/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.media; import android.annotation.IntDef; import android.annotation.IntRange; import android.annotation.NonNull; import android.annotation.TestApi; import android.compat.annotation.UnsupportedAppUsage; import android.os.Build; import android.os.Parcel; import android.os.Parcelable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.util.Arrays; import java.util.Objects; /** * The {@link AudioFormat} class is used to access a number of audio format and * channel configuration constants. They are for instance used * in {@link AudioTrack} and {@link AudioRecord}, as valid values in individual parameters of * constructors like {@link AudioTrack#AudioTrack(int, int, int, int, int, int)}, where the fourth * parameter is one of the AudioFormat.ENCODING_* constants. * The AudioFormat constants are also used in {@link MediaFormat} to specify * audio related values commonly used in media, such as for {@link MediaFormat#KEY_CHANNEL_MASK}. *

The {@link AudioFormat.Builder} class can be used to create instances of * the AudioFormat format class. * Refer to * {@link AudioFormat.Builder} for documentation on the mechanics of the configuration and building * of such instances. Here we describe the main concepts that the AudioFormat class * allow you to convey in each instance, they are: *

    *
  1. sample rate *
  2. encoding *
  3. channel masks *
*

Closely associated with the AudioFormat is the notion of an * audio frame, which is used throughout the documentation * to represent the minimum size complete unit of audio data. * *

Sample rate

*

Expressed in Hz, the sample rate in an AudioFormat instance expresses the number * of audio samples for each channel per second in the content you are playing or recording. It is * not the sample rate * at which content is rendered or produced. For instance a sound at a media sample rate of 8000Hz * can be played on a device operating at a sample rate of 48000Hz; the sample rate conversion is * automatically handled by the platform, it will not play at 6x speed. * *

As of API {@link android.os.Build.VERSION_CODES#M}, * sample rates up to 192kHz are supported * for AudioRecord and AudioTrack, with sample rate conversion * performed as needed. * To improve efficiency and avoid lossy conversions, it is recommended to match the sample rate * for AudioRecord and AudioTrack to the endpoint device * sample rate, and limit the sample rate to no more than 48kHz unless there are special * device capabilities that warrant a higher rate. * *

Encoding

*

Audio encoding is used to describe the bit representation of audio data, which can be * either linear PCM or compressed audio, such as AC3 or DTS. *

For linear PCM, the audio encoding describes the sample size, 8 bits, 16 bits, or 32 bits, * and the sample representation, integer or float. *

*

For compressed audio, the encoding specifies the method of compression, * for example {@link #ENCODING_AC3} and {@link #ENCODING_DTS}. The compressed * audio data is typically stored as bytes in * a byte array or ByteBuffer. When a compressed audio encoding is specified * for an AudioTrack, it creates a direct (non-mixed) track * for output to an endpoint (such as HDMI) capable of decoding the compressed audio. * For (most) other endpoints, which are not capable of decoding such compressed audio, * you will need to decode the data first, typically by creating a {@link MediaCodec}. * Alternatively, one may use {@link MediaPlayer} for playback of compressed * audio files or streams. *

When compressed audio is sent out through a direct AudioTrack, * it need not be written in exact multiples of the audio access unit; * this differs from MediaCodec input buffers. * *

Channel mask

*

Channel masks are used in AudioTrack and AudioRecord to describe * the samples and their arrangement in the audio frame. They are also used in the endpoint (e.g. * a USB audio interface, a DAC connected to headphones) to specify allowable configurations of a * particular device. *
As of API {@link android.os.Build.VERSION_CODES#M}, there are two types of channel masks: * channel position masks and channel index masks. * *

Channel position masks
* Channel position masks are the original Android channel masks, and are used since API * {@link android.os.Build.VERSION_CODES#BASE}. * For input and output, they imply a positional nature - the location of a speaker or a microphone * for recording or playback. *
For a channel position mask, each allowed channel position corresponds to a bit in the * channel mask. If that channel position is present in the audio frame, that bit is set, * otherwise it is zero. The order of the bits (from lsb to msb) corresponds to the order of that * position's sample in the audio frame. *
The canonical channel position masks by channel count are as follows: *
* * * * * * * * * *
channel countchannel position mask
1{@link #CHANNEL_OUT_MONO}
2{@link #CHANNEL_OUT_STEREO}
3{@link #CHANNEL_OUT_STEREO} | {@link #CHANNEL_OUT_FRONT_CENTER}
4{@link #CHANNEL_OUT_QUAD}
5{@link #CHANNEL_OUT_QUAD} | {@link #CHANNEL_OUT_FRONT_CENTER}
6{@link #CHANNEL_OUT_5POINT1}
7{@link #CHANNEL_OUT_5POINT1} | {@link #CHANNEL_OUT_BACK_CENTER}
8{@link #CHANNEL_OUT_7POINT1_SURROUND}
*
These masks are an ORed composite of individual channel masks. For example * {@link #CHANNEL_OUT_STEREO} is composed of {@link #CHANNEL_OUT_FRONT_LEFT} and * {@link #CHANNEL_OUT_FRONT_RIGHT}. *

* The following diagram represents the layout of the output channels, as seen from above * the listener (in the center at the "lis" position, facing the front-center channel). *

 *       TFL ----- TFC ----- TFR     T is Top
 *       |  \       |       /  |
 *       |   FL --- FC --- FR  |     F is Front
 *       |   |\     |     /|   |
 *       |   | BFL-BFC-BFR |   |     BF is Bottom Front
 *       |   |             |   |
 *       |   FWL   lis   FWR   |     W is Wide
 *       |   |             |   |
 *      TSL  SL    TC     SR  TSR    S is Side
 *       |   |             |   |
 *       |   BL --- BC -- BR   |     B is Back
 *       |  /               \  |
 *       TBL ----- TBC ----- TBR     C is Center, L/R is Left/Right
 * 
* All "T" (top) channels are above the listener, all "BF" (bottom-front) channels are below the * listener, all others are in the listener's horizontal plane. When used in conjunction, LFE1 and * LFE2 are below the listener, when used alone, LFE plane is undefined. * See the channel definitions for the abbreviations * *
Channel index masks
* Channel index masks are introduced in API {@link android.os.Build.VERSION_CODES#M}. They allow * the selection of a particular channel from the source or sink endpoint by number, i.e. the first * channel, the second channel, and so forth. This avoids problems with artificially assigning * positions to channels of an endpoint, or figuring what the ith position bit is within * an endpoint's channel position mask etc. *
Here's an example where channel index masks address this confusion: dealing with a 4 channel * USB device. Using a position mask, and based on the channel count, this would be a * {@link #CHANNEL_OUT_QUAD} device, but really one is only interested in channel 0 * through channel 3. The USB device would then have the following individual bit channel masks: * {@link #CHANNEL_OUT_FRONT_LEFT}, * {@link #CHANNEL_OUT_FRONT_RIGHT}, {@link #CHANNEL_OUT_BACK_LEFT} * and {@link #CHANNEL_OUT_BACK_RIGHT}. But which is channel 0 and which is * channel 3? *
For a channel index mask, each channel number is represented as a bit in the mask, from the * lsb (channel 0) upwards to the msb, numerically this bit value is * 1 << channelNumber. * A set bit indicates that channel is present in the audio frame, otherwise it is cleared. * The order of the bits also correspond to that channel number's sample order in the audio frame. *
For the previous 4 channel USB device example, the device would have a channel index mask * 0xF. Suppose we wanted to select only the first and the third channels; this would * correspond to a channel index mask 0x5 (the first and third bits set). If an * AudioTrack uses this channel index mask, the audio frame would consist of two * samples, the first sample of each frame routed to channel 0, and the second sample of each frame * routed to channel 2. * The canonical channel index masks by channel count are given by the formula * (1 << channelCount) - 1. * *
Use cases
* *

Audio Frame

*

For linear PCM, an audio frame consists of a set of samples captured at the same time, * whose count and * channel association are given by the channel mask, * and whose sample contents are specified by the encoding. * For example, a stereo 16 bit PCM frame consists of * two 16 bit linear PCM samples, with a frame size of 4 bytes. * For compressed audio, an audio frame may alternately * refer to an access unit of compressed data bytes that is logically grouped together for * decoding and bitstream access (e.g. {@link MediaCodec}), * or a single byte of compressed data (e.g. {@link AudioTrack#getBufferSizeInFrames() * AudioTrack.getBufferSizeInFrames()}), * or the linear PCM frame result from decoding the compressed data * (e.g.{@link AudioTrack#getPlaybackHeadPosition() * AudioTrack.getPlaybackHeadPosition()}), * depending on the context where audio frame is used. * For the purposes of {@link AudioFormat#getFrameSizeInBytes()}, a compressed data format * returns a frame size of 1 byte. */ public final class AudioFormat implements Parcelable { //--------------------------------------------------------- // Constants //-------------------- /** Invalid audio data format */ public static final int ENCODING_INVALID = 0; /** Default audio data format */ public static final int ENCODING_DEFAULT = 1; // These values must be kept in sync with core/jni/android_media_AudioFormat.h // Also sync av/services/audiopolicy/managerdefault/ConfigParsingUtils.h /** Audio data format: PCM 16 bit per sample. Guaranteed to be supported by devices. */ public static final int ENCODING_PCM_16BIT = 2; /** Audio data format: PCM 8 bit per sample. Not guaranteed to be supported by devices. */ public static final int ENCODING_PCM_8BIT = 3; /** Audio data format: single-precision floating-point per sample */ public static final int ENCODING_PCM_FLOAT = 4; /** Audio data format: AC-3 compressed, also known as Dolby Digital */ public static final int ENCODING_AC3 = 5; /** Audio data format: E-AC-3 compressed, also known as Dolby Digital Plus or DD+ */ public static final int ENCODING_E_AC3 = 6; /** Audio data format: DTS compressed */ public static final int ENCODING_DTS = 7; /** Audio data format: DTS HD compressed */ public static final int ENCODING_DTS_HD = 8; /** Audio data format: MP3 compressed */ public static final int ENCODING_MP3 = 9; /** Audio data format: AAC LC compressed */ public static final int ENCODING_AAC_LC = 10; /** Audio data format: AAC HE V1 compressed */ public static final int ENCODING_AAC_HE_V1 = 11; /** Audio data format: AAC HE V2 compressed */ public static final int ENCODING_AAC_HE_V2 = 12; /** Audio data format: compressed audio wrapped in PCM for HDMI * or S/PDIF passthrough. * For devices whose SDK version is less than {@link android.os.Build.VERSION_CODES#S}, the * channel mask of IEC61937 track must be {@link #CHANNEL_OUT_STEREO}. * Data should be written to the stream in a short[] array. * If the data is written in a byte[] array then there may be endian problems * on some platforms when converting to short internally. */ public static final int ENCODING_IEC61937 = 13; /** Audio data format: DOLBY TRUEHD compressed **/ public static final int ENCODING_DOLBY_TRUEHD = 14; /** Audio data format: AAC ELD compressed */ public static final int ENCODING_AAC_ELD = 15; /** Audio data format: AAC xHE compressed */ public static final int ENCODING_AAC_XHE = 16; /** Audio data format: AC-4 sync frame transport format */ public static final int ENCODING_AC4 = 17; /** Audio data format: E-AC-3-JOC compressed * E-AC-3-JOC streams can be decoded by downstream devices supporting {@link #ENCODING_E_AC3}. * Use {@link #ENCODING_E_AC3} as the AudioTrack encoding when the downstream device * supports {@link #ENCODING_E_AC3} but not {@link #ENCODING_E_AC3_JOC}. **/ public static final int ENCODING_E_AC3_JOC = 18; /** Audio data format: Dolby MAT (Metadata-enhanced Audio Transmission) * Dolby MAT bitstreams are used to transmit Dolby TrueHD, channel-based PCM, or PCM with * metadata (object audio) over HDMI (e.g. Dolby Atmos content). **/ public static final int ENCODING_DOLBY_MAT = 19; /** Audio data format: OPUS compressed. */ public static final int ENCODING_OPUS = 20; /** @hide * We do not permit legacy short array reads or writes for encodings * introduced after this threshold. */ public static final int ENCODING_LEGACY_SHORT_ARRAY_THRESHOLD = ENCODING_OPUS; /** Audio data format: PCM 24 bit per sample packed as 3 bytes. * * The bytes are in little-endian order, so the least significant byte * comes first in the byte array. * * Not guaranteed to be supported by devices, may be emulated if not supported. */ public static final int ENCODING_PCM_24BIT_PACKED = 21; /** Audio data format: PCM 32 bit per sample. * Not guaranteed to be supported by devices, may be emulated if not supported. */ public static final int ENCODING_PCM_32BIT = 22; /** Audio data format: MPEG-H baseline profile, level 3 */ public static final int ENCODING_MPEGH_BL_L3 = 23; /** Audio data format: MPEG-H baseline profile, level 4 */ public static final int ENCODING_MPEGH_BL_L4 = 24; /** Audio data format: MPEG-H low complexity profile, level 3 */ public static final int ENCODING_MPEGH_LC_L3 = 25; /** Audio data format: MPEG-H low complexity profile, level 4 */ public static final int ENCODING_MPEGH_LC_L4 = 26; /** Audio data format: DTS UHD Profile-1 compressed (aka DTS:X Profile 1) * Has the same meaning and value as ENCODING_DTS_UHD_P1. * @deprecated Use {@link #ENCODING_DTS_UHD_P1} instead. */ @Deprecated public static final int ENCODING_DTS_UHD = 27; /** Audio data format: DRA compressed */ public static final int ENCODING_DRA = 28; /** Audio data format: DTS HD Master Audio compressed * DTS HD Master Audio stream is variable bit rate and contains lossless audio. * Use {@link #ENCODING_DTS_HD_MA} for lossless audio content (DTS-HD MA Lossless) * and use {@link #ENCODING_DTS_HD} for other DTS bitstreams with extension substream * (DTS 8Ch Discrete, DTS Hi Res, DTS Express). */ public static final int ENCODING_DTS_HD_MA = 29; /** Audio data format: DTS UHD Profile-1 compressed (aka DTS:X Profile 1) * Has the same meaning and value as the deprecated {@link #ENCODING_DTS_UHD}.*/ public static final int ENCODING_DTS_UHD_P1 = 27; /** Audio data format: DTS UHD Profile-2 compressed * DTS-UHD Profile-2 supports delivery of Channel-Based Audio, Object-Based Audio * and High Order Ambisonic presentations up to the fourth order. * Use {@link #ENCODING_DTS_UHD_P1} to transmit DTS UHD Profile 1 (aka DTS:X Profile 1) * bitstream. * Use {@link #ENCODING_DTS_UHD_P2} to transmit DTS UHD Profile 2 (aka DTS:X Profile 2) * bitstream. */ public static final int ENCODING_DTS_UHD_P2 = 30; /** Audio data format: Direct Stream Digital */ public static final int ENCODING_DSD = 31; /** @hide */ public static String toLogFriendlyEncoding(int enc) { switch(enc) { case ENCODING_INVALID: return "ENCODING_INVALID"; case ENCODING_PCM_16BIT: return "ENCODING_PCM_16BIT"; case ENCODING_PCM_8BIT: return "ENCODING_PCM_8BIT"; case ENCODING_PCM_FLOAT: return "ENCODING_PCM_FLOAT"; case ENCODING_AC3: return "ENCODING_AC3"; case ENCODING_E_AC3: return "ENCODING_E_AC3"; case ENCODING_DTS: return "ENCODING_DTS"; case ENCODING_DTS_HD: return "ENCODING_DTS_HD"; case ENCODING_MP3: return "ENCODING_MP3"; case ENCODING_AAC_LC: return "ENCODING_AAC_LC"; case ENCODING_AAC_HE_V1: return "ENCODING_AAC_HE_V1"; case ENCODING_AAC_HE_V2: return "ENCODING_AAC_HE_V2"; case ENCODING_IEC61937: return "ENCODING_IEC61937"; case ENCODING_DOLBY_TRUEHD: return "ENCODING_DOLBY_TRUEHD"; case ENCODING_AAC_ELD: return "ENCODING_AAC_ELD"; case ENCODING_AAC_XHE: return "ENCODING_AAC_XHE"; case ENCODING_AC4: return "ENCODING_AC4"; case ENCODING_E_AC3_JOC: return "ENCODING_E_AC3_JOC"; case ENCODING_DOLBY_MAT: return "ENCODING_DOLBY_MAT"; case ENCODING_OPUS: return "ENCODING_OPUS"; case ENCODING_PCM_24BIT_PACKED: return "ENCODING_PCM_24BIT_PACKED"; case ENCODING_PCM_32BIT: return "ENCODING_PCM_32BIT"; case ENCODING_MPEGH_BL_L3: return "ENCODING_MPEGH_BL_L3"; case ENCODING_MPEGH_BL_L4: return "ENCODING_MPEGH_BL_L4"; case ENCODING_MPEGH_LC_L3: return "ENCODING_MPEGH_LC_L3"; case ENCODING_MPEGH_LC_L4: return "ENCODING_MPEGH_LC_L4"; case ENCODING_DTS_UHD_P1: return "ENCODING_DTS_UHD_P1"; case ENCODING_DRA: return "ENCODING_DRA"; case ENCODING_DTS_HD_MA: return "ENCODING_DTS_HD_MA"; case ENCODING_DTS_UHD_P2: return "ENCODING_DTS_UHD_P2"; case ENCODING_DSD: return "ENCODING_DSD"; default : return "invalid encoding " + enc; } } /** Invalid audio channel configuration */ /** @deprecated Use {@link #CHANNEL_INVALID} instead. */ @Deprecated public static final int CHANNEL_CONFIGURATION_INVALID = 0; /** Default audio channel configuration */ /** @deprecated Use {@link #CHANNEL_OUT_DEFAULT} or {@link #CHANNEL_IN_DEFAULT} instead. */ @Deprecated public static final int CHANNEL_CONFIGURATION_DEFAULT = 1; /** Mono audio configuration */ /** @deprecated Use {@link #CHANNEL_OUT_MONO} or {@link #CHANNEL_IN_MONO} instead. */ @Deprecated public static final int CHANNEL_CONFIGURATION_MONO = 2; /** Stereo (2 channel) audio configuration */ /** @deprecated Use {@link #CHANNEL_OUT_STEREO} or {@link #CHANNEL_IN_STEREO} instead. */ @Deprecated public static final int CHANNEL_CONFIGURATION_STEREO = 3; /** Invalid audio channel mask */ public static final int CHANNEL_INVALID = 0; /** Default audio channel mask */ public static final int CHANNEL_OUT_DEFAULT = 1; // Output channel mask definitions below are translated to the native values defined in // in /system/media/audio/include/system/audio.h in the JNI code of AudioTrack /** Front left output channel (see FL in channel diagram) */ public static final int CHANNEL_OUT_FRONT_LEFT = 0x4; /** Front right output channel (see FR in channel diagram) */ public static final int CHANNEL_OUT_FRONT_RIGHT = 0x8; /** Front center output channel (see FC in channel diagram) */ public static final int CHANNEL_OUT_FRONT_CENTER = 0x10; /** LFE "low frequency effect" channel * When used in conjunction with {@link #CHANNEL_OUT_LOW_FREQUENCY_2}, it is intended * to contain the left low-frequency effect signal, also referred to as "LFE1" * in ITU-R BS.2159-8 */ public static final int CHANNEL_OUT_LOW_FREQUENCY = 0x20; /** Back left output channel (see BL in channel diagram) */ public static final int CHANNEL_OUT_BACK_LEFT = 0x40; /** Back right output channel (see BR in channel diagram) */ public static final int CHANNEL_OUT_BACK_RIGHT = 0x80; public static final int CHANNEL_OUT_FRONT_LEFT_OF_CENTER = 0x100; public static final int CHANNEL_OUT_FRONT_RIGHT_OF_CENTER = 0x200; /** Back center output channel (see BC in channel diagram) */ public static final int CHANNEL_OUT_BACK_CENTER = 0x400; /** Side left output channel (see SL in channel diagram) */ public static final int CHANNEL_OUT_SIDE_LEFT = 0x800; /** Side right output channel (see SR in channel diagram) */ public static final int CHANNEL_OUT_SIDE_RIGHT = 0x1000; /** Top center (above listener) output channel (see TC in channel diagram) */ public static final int CHANNEL_OUT_TOP_CENTER = 0x2000; /** Top front left output channel (see TFL in channel diagram above FL) */ public static final int CHANNEL_OUT_TOP_FRONT_LEFT = 0x4000; /** Top front center output channel (see TFC in channel diagram above FC) */ public static final int CHANNEL_OUT_TOP_FRONT_CENTER = 0x8000; /** Top front right output channel (see TFR in channel diagram above FR) */ public static final int CHANNEL_OUT_TOP_FRONT_RIGHT = 0x10000; /** Top back left output channel (see TBL in channel diagram above BL) */ public static final int CHANNEL_OUT_TOP_BACK_LEFT = 0x20000; /** Top back center output channel (see TBC in channel diagram above BC) */ public static final int CHANNEL_OUT_TOP_BACK_CENTER = 0x40000; /** Top back right output channel (see TBR in channel diagram above BR) */ public static final int CHANNEL_OUT_TOP_BACK_RIGHT = 0x80000; /** Top side left output channel (see TSL in channel diagram above SL) */ public static final int CHANNEL_OUT_TOP_SIDE_LEFT = 0x100000; /** Top side right output channel (see TSR in channel diagram above SR) */ public static final int CHANNEL_OUT_TOP_SIDE_RIGHT = 0x200000; /** Bottom front left output channel (see BFL in channel diagram below FL) */ public static final int CHANNEL_OUT_BOTTOM_FRONT_LEFT = 0x400000; /** Bottom front center output channel (see BFC in channel diagram below FC) */ public static final int CHANNEL_OUT_BOTTOM_FRONT_CENTER = 0x800000; /** Bottom front right output channel (see BFR in channel diagram below FR) */ public static final int CHANNEL_OUT_BOTTOM_FRONT_RIGHT = 0x1000000; /** The second LFE channel * When used in conjunction with {@link #CHANNEL_OUT_LOW_FREQUENCY}, it is intended * to contain the right low-frequency effect signal, also referred to as "LFE2" * in ITU-R BS.2159-8 */ public static final int CHANNEL_OUT_LOW_FREQUENCY_2 = 0x2000000; /** Front wide left output channel (see FWL in channel diagram) */ public static final int CHANNEL_OUT_FRONT_WIDE_LEFT = 0x4000000; /** Front wide right output channel (see FWR in channel diagram) */ public static final int CHANNEL_OUT_FRONT_WIDE_RIGHT = 0x8000000; /** @hide * Haptic channels can be used by internal framework code. Use the same values as in native. */ public static final int CHANNEL_OUT_HAPTIC_B = 0x10000000; /** @hide */ public static final int CHANNEL_OUT_HAPTIC_A = 0x20000000; public static final int CHANNEL_OUT_MONO = CHANNEL_OUT_FRONT_LEFT; public static final int CHANNEL_OUT_STEREO = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT); // aka QUAD_BACK public static final int CHANNEL_OUT_QUAD = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_BACK_LEFT | CHANNEL_OUT_BACK_RIGHT); /** @hide */ public static final int CHANNEL_OUT_QUAD_SIDE = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_SIDE_LEFT | CHANNEL_OUT_SIDE_RIGHT); public static final int CHANNEL_OUT_SURROUND = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_BACK_CENTER); // aka 5POINT1_BACK /** Output channel mask for 5.1 */ public static final int CHANNEL_OUT_5POINT1 = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_LOW_FREQUENCY | CHANNEL_OUT_BACK_LEFT | CHANNEL_OUT_BACK_RIGHT); /** Output channel mask for 6.1 * Same as 5.1 with the addition of the back center channel */ public static final int CHANNEL_OUT_6POINT1 = (CHANNEL_OUT_5POINT1 | CHANNEL_OUT_BACK_CENTER); /** @hide */ public static final int CHANNEL_OUT_5POINT1_SIDE = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_LOW_FREQUENCY | CHANNEL_OUT_SIDE_LEFT | CHANNEL_OUT_SIDE_RIGHT); // different from AUDIO_CHANNEL_OUT_7POINT1 used internally, and not accepted by AudioRecord. /** @deprecated Not the typical 7.1 surround configuration. Use {@link #CHANNEL_OUT_7POINT1_SURROUND} instead. */ @Deprecated public static final int CHANNEL_OUT_7POINT1 = (CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_LOW_FREQUENCY | CHANNEL_OUT_BACK_LEFT | CHANNEL_OUT_BACK_RIGHT | CHANNEL_OUT_FRONT_LEFT_OF_CENTER | CHANNEL_OUT_FRONT_RIGHT_OF_CENTER); /** Output channel mask for 7.1 */ // matches AUDIO_CHANNEL_OUT_7POINT1 public static final int CHANNEL_OUT_7POINT1_SURROUND = ( CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_SIDE_LEFT | CHANNEL_OUT_SIDE_RIGHT | CHANNEL_OUT_BACK_LEFT | CHANNEL_OUT_BACK_RIGHT | CHANNEL_OUT_LOW_FREQUENCY); /** Output channel mask for 5.1.2 * Same as 5.1 with the addition of left and right top channels */ public static final int CHANNEL_OUT_5POINT1POINT2 = (CHANNEL_OUT_5POINT1 | CHANNEL_OUT_TOP_SIDE_LEFT | CHANNEL_OUT_TOP_SIDE_RIGHT); /** Output channel mask for 5.1.4 * Same as 5.1 with the addition of four top channels */ public static final int CHANNEL_OUT_5POINT1POINT4 = (CHANNEL_OUT_5POINT1 | CHANNEL_OUT_TOP_FRONT_LEFT | CHANNEL_OUT_TOP_FRONT_RIGHT | CHANNEL_OUT_TOP_BACK_LEFT | CHANNEL_OUT_TOP_BACK_RIGHT); /** Output channel mask for 7.1.2 * Same as 7.1 with the addition of left and right top channels*/ public static final int CHANNEL_OUT_7POINT1POINT2 = (CHANNEL_OUT_7POINT1_SURROUND | CHANNEL_OUT_TOP_SIDE_LEFT | CHANNEL_OUT_TOP_SIDE_RIGHT); /** Output channel mask for 7.1.4 * Same as 7.1 with the addition of four top channels */ public static final int CHANNEL_OUT_7POINT1POINT4 = (CHANNEL_OUT_7POINT1_SURROUND | CHANNEL_OUT_TOP_FRONT_LEFT | CHANNEL_OUT_TOP_FRONT_RIGHT | CHANNEL_OUT_TOP_BACK_LEFT | CHANNEL_OUT_TOP_BACK_RIGHT); /** Output channel mask for 9.1.4 * Same as 7.1.4 with the addition of left and right front wide channels */ public static final int CHANNEL_OUT_9POINT1POINT4 = (CHANNEL_OUT_7POINT1POINT4 | CHANNEL_OUT_FRONT_WIDE_LEFT | CHANNEL_OUT_FRONT_WIDE_RIGHT); /** Output channel mask for 9.1.6 * Same as 9.1.4 with the addition of left and right top side channels */ public static final int CHANNEL_OUT_9POINT1POINT6 = (CHANNEL_OUT_9POINT1POINT4 | CHANNEL_OUT_TOP_SIDE_LEFT | CHANNEL_OUT_TOP_SIDE_RIGHT); /** @hide */ public static final int CHANNEL_OUT_13POINT_360RA = ( CHANNEL_OUT_FRONT_LEFT | CHANNEL_OUT_FRONT_CENTER | CHANNEL_OUT_FRONT_RIGHT | CHANNEL_OUT_SIDE_LEFT | CHANNEL_OUT_SIDE_RIGHT | CHANNEL_OUT_TOP_FRONT_LEFT | CHANNEL_OUT_TOP_FRONT_CENTER | CHANNEL_OUT_TOP_FRONT_RIGHT | CHANNEL_OUT_TOP_BACK_LEFT | CHANNEL_OUT_TOP_BACK_RIGHT | CHANNEL_OUT_BOTTOM_FRONT_LEFT | CHANNEL_OUT_BOTTOM_FRONT_CENTER | CHANNEL_OUT_BOTTOM_FRONT_RIGHT); /** @hide */ public static final int CHANNEL_OUT_22POINT2 = (CHANNEL_OUT_7POINT1POINT4 | CHANNEL_OUT_FRONT_LEFT_OF_CENTER | CHANNEL_OUT_FRONT_RIGHT_OF_CENTER | CHANNEL_OUT_BACK_CENTER | CHANNEL_OUT_TOP_CENTER | CHANNEL_OUT_TOP_FRONT_CENTER | CHANNEL_OUT_TOP_BACK_CENTER | CHANNEL_OUT_TOP_SIDE_LEFT | CHANNEL_OUT_TOP_SIDE_RIGHT | CHANNEL_OUT_BOTTOM_FRONT_LEFT | CHANNEL_OUT_BOTTOM_FRONT_RIGHT | CHANNEL_OUT_BOTTOM_FRONT_CENTER | CHANNEL_OUT_LOW_FREQUENCY_2); // CHANNEL_OUT_ALL is not yet defined; if added then it should match AUDIO_CHANNEL_OUT_ALL /** @hide */ @IntDef(flag = true, prefix = "CHANNEL_OUT", value = { CHANNEL_OUT_FRONT_LEFT, CHANNEL_OUT_FRONT_RIGHT, CHANNEL_OUT_FRONT_CENTER, CHANNEL_OUT_LOW_FREQUENCY, CHANNEL_OUT_BACK_LEFT, CHANNEL_OUT_BACK_RIGHT, CHANNEL_OUT_FRONT_LEFT_OF_CENTER, CHANNEL_OUT_FRONT_RIGHT_OF_CENTER, CHANNEL_OUT_BACK_CENTER, CHANNEL_OUT_SIDE_LEFT, CHANNEL_OUT_SIDE_RIGHT, CHANNEL_OUT_TOP_CENTER, CHANNEL_OUT_TOP_FRONT_LEFT, CHANNEL_OUT_TOP_FRONT_CENTER, CHANNEL_OUT_TOP_FRONT_RIGHT, CHANNEL_OUT_TOP_BACK_LEFT, CHANNEL_OUT_TOP_BACK_CENTER, CHANNEL_OUT_TOP_BACK_RIGHT, CHANNEL_OUT_TOP_SIDE_LEFT, CHANNEL_OUT_TOP_SIDE_RIGHT, CHANNEL_OUT_BOTTOM_FRONT_LEFT, CHANNEL_OUT_BOTTOM_FRONT_CENTER, CHANNEL_OUT_BOTTOM_FRONT_RIGHT, CHANNEL_OUT_LOW_FREQUENCY_2, CHANNEL_OUT_FRONT_WIDE_LEFT, CHANNEL_OUT_FRONT_WIDE_RIGHT, CHANNEL_OUT_HAPTIC_B, CHANNEL_OUT_HAPTIC_A }) @Retention(RetentionPolicy.SOURCE) public @interface ChannelOut {} /** Minimum value for sample rate, * assuming AudioTrack and AudioRecord share the same limitations. * @hide */ // never unhide public static final int SAMPLE_RATE_HZ_MIN = AudioSystem.SAMPLE_RATE_HZ_MIN; /** Maximum value for sample rate, * assuming AudioTrack and AudioRecord share the same limitations. * @hide */ // never unhide public static final int SAMPLE_RATE_HZ_MAX = AudioSystem.SAMPLE_RATE_HZ_MAX; /** Sample rate will be a route-dependent value. * For AudioTrack, it is usually the sink sample rate, * and for AudioRecord it is usually the source sample rate. */ public static final int SAMPLE_RATE_UNSPECIFIED = 0; /** * @hide * Return the input channel mask corresponding to an output channel mask. * This can be used for submix rerouting for the mask of the recorder to map to that of the mix. * @param outMask a combination of the CHANNEL_OUT_* definitions, but not CHANNEL_OUT_DEFAULT * @return a combination of CHANNEL_IN_* definitions matching an output channel mask * @throws IllegalArgumentException */ public static int inChannelMaskFromOutChannelMask(int outMask) throws IllegalArgumentException { if (outMask == CHANNEL_OUT_DEFAULT) { throw new IllegalArgumentException( "Illegal CHANNEL_OUT_DEFAULT channel mask for input."); } switch (channelCountFromOutChannelMask(outMask)) { case 1: return CHANNEL_IN_MONO; case 2: return CHANNEL_IN_STEREO; default: throw new IllegalArgumentException("Unsupported channel configuration for input."); } } /** * @hide * Return the number of channels from an input channel mask * @param mask a combination of the CHANNEL_IN_* definitions, even CHANNEL_IN_DEFAULT * @return number of channels for the mask */ @TestApi public static int channelCountFromInChannelMask(int mask) { return Integer.bitCount(mask); } /** * @hide * Return the number of channels from an output channel mask * @param mask a combination of the CHANNEL_OUT_* definitions, but not CHANNEL_OUT_DEFAULT * @return number of channels for the mask */ @TestApi public static int channelCountFromOutChannelMask(int mask) { return Integer.bitCount(mask); } /** * @hide * Return a channel mask ready to be used by native code * @param mask a combination of the CHANNEL_OUT_* definitions, but not CHANNEL_OUT_DEFAULT * @return a native channel mask */ public static int convertChannelOutMaskToNativeMask(int javaMask) { return (javaMask >> 2); } /** * @hide * Return a java output channel mask * @param mask a native channel mask * @return a combination of the CHANNEL_OUT_* definitions */ public static int convertNativeChannelMaskToOutMask(int nativeMask) { return (nativeMask << 2); } public static final int CHANNEL_IN_DEFAULT = 1; // These directly match native public static final int CHANNEL_IN_LEFT = 0x4; public static final int CHANNEL_IN_RIGHT = 0x8; public static final int CHANNEL_IN_FRONT = 0x10; public static final int CHANNEL_IN_BACK = 0x20; public static final int CHANNEL_IN_LEFT_PROCESSED = 0x40; public static final int CHANNEL_IN_RIGHT_PROCESSED = 0x80; public static final int CHANNEL_IN_FRONT_PROCESSED = 0x100; public static final int CHANNEL_IN_BACK_PROCESSED = 0x200; public static final int CHANNEL_IN_PRESSURE = 0x400; public static final int CHANNEL_IN_X_AXIS = 0x800; public static final int CHANNEL_IN_Y_AXIS = 0x1000; public static final int CHANNEL_IN_Z_AXIS = 0x2000; public static final int CHANNEL_IN_VOICE_UPLINK = 0x4000; public static final int CHANNEL_IN_VOICE_DNLINK = 0x8000; // CHANNEL_IN_BACK_LEFT to TOP_RIGHT are not microphone positions // but surround channels which are used when dealing with multi-channel inputs, // e.g. via HDMI input on TV. /** @hide */ public static final int CHANNEL_IN_BACK_LEFT = 0x10000; /** @hide */ public static final int CHANNEL_IN_BACK_RIGHT = 0x20000; /** @hide */ public static final int CHANNEL_IN_CENTER = 0x40000; /** @hide */ public static final int CHANNEL_IN_LOW_FREQUENCY = 0x100000; /** @hide */ public static final int CHANNEL_IN_TOP_LEFT = 0x200000; /** @hide */ public static final int CHANNEL_IN_TOP_RIGHT = 0x400000; public static final int CHANNEL_IN_MONO = CHANNEL_IN_FRONT; public static final int CHANNEL_IN_STEREO = (CHANNEL_IN_LEFT | CHANNEL_IN_RIGHT); // Surround channel masks corresponding to output masks, used for // surround sound inputs. /** @hide */ public static final int CHANNEL_IN_2POINT0POINT2 = ( CHANNEL_IN_LEFT | CHANNEL_IN_RIGHT | CHANNEL_IN_TOP_LEFT | CHANNEL_IN_TOP_RIGHT); /** @hide */ public static final int CHANNEL_IN_2POINT1POINT2 = ( CHANNEL_IN_LEFT | CHANNEL_IN_RIGHT | CHANNEL_IN_TOP_LEFT | CHANNEL_IN_TOP_RIGHT | CHANNEL_IN_LOW_FREQUENCY); /** @hide */ public static final int CHANNEL_IN_3POINT0POINT2 = ( CHANNEL_IN_LEFT | CHANNEL_IN_CENTER | CHANNEL_IN_RIGHT | CHANNEL_IN_TOP_LEFT | CHANNEL_IN_TOP_RIGHT); /** @hide */ public static final int CHANNEL_IN_3POINT1POINT2 = ( CHANNEL_IN_LEFT | CHANNEL_IN_CENTER | CHANNEL_IN_RIGHT | CHANNEL_IN_TOP_LEFT | CHANNEL_IN_TOP_RIGHT | CHANNEL_IN_LOW_FREQUENCY); /** @hide */ public static final int CHANNEL_IN_5POINT1 = ( CHANNEL_IN_LEFT | CHANNEL_IN_CENTER | CHANNEL_IN_RIGHT | CHANNEL_IN_BACK_LEFT | CHANNEL_IN_BACK_RIGHT | CHANNEL_IN_LOW_FREQUENCY); /** @hide */ public static final int CHANNEL_IN_FRONT_BACK = CHANNEL_IN_FRONT | CHANNEL_IN_BACK; // CHANNEL_IN_ALL is not yet defined; if added then it should match AUDIO_CHANNEL_IN_ALL /** @hide */ @TestApi public static int getBytesPerSample(int audioFormat) { switch (audioFormat) { case ENCODING_PCM_8BIT: return 1; case ENCODING_PCM_16BIT: case ENCODING_IEC61937: case ENCODING_DEFAULT: return 2; case ENCODING_PCM_24BIT_PACKED: return 3; case ENCODING_PCM_FLOAT: case ENCODING_PCM_32BIT: return 4; case ENCODING_INVALID: default: throw new IllegalArgumentException("Bad audio format " + audioFormat); } } /** @hide */ public static boolean isValidEncoding(int audioFormat) { switch (audioFormat) { case ENCODING_PCM_16BIT: case ENCODING_PCM_8BIT: case ENCODING_PCM_FLOAT: case ENCODING_AC3: case ENCODING_E_AC3: case ENCODING_DTS: case ENCODING_DTS_HD: case ENCODING_MP3: case ENCODING_AAC_LC: case ENCODING_AAC_HE_V1: case ENCODING_AAC_HE_V2: case ENCODING_IEC61937: case ENCODING_DOLBY_TRUEHD: case ENCODING_AAC_ELD: case ENCODING_AAC_XHE: case ENCODING_AC4: case ENCODING_E_AC3_JOC: case ENCODING_DOLBY_MAT: case ENCODING_OPUS: case ENCODING_PCM_24BIT_PACKED: case ENCODING_PCM_32BIT: case ENCODING_MPEGH_BL_L3: case ENCODING_MPEGH_BL_L4: case ENCODING_MPEGH_LC_L3: case ENCODING_MPEGH_LC_L4: case ENCODING_DTS_UHD_P1: case ENCODING_DRA: case ENCODING_DTS_HD_MA: case ENCODING_DTS_UHD_P2: case ENCODING_DSD: return true; default: return false; } } /** @hide */ public static boolean isPublicEncoding(int audioFormat) { switch (audioFormat) { case ENCODING_PCM_16BIT: case ENCODING_PCM_8BIT: case ENCODING_PCM_FLOAT: case ENCODING_AC3: case ENCODING_E_AC3: case ENCODING_DTS: case ENCODING_DTS_HD: case ENCODING_MP3: case ENCODING_AAC_LC: case ENCODING_AAC_HE_V1: case ENCODING_AAC_HE_V2: case ENCODING_IEC61937: case ENCODING_DOLBY_TRUEHD: case ENCODING_AAC_ELD: case ENCODING_AAC_XHE: case ENCODING_AC4: case ENCODING_E_AC3_JOC: case ENCODING_DOLBY_MAT: case ENCODING_OPUS: case ENCODING_PCM_24BIT_PACKED: case ENCODING_PCM_32BIT: case ENCODING_MPEGH_BL_L3: case ENCODING_MPEGH_BL_L4: case ENCODING_MPEGH_LC_L3: case ENCODING_MPEGH_LC_L4: case ENCODING_DTS_UHD_P1: case ENCODING_DRA: case ENCODING_DTS_HD_MA: case ENCODING_DTS_UHD_P2: case ENCODING_DSD: return true; default: return false; } } /** @hide */ @TestApi public static boolean isEncodingLinearPcm(int audioFormat) { switch (audioFormat) { case ENCODING_PCM_16BIT: case ENCODING_PCM_8BIT: case ENCODING_PCM_FLOAT: case ENCODING_PCM_24BIT_PACKED: case ENCODING_PCM_32BIT: case ENCODING_DEFAULT: return true; case ENCODING_AC3: case ENCODING_E_AC3: case ENCODING_DTS: case ENCODING_DTS_HD: case ENCODING_MP3: case ENCODING_AAC_LC: case ENCODING_AAC_HE_V1: case ENCODING_AAC_HE_V2: case ENCODING_IEC61937: // wrapped in PCM but compressed case ENCODING_DOLBY_TRUEHD: case ENCODING_AAC_ELD: case ENCODING_AAC_XHE: case ENCODING_AC4: case ENCODING_E_AC3_JOC: case ENCODING_DOLBY_MAT: case ENCODING_OPUS: case ENCODING_MPEGH_BL_L3: case ENCODING_MPEGH_BL_L4: case ENCODING_MPEGH_LC_L3: case ENCODING_MPEGH_LC_L4: case ENCODING_DTS_UHD_P1: case ENCODING_DRA: case ENCODING_DTS_HD_MA: case ENCODING_DTS_UHD_P2: return false; case ENCODING_INVALID: default: throw new IllegalArgumentException("Bad audio format " + audioFormat); } } /** @hide */ public static boolean isEncodingLinearFrames(int audioFormat) { switch (audioFormat) { case ENCODING_PCM_16BIT: case ENCODING_PCM_8BIT: case ENCODING_PCM_FLOAT: case ENCODING_IEC61937: // same size as stereo PCM case ENCODING_PCM_24BIT_PACKED: case ENCODING_PCM_32BIT: case ENCODING_DEFAULT: return true; case ENCODING_AC3: case ENCODING_E_AC3: case ENCODING_DTS: case ENCODING_DTS_HD: case ENCODING_MP3: case ENCODING_AAC_LC: case ENCODING_AAC_HE_V1: case ENCODING_AAC_HE_V2: case ENCODING_DOLBY_TRUEHD: case ENCODING_AAC_ELD: case ENCODING_AAC_XHE: case ENCODING_AC4: case ENCODING_E_AC3_JOC: case ENCODING_DOLBY_MAT: case ENCODING_OPUS: case ENCODING_MPEGH_BL_L3: case ENCODING_MPEGH_BL_L4: case ENCODING_MPEGH_LC_L3: case ENCODING_MPEGH_LC_L4: case ENCODING_DTS_UHD_P1: case ENCODING_DRA: case ENCODING_DTS_HD_MA: case ENCODING_DTS_UHD_P2: return false; case ENCODING_INVALID: default: throw new IllegalArgumentException("Bad audio format " + audioFormat); } } /** * Returns an array of public encoding values extracted from an array of * encoding values. * @hide */ public static int[] filterPublicFormats(int[] formats) { if (formats == null) { return null; } int[] myCopy = Arrays.copyOf(formats, formats.length); int size = 0; for (int i = 0; i < myCopy.length; i++) { if (isPublicEncoding(myCopy[i])) { if (size != i) { myCopy[size] = myCopy[i]; } size++; } } return Arrays.copyOf(myCopy, size); } /** @removed */ public AudioFormat() { throw new UnsupportedOperationException("There is no valid usage of this constructor"); } /** * Constructor used by the JNI. Parameters are not checked for validity. */ // Update sound trigger JNI in core/jni/android_hardware_SoundTrigger.cpp when modifying this // constructor @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private AudioFormat(int encoding, int sampleRate, int channelMask, int channelIndexMask) { this( AUDIO_FORMAT_HAS_PROPERTY_ENCODING | AUDIO_FORMAT_HAS_PROPERTY_SAMPLE_RATE | AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK | AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_INDEX_MASK, encoding, sampleRate, channelMask, channelIndexMask ); } private AudioFormat(int propertySetMask, int encoding, int sampleRate, int channelMask, int channelIndexMask) { mPropertySetMask = propertySetMask; mEncoding = (propertySetMask & AUDIO_FORMAT_HAS_PROPERTY_ENCODING) != 0 ? encoding : ENCODING_INVALID; mSampleRate = (propertySetMask & AUDIO_FORMAT_HAS_PROPERTY_SAMPLE_RATE) != 0 ? sampleRate : SAMPLE_RATE_UNSPECIFIED; mChannelMask = (propertySetMask & AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK) != 0 ? channelMask : CHANNEL_INVALID; mChannelIndexMask = (propertySetMask & AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_INDEX_MASK) != 0 ? channelIndexMask : CHANNEL_INVALID; // Compute derived values. final int channelIndexCount = Integer.bitCount(getChannelIndexMask()); int channelCount = channelCountFromOutChannelMask(getChannelMask()); if (channelCount == 0) { channelCount = channelIndexCount; } else if (channelCount != channelIndexCount && channelIndexCount != 0) { channelCount = 0; // position and index channel count mismatch } mChannelCount = channelCount; int frameSizeInBytes = 1; try { frameSizeInBytes = getBytesPerSample(mEncoding) * channelCount; } catch (IllegalArgumentException iae) { // ignored } // it is possible that channel count is 0, so ensure we return 1 for // mFrameSizeInBytes for consistency. mFrameSizeInBytes = frameSizeInBytes != 0 ? frameSizeInBytes : 1; } /** @hide */ public final static int AUDIO_FORMAT_HAS_PROPERTY_NONE = 0x0; /** @hide */ public final static int AUDIO_FORMAT_HAS_PROPERTY_ENCODING = 0x1 << 0; /** @hide */ public final static int AUDIO_FORMAT_HAS_PROPERTY_SAMPLE_RATE = 0x1 << 1; /** @hide */ public final static int AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK = 0x1 << 2; /** @hide */ public final static int AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_INDEX_MASK = 0x1 << 3; // This is an immutable class, all member variables are final. // Essential values. @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private final int mEncoding; @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private final int mSampleRate; @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553) private final int mChannelMask; private final int mChannelIndexMask; private final int mPropertySetMask; // Derived values computed in the constructor, cached here. private final int mChannelCount; private final int mFrameSizeInBytes; /** * Return the encoding. * See the section on encodings for more information about the different * types of supported audio encoding. * @return one of the values that can be set in {@link Builder#setEncoding(int)} or * {@link AudioFormat#ENCODING_INVALID} if not set. */ public int getEncoding() { return mEncoding; } /** * Return the sample rate. * @return one of the values that can be set in {@link Builder#setSampleRate(int)} or * {@link #SAMPLE_RATE_UNSPECIFIED} if not set. */ public int getSampleRate() { return mSampleRate; } /** * Return the channel mask. * See the section on channel masks for more information about * the difference between index-based masks(as returned by {@link #getChannelIndexMask()}) and * the position-based mask returned by this function. * @return one of the values that can be set in {@link Builder#setChannelMask(int)} or * {@link AudioFormat#CHANNEL_INVALID} if not set. */ public int getChannelMask() { return mChannelMask; } /** * Return the channel index mask. * See the section on channel masks for more information about * the difference between index-based masks, and position-based masks (as returned * by {@link #getChannelMask()}). * @return one of the values that can be set in {@link Builder#setChannelIndexMask(int)} or * {@link AudioFormat#CHANNEL_INVALID} if not set or an invalid mask was used. */ public int getChannelIndexMask() { return mChannelIndexMask; } /** * Return the channel count. * @return the channel count derived from the channel position mask or the channel index mask. * Zero is returned if both the channel position mask and the channel index mask are not set. */ public int getChannelCount() { return mChannelCount; } /** * Return the frame size in bytes. * * For PCM or PCM packed compressed data this is the size of a sample multiplied * by the channel count. For all other cases, including invalid/unset channel masks, * this will return 1 byte. * As an example, a stereo 16-bit PCM format would have a frame size of 4 bytes, * an 8 channel float PCM format would have a frame size of 32 bytes, * and a compressed data format (not packed in PCM) would have a frame size of 1 byte. * * Both {@link AudioRecord} or {@link AudioTrack} process data in multiples of * this frame size. * * @return The audio frame size in bytes corresponding to the encoding and the channel mask. */ public @IntRange(from = 1) int getFrameSizeInBytes() { return mFrameSizeInBytes; } /** @hide */ public int getPropertySetMask() { return mPropertySetMask; } /** @hide */ public String toLogFriendlyString() { return String.format("%dch %dHz %s", mChannelCount, mSampleRate, toLogFriendlyEncoding(mEncoding)); } /** * Builder class for {@link AudioFormat} objects. * Use this class to configure and create an AudioFormat instance. By setting format * characteristics such as audio encoding, channel mask or sample rate, you indicate which * of those are to vary from the default behavior on this device wherever this audio format * is used. See {@link AudioFormat} for a complete description of the different parameters that * can be used to configure an AudioFormat instance. *

{@link AudioFormat} is for instance used in * {@link AudioTrack#AudioTrack(AudioAttributes, AudioFormat, int, int, int)}. In this * constructor, every format characteristic set on the Builder (e.g. with * {@link #setSampleRate(int)}) will alter the default values used by an * AudioTrack. In this case for audio playback with AudioTrack, the * sample rate set in the Builder would override the platform output sample rate * which would otherwise be selected by default. */ public static class Builder { private int mEncoding = ENCODING_INVALID; private int mSampleRate = SAMPLE_RATE_UNSPECIFIED; private int mChannelMask = CHANNEL_INVALID; private int mChannelIndexMask = 0; private int mPropertySetMask = AUDIO_FORMAT_HAS_PROPERTY_NONE; /** * Constructs a new Builder with none of the format characteristics set. */ public Builder() { } /** * Constructs a new Builder from a given {@link AudioFormat}. * @param af the {@link AudioFormat} object whose data will be reused in the new Builder. */ public Builder(AudioFormat af) { mEncoding = af.mEncoding; mSampleRate = af.mSampleRate; mChannelMask = af.mChannelMask; mChannelIndexMask = af.mChannelIndexMask; mPropertySetMask = af.mPropertySetMask; } /** * Combines all of the format characteristics that have been set and return a new * {@link AudioFormat} object. * @return a new {@link AudioFormat} object */ public AudioFormat build() { AudioFormat af = new AudioFormat( mPropertySetMask, mEncoding, mSampleRate, mChannelMask, mChannelIndexMask ); return af; } /** * Sets the data encoding format. * @param encoding the specified encoding or default. * @return the same Builder instance. * @throws java.lang.IllegalArgumentException */ public Builder setEncoding(@Encoding int encoding) throws IllegalArgumentException { switch (encoding) { case ENCODING_DEFAULT: mEncoding = ENCODING_PCM_16BIT; break; case ENCODING_PCM_16BIT: case ENCODING_PCM_8BIT: case ENCODING_PCM_FLOAT: case ENCODING_AC3: case ENCODING_E_AC3: case ENCODING_DTS: case ENCODING_DTS_HD: case ENCODING_MP3: case ENCODING_AAC_LC: case ENCODING_AAC_HE_V1: case ENCODING_AAC_HE_V2: case ENCODING_IEC61937: case ENCODING_DOLBY_TRUEHD: case ENCODING_AAC_ELD: case ENCODING_AAC_XHE: case ENCODING_AC4: case ENCODING_E_AC3_JOC: case ENCODING_DOLBY_MAT: case ENCODING_OPUS: case ENCODING_PCM_24BIT_PACKED: case ENCODING_PCM_32BIT: case ENCODING_MPEGH_BL_L3: case ENCODING_MPEGH_BL_L4: case ENCODING_MPEGH_LC_L3: case ENCODING_MPEGH_LC_L4: case ENCODING_DTS_UHD_P1: case ENCODING_DRA: case ENCODING_DTS_HD_MA: case ENCODING_DTS_UHD_P2: case ENCODING_DSD: mEncoding = encoding; break; case ENCODING_INVALID: default: throw new IllegalArgumentException("Invalid encoding " + encoding); } mPropertySetMask |= AUDIO_FORMAT_HAS_PROPERTY_ENCODING; return this; } /** * Sets the channel position mask. * The channel position mask specifies the association between audio samples in a frame * with named endpoint channels. The samples in the frame correspond to the * named set bits in the channel position mask, in ascending bit order. * See {@link #setChannelIndexMask(int)} to specify channels * based on endpoint numbered channels. This description of * channel position masks covers the concept in more details. * @param channelMask describes the configuration of the audio channels. *

For output, the channelMask can be an OR-ed combination of * channel position masks, e.g. * {@link AudioFormat#CHANNEL_OUT_FRONT_LEFT}, * {@link AudioFormat#CHANNEL_OUT_FRONT_RIGHT}, * {@link AudioFormat#CHANNEL_OUT_FRONT_CENTER}, * {@link AudioFormat#CHANNEL_OUT_LOW_FREQUENCY} * {@link AudioFormat#CHANNEL_OUT_BACK_LEFT}, * {@link AudioFormat#CHANNEL_OUT_BACK_RIGHT}, * {@link AudioFormat#CHANNEL_OUT_BACK_CENTER}, * {@link AudioFormat#CHANNEL_OUT_SIDE_LEFT}, * {@link AudioFormat#CHANNEL_OUT_SIDE_RIGHT}. *

For a valid {@link AudioTrack} channel position mask, * the following conditions apply: *
(1) at most eight channel positions may be used; *
(2) right/left pairs should be matched. *

For input or {@link AudioRecord}, the mask should be * {@link AudioFormat#CHANNEL_IN_MONO} or * {@link AudioFormat#CHANNEL_IN_STEREO}. {@link AudioFormat#CHANNEL_IN_MONO} is * guaranteed to work on all devices. * @return the same Builder instance. * @throws IllegalArgumentException if the channel mask is invalid or * if both channel index mask and channel position mask * are specified but do not have the same channel count. */ public @NonNull Builder setChannelMask(int channelMask) { if (channelMask == CHANNEL_INVALID) { throw new IllegalArgumentException("Invalid zero channel mask"); } else if (/* channelMask != 0 && */ mChannelIndexMask != 0 && Integer.bitCount(channelMask) != Integer.bitCount(mChannelIndexMask)) { throw new IllegalArgumentException("Mismatched channel count for mask " + Integer.toHexString(channelMask).toUpperCase()); } mChannelMask = channelMask; mPropertySetMask |= AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK; return this; } /** * Sets the channel index mask. * A channel index mask specifies the association of audio samples in the frame * with numbered endpoint channels. The i-th bit in the channel index * mask corresponds to the i-th endpoint channel. * For example, an endpoint with four channels is represented * as index mask bits 0 through 3. This SAMPLE_RATE_HZ_MAX)) && sampleRate != SAMPLE_RATE_UNSPECIFIED) { throw new IllegalArgumentException("Invalid sample rate " + sampleRate); } mSampleRate = sampleRate; mPropertySetMask |= AUDIO_FORMAT_HAS_PROPERTY_SAMPLE_RATE; return this; } } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; AudioFormat that = (AudioFormat) o; if (mPropertySetMask != that.mPropertySetMask) return false; // return false if any of the properties is set and the values differ return !((((mPropertySetMask & AUDIO_FORMAT_HAS_PROPERTY_ENCODING) != 0) && (mEncoding != that.mEncoding)) || (((mPropertySetMask & AUDIO_FORMAT_HAS_PROPERTY_SAMPLE_RATE) != 0) && (mSampleRate != that.mSampleRate)) || (((mPropertySetMask & AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_MASK) != 0) && (mChannelMask != that.mChannelMask)) || (((mPropertySetMask & AUDIO_FORMAT_HAS_PROPERTY_CHANNEL_INDEX_MASK) != 0) && (mChannelIndexMask != that.mChannelIndexMask))); } @Override public int hashCode() { return Objects.hash(mPropertySetMask, mSampleRate, mEncoding, mChannelMask, mChannelIndexMask); } @Override public int describeContents() { return 0; } @Override public void writeToParcel(Parcel dest, int flags) { dest.writeInt(mPropertySetMask); dest.writeInt(mEncoding); dest.writeInt(mSampleRate); dest.writeInt(mChannelMask); dest.writeInt(mChannelIndexMask); } private AudioFormat(Parcel in) { this( in.readInt(), // propertySetMask in.readInt(), // encoding in.readInt(), // sampleRate in.readInt(), // channelMask in.readInt() // channelIndexMask ); } public static final @android.annotation.NonNull Parcelable.Creator CREATOR = new Parcelable.Creator() { public AudioFormat createFromParcel(Parcel p) { return new AudioFormat(p); } public AudioFormat[] newArray(int size) { return new AudioFormat[size]; } }; @Override public String toString () { return new String("AudioFormat:" + " props=" + mPropertySetMask + " enc=" + mEncoding + " chan=0x" + Integer.toHexString(mChannelMask).toUpperCase() + " chan_index=0x" + Integer.toHexString(mChannelIndexMask).toUpperCase() + " rate=" + mSampleRate); } /** @hide */ @IntDef(flag = false, prefix = "ENCODING", value = { ENCODING_DEFAULT, ENCODING_PCM_16BIT, ENCODING_PCM_8BIT, ENCODING_PCM_FLOAT, ENCODING_AC3, ENCODING_E_AC3, ENCODING_DTS, ENCODING_DTS_HD, ENCODING_MP3, ENCODING_AAC_LC, ENCODING_AAC_HE_V1, ENCODING_AAC_HE_V2, ENCODING_IEC61937, ENCODING_DOLBY_TRUEHD, ENCODING_AAC_ELD, ENCODING_AAC_XHE, ENCODING_AC4, ENCODING_E_AC3_JOC, ENCODING_DOLBY_MAT, ENCODING_OPUS, ENCODING_PCM_24BIT_PACKED, ENCODING_PCM_32BIT, ENCODING_MPEGH_BL_L3, ENCODING_MPEGH_BL_L4, ENCODING_MPEGH_LC_L3, ENCODING_MPEGH_LC_L4, ENCODING_DTS_UHD_P1, ENCODING_DRA, ENCODING_DTS_HD_MA, ENCODING_DTS_UHD_P2, ENCODING_DSD } ) @Retention(RetentionPolicy.SOURCE) public @interface Encoding {} /** @hide */ public static final int[] SURROUND_SOUND_ENCODING = { ENCODING_AC3, ENCODING_E_AC3, ENCODING_DTS, ENCODING_DTS_HD, ENCODING_AAC_LC, ENCODING_DOLBY_TRUEHD, ENCODING_AC4, ENCODING_E_AC3_JOC, ENCODING_DOLBY_MAT, ENCODING_MPEGH_BL_L3, ENCODING_MPEGH_BL_L4, ENCODING_MPEGH_LC_L3, ENCODING_MPEGH_LC_L4, ENCODING_DTS_UHD_P1, ENCODING_DRA, ENCODING_DTS_HD_MA, ENCODING_DTS_UHD_P2 }; /** @hide */ @IntDef(flag = false, prefix = "ENCODING", value = { ENCODING_AC3, ENCODING_E_AC3, ENCODING_DTS, ENCODING_DTS_HD, ENCODING_AAC_LC, ENCODING_DOLBY_TRUEHD, ENCODING_AC4, ENCODING_E_AC3_JOC, ENCODING_DOLBY_MAT, ENCODING_MPEGH_BL_L3, ENCODING_MPEGH_BL_L4, ENCODING_MPEGH_LC_L3, ENCODING_MPEGH_LC_L4, ENCODING_DTS_UHD_P1, ENCODING_DRA, ENCODING_DTS_HD_MA, ENCODING_DTS_UHD_P2 } ) @Retention(RetentionPolicy.SOURCE) public @interface SurroundSoundEncoding {} /** * @hide * * Return default name for a surround format. This is not an International name. * It is just a default to use if an international name is not available. * * @param audioFormat a surround format * @return short default name for the format. */ public static String toDisplayName(@SurroundSoundEncoding int audioFormat) { switch (audioFormat) { case ENCODING_AC3: return "Dolby Digital"; case ENCODING_E_AC3: return "Dolby Digital Plus"; case ENCODING_DTS: return "DTS"; case ENCODING_DTS_HD: return "DTS HD"; case ENCODING_AAC_LC: return "AAC"; case ENCODING_DOLBY_TRUEHD: return "Dolby TrueHD"; case ENCODING_AC4: return "Dolby AC-4"; case ENCODING_E_AC3_JOC: return "Dolby Atmos in Dolby Digital Plus"; case ENCODING_DOLBY_MAT: return "Dolby MAT"; case ENCODING_MPEGH_BL_L3: return "MPEG-H 3D Audio baseline profile level 3"; case ENCODING_MPEGH_BL_L4: return "MPEG-H 3D Audio baseline profile level 4"; case ENCODING_MPEGH_LC_L3: return "MPEG-H 3D Audio low complexity profile level 3"; case ENCODING_MPEGH_LC_L4: return "MPEG-H 3D Audio low complexity profile level 4"; case ENCODING_DTS_UHD_P1: return "DTS UHD Profile 1"; case ENCODING_DRA: return "DRA"; case ENCODING_DTS_HD_MA: return "DTS HD Master Audio"; case ENCODING_DTS_UHD_P2: return "DTS UHD Profile 2"; default: return "Unknown surround sound format"; } } }