959946667150639794667015087019625940457807714424391721682722368061", "b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", "bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"); } public static ECParameterSpec getNistP256Params() { return getNistCurveSpec( "115792089210356248762697446949407573530086143415290314195533631308867097853951", "115792089210356248762697446949407573529996955224135760342422259061068512044369", "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"); } public static ECParameterSpec getNistP384Params() { return getNistCurveSpec( "3940200619639447921227904010014361380507973927046544666794829340" + "4245721771496870329047266088258938001861606973112319", "3940200619639447921227904010014361380507973927046544666794690527" + "9627659399113263569398956308152294913554433653942643", "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875a" + "c656398d8a2ed19d2a85c8edd3ec2aef", "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a38" + "5502f25dbf55296c3a545e3872760ab7", "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c0" + "0a60b1ce1d7e819d7a431d7c90ea0e5f"); } public static ECParameterSpec getNistP521Params() { return getNistCurveSpec( "6864797660130609714981900799081393217269435300143305409394463459" + "18554318339765605212255964066145455497729631139148085803712198" + "7999716643812574028291115057151", "6864797660130609714981900799081393217269435300143305409394463459" + "18554318339765539424505774633321719753296399637136332111386476" + "8612440380340372808892707005449", "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10" + "9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3d" + "baa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e6" + "62c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650"); } public static ECParameterSpec getBrainpoolP256r1Params() { BigInteger p = new BigInteger("A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", 16); BigInteger a = new BigInteger("7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9", 16); BigInteger b = new BigInteger("26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6", 16); BigInteger x = new BigInteger("8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", 16); BigInteger y = new BigInteger("547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", 16); BigInteger n = new BigInteger("A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", 16); final int h = 1; ECFieldFp fp = new ECFieldFp(p); EllipticCurve curve = new EllipticCurve(fp, a, b); ECPoint g = new ECPoint(x, y); return new ECParameterSpec(curve, g, n, h); } /** * Compute the Legendre symbol of x mod p. This implementation is slow. Faster would be the * computation for the Jacobi symbol. * * @param x an integer * @param p a prime modulus * @returns 1 if x is a quadratic residue, -1 if x is a non-quadratic residue and 0 if x and p are * not coprime. * @throws GeneralSecurityException when the computation shows that p is not prime. */ public static int legendre(BigInteger x, BigInteger p) throws GeneralSecurityException { BigInteger q = p.subtract(BigInteger.ONE).shiftRight(1); BigInteger t = x.modPow(q, p); if (t.equals(BigInteger.ONE)) { return 1; } else if (t.equals(BigInteger.ZERO)) { return 0; } else if (t.add(BigInteger.ONE).equals(p)) { return -1; } else { throw new GeneralSecurityException("p is not prime"); } } /** * Computes a modular square root. Timing and exceptions can leak information about the inputs. * Therefore this method must only be used in tests. * * @param x the square * @param p the prime modulus * @returns a value s such that s^2 mod p == x mod p * @throws GeneralSecurityException if the square root could not be found. */ public static BigInteger modSqrt(BigInteger x, BigInteger p) throws GeneralSecurityException { if (p.signum() != 1) { throw new GeneralSecurityException("p must be positive"); } x = x.mod(p); BigInteger squareRoot = null; // Special case for x == 0. // This check is necessary for Cipolla's algorithm. if (x.equals(BigInteger.ZERO)) { return x; } if (p.testBit(0) && p.testBit(1)) { // Case p % 4 == 3 // q = (p + 1) / 4 BigInteger q = p.add(BigInteger.ONE).shiftRight(2); squareRoot = x.modPow(q, p); } else if (p.testBit(0) && !p.testBit(1)) { // Case p % 4 == 1 // For this case we use Cipolla's algorithm. // This alogorithm is preferrable to Tonelli-Shanks for primes p where p-1 is divisible by // a large power of 2, which is a frequent choice since it simplifies modular reduction. BigInteger a = BigInteger.ONE; BigInteger d = null; while (true) { d = a.multiply(a).subtract(x).mod(p); // Computes the Legendre symbol. Using the Jacobi symbol would be a faster. Using Legendre // has the advantage, that it detects a non prime p with high probability. // On the other hand if p = q^2 then the Jacobi (d/p)==1 for almost all d's and thus // using the Jacobi symbol here can result in an endless loop with invalid inputs. int t = legendre(d, p); if (t == -1) { break; } else { a = a.add(BigInteger.ONE); } } // Since d = a^2 - n is a non-residue modulo p, we have // a - sqrt(d) == (a+sqrt(d))^p (mod p), // and hence // n == (a + sqrt(d))(a - sqrt(d) == (a+sqrt(d))^(p+1) (mod p). // Thus if n is square then (a+sqrt(d))^((p+1)/2) (mod p) is a square root of n. BigInteger q = p.add(BigInteger.ONE).shiftRight(1); BigInteger u = a; BigInteger v = BigInteger.ONE; for (int bit = q.bitLength() - 2; bit >= 0; bit--) { // Compute (u + v sqrt(d))^2 BigInteger tmp = u.multiply(v); u = u.multiply(u).add(v.multiply(v).mod(p).multiply(d)).mod(p); v = tmp.add(tmp).mod(p); if (q.testBit(bit)) { tmp = u.multiply(a).add(v.multiply(d)).mod(p); v = a.multiply(v).add(u).mod(p); u = tmp; } } squareRoot = u; } // The methods used to compute the square root only guarantee a correct result if the // preconditions (i.e. p prime and x is a square) are satisfied. Otherwise the value is // undefined. Hence, it is important to verify that squareRoot is indeed a square root. if (squareRoot != null && squareRoot.multiply(squareRoot).mod(p).compareTo(x) != 0) { throw new GeneralSecurityException("Could not find square root"); } return squareRoot; } /** * Returns the modulus of the field used by the curve specified in ecParams. * * @param curve must be a prime order elliptic curve * @return the order of the finite field over which curve is defined. */ public static BigInteger getModulus(EllipticCurve curve) throws GeneralSecurityException { java.security.spec.ECField field = curve.getField(); if (field instanceof java.security.spec.ECFieldFp) { return ((java.security.spec.ECFieldFp) field).getP(); } else { throw new GeneralSecurityException("Only curves over prime order fields are supported"); } } /** * Returns the size of an element of the field over which the curve is defined. * * @param curve must be a prime order elliptic curve * @return the size of an element in bits */ public static int fieldSizeInBits(EllipticCurve curve) throws GeneralSecurityException { return getModulus(curve).subtract(BigInteger.ONE).bitLength(); } /** * Returns the size of an element of the field over which the curve is defined. * * @param curve must be a prime order elliptic curve * @return the size of an element in bytes. */ public static int fieldSizeInBytes(EllipticCurve curve) throws GeneralSecurityException { return (fieldSizeInBits(curve) + 7) / 8; } /** * Checks that a point is on a given elliptic curve. This method implements the partial public key * validation routine from Section 5.6.2.6 of NIST SP 800-56A * http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf A partial * public key validation is sufficient for curves with cofactor 1. See Section B.3 of * http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf The point validations above are * taken from recommendations for ECDH, because parameter checks in ECDH are much more important * than for the case of ECDSA. Performing this test for ECDSA keys is mainly a sanity check. * * @param point the point that needs verification * @param ec the elliptic curve. This must be a curve over a prime order field. * @throws GeneralSecurityException if the field is binary or if the point is not on the curve. */ public static void checkPointOnCurve(ECPoint point, EllipticCurve ec) throws GeneralSecurityException { BigInteger p = getModulus(ec); BigInteger x = point.getAffineX(); BigInteger y = point.getAffineY(); if (x == null || y == null) { throw new GeneralSecurityException("point is at infinity"); } // Check 0 <= x < p and 0 <= y < p. if (x.signum() == -1 || x.compareTo(p) != -1) { throw new GeneralSecurityException("x is out of range"); } if (y.signum() == -1 || y.compareTo(p) != -1) { throw new GeneralSecurityException("y is out of range"); } // Check y^2 == x^3 + a x + b (mod p) BigInteger lhs = y.multiply(y).mod(p); BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p); if (!lhs.equals(rhs)) { throw new GeneralSecurityException("Point is not on curve"); } } /** * Checks a public key. I.e. this checks that the point defining the public key is on the curve. * * @param key must be a key defined over a curve using a prime order field. * @throws GeneralSecurityException if the key is not valid. */ public static void checkPublicKey(ECPublicKey key) throws GeneralSecurityException { checkPointOnCurve(key.getW(), key.getParams().getCurve()); } /** * Decompress a point * * @param x The x-coordinate of the point * @param bit0 true if the least significant bit of y is set. * @param ecParams contains the curve of the point. This must be over a prime order field. */ public static ECPoint getPoint(BigInteger x, boolean bit0, ECParameterSpec ecParams) throws GeneralSecurityException { EllipticCurve ec = ecParams.getCurve(); ECField field = ec.getField(); if (!(field instanceof ECFieldFp)) { throw new GeneralSecurityException("Only curves over prime order fields are supported"); } BigInteger p = ((java.security.spec.ECFieldFp) field).getP(); if (x.compareTo(BigInteger.ZERO) == -1 || x.compareTo(p) != -1) { throw new GeneralSecurityException("x is out of range"); } // Compute rhs == x^3 + a x + b (mod p) BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p); BigInteger y = modSqrt(rhs, p); if (bit0 != y.testBit(0)) { y = p.subtract(y).mod(p); } return new ECPoint(x, y); } /** * Decompress a point on an elliptic curve. * * @param bytes The compressed point. Its representation is z || x where z is 2+lsb(y) and x is * using a unsigned fixed length big-endian representation. * @param ecParams the specification of the curve. Only Weierstrass curves over prime order fields * are implemented. */ public static ECPoint decompressPoint(byte[] bytes, ECParameterSpec ecParams) throws GeneralSecurityException { EllipticCurve ec = ecParams.getCurve(); ECField field = ec.getField(); if (!(field instanceof ECFieldFp)) { throw new GeneralSecurityException("Only curves over prime order fields are supported"); } BigInteger p = ((java.security.spec.ECFieldFp) field).getP(); int expectedLength = 1 + (p.bitLength() + 7) / 8; if (bytes.length != expectedLength) { throw new GeneralSecurityException("compressed point has wrong length"); } boolean lsb; switch (bytes[0]) { case 2: lsb = false; break; case 3: lsb = true; break; default: throw new GeneralSecurityException("Invalid format"); } BigInteger x = new BigInteger(1, Arrays.copyOfRange(bytes, 1, bytes.length)); if (x.compareTo(BigInteger.ZERO) == -1 || x.compareTo(p) != -1) { throw new GeneralSecurityException("x is out of range"); } // Compute rhs == x^3 + a x + b (mod p) BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p); BigInteger y = modSqrt(rhs, p); if (lsb != y.testBit(0)) { y = p.subtract(y).mod(p); } return new ECPoint(x, y); } /** * Returns a weak public key of order 3 such that the public key point is on the curve specified * in ecParams. This method is used to check ECC implementations for missing step in the * verification of the public key. E.g. implementations of ECDH must verify that the public key * contains a point on the curve as well as public and secret key are using the same curve. * * @param ecParams the parameters of the key to attack. This must be a curve in Weierstrass form * over a prime order field. * @return a weak EC group with a genrator of order 3. */ public static ECPublicKeySpec getWeakPublicKey(ECParameterSpec ecParams) throws GeneralSecurityException { EllipticCurve curve = ecParams.getCurve(); KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC"); keyGen.initialize(ecParams); BigInteger p = getModulus(curve); BigInteger three = new BigInteger("3"); while (true) { // Generate a point on the original curve KeyPair keyPair = keyGen.generateKeyPair(); ECPublicKey pub = (ECPublicKey) keyPair.getPublic(); ECPoint w = pub.getW(); BigInteger x = w.getAffineX(); BigInteger y = w.getAffineY(); // Find the curve parameters a,b such that 3*w = infinity. // This is the case if the following equations are satisfied: // 3x == l^2 (mod p) // l == (3x^2 + a) / 2*y (mod p) // y^2 == x^3 + ax + b (mod p) BigInteger l; try { l = modSqrt(x.multiply(three), p); } catch (GeneralSecurityException ex) { continue; } BigInteger xSqr = x.multiply(x).mod(p); BigInteger a = l.multiply(y.add(y)).subtract(xSqr.multiply(three)).mod(p); BigInteger b = y.multiply(y).subtract(x.multiply(xSqr.add(a))).mod(p); EllipticCurve newCurve = new EllipticCurve(curve.getField(), a, b); // Just a sanity check. checkPointOnCurve(w, newCurve); // Cofactor and order are of course wrong. ECParameterSpec spec = new ECParameterSpec(newCurve, w, p, 1); return new ECPublicKeySpec(w, spec); } } }