/** * @license * Copyright 2016 Google Inc. All rights reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.security.wycheproof; import java.math.BigInteger; import java.nio.ByteBuffer; import java.security.GeneralSecurityException; import java.util.Random; /** * A collection of utilities for testing random number generators. So far this util simply checks * that random numbers are not generated by java.util.Random. Eventually we plan to add detection * for other random number generators too. * * @author bleichen@google.com (Daniel Bleichenbacher) */ public class RandomUtil { // Constants for java.util.Random; static final long A = 0x5DEECE66DL; static final long A_INVERSE = 246154705703781L; static final long C = 0xBL; /** Given a state of a java.util.Random object compute the next state. */ protected static long nextState(long seed) { return (seed * A + C) & ((1L << 48) - 1); } /** Give the state after stepping java.util.Random n times. */ protected static long step(long seed, long n) { long a = A; long c = C; n = n & 0xffffffffffffL; while (n != 0) { if ((n & 1) == 1) { seed = seed * a + c; } c = c * (a + 1); a = a * a; n = n >> 1; } return seed & 0xffffffffffffL; } /** Given a state of a java.util.Random object compute the previous state. */ protected static long previousState(long seed) { return ((seed - C) * A_INVERSE) & ((1L << 48) - 1); } /** Computes a seed that would initialize a java.util.Random object with a given state. */ protected static long getSeedForState(long seed) { return seed ^ A; } protected static long getStateForSeed(long seed) { return (seed ^ A) & 0xffffffffffffL; } /** * Given two subsequent outputs x0 and x1 from java.util.Random this function computes the * internal state of java.util.Random after returning x0 or returns -1 if no such state exists. */ protected static long getState(int x0, int x1) { long mask = (1L << 48) - 1; long multiplier = A; // The state of the random number generator after returning x0 is // l0 + eps for some 0 <= eps < 2**16. long l0 = ((long) x0 << 16) & mask; // The state of the random number generator after returning x1 is // l1 + delta for some 0 <= delta < 2**16. long l1 = ((long) x1 << 16) & mask; // We have l1 + delta = (l0 + eps)*multiplier + 0xBL (mod 2**48). // This allows to find an upper bound w for eps * multiplier mod 2**48 // by assuming delta = 2**16-1. long w = (l1 - l0 * multiplier + 65535L - 0xBL) & mask; // The reduction eps * multiplier mod 2**48 only cuts off at most 3 bits. // Hence a simple search is sufficient. The maximal number of loops is 6. for (long em = w; em < (multiplier << 16); em += 1L << 48) { // If the high order bits of em are guessed correctly then // em == eps * multiplier + 65535 - delta. long eps = em / multiplier; long state0 = l0 + eps; long state1 = nextState(state0); if ((state1 & 0xffffffff0000L) == l1) { return state0; } } return -1; } /** * Find a seed such that this integer is the result of * *
{@code
   * Random rand = new Random();
   * rand.setSeed(seed);
   * return new BigInteger(k, rand);
   * }
* * where k is max(64, x.BitLength()); * *

Returns -1 if no such seed exists. */ // TODO(bleichen): We want to detect cases where some of the bits // (i.e. most significant bits or least significant bits have // been modified. Often this happens during the generation // of primes or other things. // TODO(bleichen): This method is incomplete. protected static long getSeedFor(java.math.BigInteger x) { byte[] bytes = x.toByteArray(); if (bytes.length == 0) { return -1; } ByteBuffer buffer = ByteBuffer.allocate(8); int offset = bytes[0] == 0 ? 1 : 0; if (bytes.length - offset < 8) { int size = bytes.length - offset; buffer.position(8 - size); buffer.put(bytes, offset, size); } else { buffer.put(bytes, offset, 8); } buffer.flip(); buffer.order(java.nio.ByteOrder.LITTLE_ENDIAN); int x0 = buffer.getInt(); int x1 = buffer.getInt(); long state = getState(x0, x1); if (state == -1) { return -1; } return getSeedForState(previousState(state)); } /** Attempts to find a seed such that it generates the prime p. Returns -1 if no seed is found. */ static long getSeedForPrime(BigInteger p) { int confidence = 64; Random rand = new Random(); int size = p.bitLength(); // Prime generation often sets the most significant bit. // Hence, clearing the most significant bit can help to find // the seed used for the prime generation. for (BigInteger x : new BigInteger[] {p, p.clearBit(size - 1)}) { long seed = getSeedFor(x); if (seed != -1) { rand.setSeed(seed); BigInteger q = new BigInteger(size, confidence, rand); if (q.equals(p)) { return seed; } } } return -1; } /** * Checks whether p is a random prime. A prime generated with a secure random number generator * passes with probability > 1-2^{-32}. No checks are performed for primes smaller than 96 bits. * * @throws GeneralSecurityException if the prime was generated using java.util.Random */ static void checkPrime(BigInteger p) throws GeneralSecurityException { // We can't reliably detect java.util.Random for small primes. if (p.bitLength() < 96) { return; } long seed = getSeedForPrime(p); if (seed != -1) { throw new GeneralSecurityException( "java.util.Random with seed " + seed + " was likely used to generate prime"); } } }