/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Interpolator.h" #include #include #include "utils/MathUtils.h" namespace android { namespace uirenderer { Interpolator* Interpolator::createDefaultInterpolator() { return new AccelerateDecelerateInterpolator(); } float AccelerateDecelerateInterpolator::interpolate(float input) { return (float)(cosf((input + 1) * M_PI) / 2.0f) + 0.5f; } float AccelerateInterpolator::interpolate(float input) { if (mFactor == 1.0f) { return input * input; } else { return pow(input, mDoubleFactor); } } float AnticipateInterpolator::interpolate(float t) { return t * t * ((mTension + 1) * t - mTension); } static float a(float t, float s) { return t * t * ((s + 1) * t - s); } static float o(float t, float s) { return t * t * ((s + 1) * t + s); } float AnticipateOvershootInterpolator::interpolate(float t) { if (t < 0.5f) return 0.5f * a(t * 2.0f, mTension); else return 0.5f * (o(t * 2.0f - 2.0f, mTension) + 2.0f); } static float bounce(float t) { return t * t * 8.0f; } float BounceInterpolator::interpolate(float t) { t *= 1.1226f; if (t < 0.3535f) return bounce(t); else if (t < 0.7408f) return bounce(t - 0.54719f) + 0.7f; else if (t < 0.9644f) return bounce(t - 0.8526f) + 0.9f; else return bounce(t - 1.0435f) + 0.95f; } float CycleInterpolator::interpolate(float input) { return sinf(2 * mCycles * M_PI * input); } float DecelerateInterpolator::interpolate(float input) { float result; if (mFactor == 1.0f) { result = 1.0f - (1.0f - input) * (1.0f - input); } else { result = 1.0f - pow((1.0f - input), 2 * mFactor); } return result; } float OvershootInterpolator::interpolate(float t) { t -= 1.0f; return t * t * ((mTension + 1) * t + mTension) + 1.0f; } float PathInterpolator::interpolate(float t) { if (t <= 0) { return 0; } else if (t >= 1) { return 1; } // Do a binary search for the correct x to interpolate between. size_t startIndex = 0; size_t endIndex = mX.size() - 1; while (endIndex > startIndex + 1) { int midIndex = (startIndex + endIndex) / 2; if (t < mX[midIndex]) { endIndex = midIndex; } else { startIndex = midIndex; } } float xRange = mX[endIndex] - mX[startIndex]; if (xRange == 0) { return mY[startIndex]; } float tInRange = t - mX[startIndex]; float fraction = tInRange / xRange; float startY = mY[startIndex]; float endY = mY[endIndex]; return startY + (fraction * (endY - startY)); } LUTInterpolator::LUTInterpolator(float* values, size_t size) : mValues(values), mSize(size) {} LUTInterpolator::~LUTInterpolator() {} float LUTInterpolator::interpolate(float input) { // lut position should only be at the end of the table when input is 1f. float lutpos = input * (mSize - 1); if (lutpos >= (mSize - 1)) { return mValues[mSize - 1]; } float ipart, weight; weight = modff(lutpos, &ipart); int i1 = (int)ipart; int i2 = std::min(i1 + 1, (int)mSize - 1); LOG_ALWAYS_FATAL_IF( i1 < 0 || i2 < 0, "negatives in interpolation!" " i1=%d, i2=%d, input=%f, lutpos=%f, size=%zu, values=%p, ipart=%f, weight=%f", i1, i2, input, lutpos, mSize, mValues.get(), ipart, weight); float v1 = mValues[i1]; float v2 = mValues[i2]; return MathUtils::lerp(v1, v2, weight); } } /* namespace uirenderer */ } /* namespace android */