// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "components/zucchini/binary_data_histogram.h" #include #include #include #include "components/zucchini/buffer_view.h" #include "testing/gtest/include/gtest/gtest.h" namespace zucchini { TEST(OutlierDetectorTest, Basic) { auto make_detector = [](const std::vector& values) { auto detector = std::make_unique(); for (double v : values) detector->Add(v); detector->Prepare(); return detector; }; std::unique_ptr detector; // No data: Should at least not cause error. detector = make_detector({}); EXPECT_EQ(0, detector->DecideOutlier(0.0)); // Single point: Trivially inert. detector = make_detector({0.5}); EXPECT_EQ(0, detector->DecideOutlier(0.1)); EXPECT_EQ(0, detector->DecideOutlier(0.5)); EXPECT_EQ(0, detector->DecideOutlier(0.9)); // Two identical points: StdDev is 0, so falls back to built-in tolerance. detector = make_detector({0.5, 0.5}); EXPECT_EQ(-1, detector->DecideOutlier(0.3)); EXPECT_EQ(0, detector->DecideOutlier(0.499)); EXPECT_EQ(0, detector->DecideOutlier(0.5)); EXPECT_EQ(0, detector->DecideOutlier(0.501)); EXPECT_EQ(1, detector->DecideOutlier(0.7)); // Two separate points: Outliner test is pretty lax. detector = make_detector({0.4, 0.6}); EXPECT_EQ(-1, detector->DecideOutlier(0.2)); EXPECT_EQ(0, detector->DecideOutlier(0.3)); EXPECT_EQ(0, detector->DecideOutlier(0.5)); EXPECT_EQ(0, detector->DecideOutlier(0.7)); EXPECT_EQ(1, detector->DecideOutlier(0.8)); // Sharpen distribution by clustering toward norm: Now test is stricter. detector = make_detector({0.4, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.6}); EXPECT_EQ(-1, detector->DecideOutlier(0.3)); EXPECT_EQ(0, detector->DecideOutlier(0.4)); EXPECT_EQ(0, detector->DecideOutlier(0.5)); EXPECT_EQ(0, detector->DecideOutlier(0.6)); EXPECT_EQ(1, detector->DecideOutlier(0.7)); // Shift numbers around: Mean is 0.3, and data order scrambled. detector = make_detector({0.28, 0.2, 0.31, 0.4, 0.29, 0.32, 0.27, 0.30}); EXPECT_EQ(-1, detector->DecideOutlier(0.0)); EXPECT_EQ(-1, detector->DecideOutlier(0.1)); EXPECT_EQ(0, detector->DecideOutlier(0.2)); EXPECT_EQ(0, detector->DecideOutlier(0.3)); EXPECT_EQ(0, detector->DecideOutlier(0.4)); EXPECT_EQ(1, detector->DecideOutlier(0.5)); EXPECT_EQ(1, detector->DecideOutlier(1.0)); // Typical usage: Potential outlier would be part of original input data! detector = make_detector({0.3, 0.29, 0.31, 0.0, 0.3, 0.32, 0.3, 0.29, 0.6}); EXPECT_EQ(-1, detector->DecideOutlier(0.0)); EXPECT_EQ(0, detector->DecideOutlier(0.28)); EXPECT_EQ(0, detector->DecideOutlier(0.29)); EXPECT_EQ(0, detector->DecideOutlier(0.3)); EXPECT_EQ(0, detector->DecideOutlier(0.31)); EXPECT_EQ(0, detector->DecideOutlier(0.32)); EXPECT_EQ(1, detector->DecideOutlier(0.6)); } TEST(BinaryDataHistogramTest, Basic) { constexpr double kUninitScore = -1; constexpr uint8_t kTestData[] = {2, 137, 42, 0, 0, 0, 7, 11, 1, 11, 255}; const size_t n = sizeof(kTestData); ConstBufferView region(kTestData, n); std::vector prefix_histograms(n + 1); // Short to long. std::vector suffix_histograms(n + 1); // Long to short. for (size_t i = 0; i <= n; ++i) { ConstBufferView prefix(region.begin(), i); ConstBufferView suffix(region.begin() + i, n - i); // If regions are smaller than 2 bytes then it is invalid. Else valid. EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].Compute(prefix)); EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].Compute(suffix)); // IsValid() returns the same results. EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].IsValid()); EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].IsValid()); } // Full-prefix = full-suffix = full data. EXPECT_EQ(0.0, prefix_histograms[n].Distance(suffix_histograms[0])); EXPECT_EQ(0.0, suffix_histograms[0].Distance(prefix_histograms[n])); // Testing heuristics without overreliance on implementation details. // Strict prefixes, in increasing size. Compare against full data. double prev_prefix_score = kUninitScore; for (size_t i = 2; i < n; ++i) { double score = prefix_histograms[i].Distance(prefix_histograms[n]); // Positivity. EXPECT_GT(score, 0.0); // Symmetry. EXPECT_EQ(score, prefix_histograms[n].Distance(prefix_histograms[i])); // Distance should decrease as prefix gets nearer to full data. if (prev_prefix_score != kUninitScore) EXPECT_LT(score, prev_prefix_score); prev_prefix_score = score; } // Strict suffixes, in decreasing size. Compare against full data. double prev_suffix_score = -1; for (size_t i = 1; i <= n - 2; ++i) { double score = suffix_histograms[i].Distance(suffix_histograms[0]); // Positivity. EXPECT_GT(score, 0.0); // Symmetry. EXPECT_EQ(score, suffix_histograms[0].Distance(suffix_histograms[i])); // Distance should increase as suffix gets farther from full data. if (prev_suffix_score != kUninitScore) EXPECT_GT(score, prev_suffix_score); prev_suffix_score = score; } } } // namespace zucchini