summaryrefslogtreecommitdiff
path: root/common/native/bpf_headers/include/bpf/BpfMap.h
blob: d07d61045a72531585e4d1047c9934fe67d92c0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <linux/bpf.h>

#include <android-base/result.h>
#include <android-base/stringprintf.h>
#include <android-base/unique_fd.h>
#include <utils/Log.h>
#include "bpf/BpfUtils.h"

namespace android {
namespace bpf {

// This is a class wrapper for eBPF maps. The eBPF map is a special in-kernel
// data structure that stores data in <Key, Value> pairs. It can be read/write
// from userspace by passing syscalls with the map file descriptor. This class
// is used to generalize the procedure of interacting with eBPF maps and hide
// the implementation detail from other process. Besides the basic syscalls
// wrapper, it also provides some useful helper functions as well as an iterator
// nested class to iterate the map more easily.
//
// NOTE: A kernel eBPF map may be accessed by both kernel and userspace
// processes at the same time. Or if the map is pinned as a virtual file, it can
// be obtained by multiple eBPF map class object and accessed concurrently.
// Though the map class object and the underlying kernel map are thread safe, it
// is not safe to iterate over a map while another thread or process is deleting
// from it. In this case the iteration can return duplicate entries.
template <class Key, class Value>
class BpfMap {
  public:
    BpfMap<Key, Value>() {};

  protected:
    // flag must be within BPF_OBJ_FLAG_MASK, ie. 0, BPF_F_RDONLY, BPF_F_WRONLY
    BpfMap<Key, Value>(const char* pathname, uint32_t flags) {
        int map_fd = mapRetrieve(pathname, flags);
        if (map_fd >= 0) mMapFd.reset(map_fd);
    }

  public:
    explicit BpfMap<Key, Value>(const char* pathname) : BpfMap<Key, Value>(pathname, 0) {}

    BpfMap<Key, Value>(bpf_map_type map_type, uint32_t max_entries, uint32_t map_flags = 0) {
        int map_fd = createMap(map_type, sizeof(Key), sizeof(Value), max_entries, map_flags);
        if (map_fd >= 0) mMapFd.reset(map_fd);
    }

    base::Result<Key> getFirstKey() const {
        Key firstKey;
        if (getFirstMapKey(mMapFd, &firstKey)) {
            return ErrnoErrorf("Get firstKey map {} failed", mMapFd.get());
        }
        return firstKey;
    }

    base::Result<Key> getNextKey(const Key& key) const {
        Key nextKey;
        if (getNextMapKey(mMapFd, &key, &nextKey)) {
            return ErrnoErrorf("Get next key of map {} failed", mMapFd.get());
        }
        return nextKey;
    }

    base::Result<void> writeValue(const Key& key, const Value& value, uint64_t flags) {
        if (writeToMapEntry(mMapFd, &key, &value, flags)) {
            return ErrnoErrorf("Write to map {} failed", mMapFd.get());
        }
        return {};
    }

    base::Result<Value> readValue(const Key key) const {
        Value value;
        if (findMapEntry(mMapFd, &key, &value)) {
            return ErrnoErrorf("Read value of map {} failed", mMapFd.get());
        }
        return value;
    }

    base::Result<void> deleteValue(const Key& key) {
        if (deleteMapEntry(mMapFd, &key)) {
            return ErrnoErrorf("Delete entry from map {} failed", mMapFd.get());
        }
        return {};
    }

    // Function that tries to get map from a pinned path.
    base::Result<void> init(const char* path);

#ifdef TEST_BPF_MAP
    // due to Android SELinux limitations which prevent map creation by anyone besides the bpfloader
    // this should only ever be used by test code, it is equivalent to:
    //   .reset(createMap(type, keysize, valuesize, max_entries, map_flags)
    // TODO: derive map_flags from BpfMap vs BpfMapRO
    base::Result<void> resetMap(bpf_map_type map_type, uint32_t max_entries, uint32_t map_flags = 0) {
        int map_fd = createMap(map_type, sizeof(Key), sizeof(Value), max_entries, map_flags);
        if (map_fd < 0) {
             auto err = ErrnoErrorf("Unable to create map.");
             mMapFd.reset();
             return err;
        };
        mMapFd.reset(map_fd);
        return {};
    }
#endif

    // Iterate through the map and handle each key retrieved based on the filter
    // without modification of map content.
    base::Result<void> iterate(
            const std::function<base::Result<void>(const Key& key, const BpfMap<Key, Value>& map)>&
                    filter) const;

    // Iterate through the map and get each <key, value> pair, handle each <key,
    // value> pair based on the filter without modification of map content.
    base::Result<void> iterateWithValue(
            const std::function<base::Result<void>(const Key& key, const Value& value,
                                                   const BpfMap<Key, Value>& map)>& filter) const;

    // Iterate through the map and handle each key retrieved based on the filter
    base::Result<void> iterate(
            const std::function<base::Result<void>(const Key& key, BpfMap<Key, Value>& map)>&
                    filter);

    // Iterate through the map and get each <key, value> pair, handle each <key,
    // value> pair based on the filter.
    base::Result<void> iterateWithValue(
            const std::function<base::Result<void>(const Key& key, const Value& value,
                                                   BpfMap<Key, Value>& map)>& filter);

    const base::unique_fd& getMap() const { return mMapFd; };

    // Copy assignment operator
    BpfMap<Key, Value>& operator=(const BpfMap<Key, Value>& other) {
        if (this != &other) mMapFd.reset(fcntl(other.mMapFd.get(), F_DUPFD_CLOEXEC, 0));
        return *this;
    }

    // Move assignment operator
    BpfMap<Key, Value>& operator=(BpfMap<Key, Value>&& other) noexcept {
        mMapFd = std::move(other.mMapFd);
        other.reset(-1);
        return *this;
    }

    void reset(base::unique_fd fd) = delete;

    void reset(int fd) { mMapFd.reset(fd); }

    bool isValid() const { return mMapFd != -1; }

    base::Result<void> clear() {
        while (true) {
            auto key = getFirstKey();
            if (!key.ok()) {
                if (key.error().code() == ENOENT) return {};  // empty: success
                return key.error();                           // Anything else is an error
            }
            auto res = deleteValue(key.value());
            if (!res.ok()) {
                // Someone else could have deleted the key, so ignore ENOENT
                if (res.error().code() == ENOENT) continue;
                ALOGE("Failed to delete data %s", strerror(res.error().code()));
                return res.error();
            }
        }
    }

    base::Result<bool> isEmpty() const {
        auto key = getFirstKey();
        if (!key.ok()) {
            // Return error code ENOENT means the map is empty
            if (key.error().code() == ENOENT) return true;
            return key.error();
        }
        return false;
    }

  private:
    base::unique_fd mMapFd;
};

template <class Key, class Value>
base::Result<void> BpfMap<Key, Value>::init(const char* path) {
    mMapFd = base::unique_fd(mapRetrieveRW(path));
    if (mMapFd == -1) {
        return ErrnoErrorf("Pinned map not accessible or does not exist: ({})", path);
    }
    return {};
}

template <class Key, class Value>
base::Result<void> BpfMap<Key, Value>::iterate(
        const std::function<base::Result<void>(const Key& key, const BpfMap<Key, Value>& map)>&
                filter) const {
    base::Result<Key> curKey = getFirstKey();
    while (curKey.ok()) {
        const base::Result<Key>& nextKey = getNextKey(curKey.value());
        base::Result<void> status = filter(curKey.value(), *this);
        if (!status.ok()) return status;
        curKey = nextKey;
    }
    if (curKey.error().code() == ENOENT) return {};
    return curKey.error();
}

template <class Key, class Value>
base::Result<void> BpfMap<Key, Value>::iterateWithValue(
        const std::function<base::Result<void>(const Key& key, const Value& value,
                                               const BpfMap<Key, Value>& map)>& filter) const {
    base::Result<Key> curKey = getFirstKey();
    while (curKey.ok()) {
        const base::Result<Key>& nextKey = getNextKey(curKey.value());
        base::Result<Value> curValue = readValue(curKey.value());
        if (!curValue.ok()) return curValue.error();
        base::Result<void> status = filter(curKey.value(), curValue.value(), *this);
        if (!status.ok()) return status;
        curKey = nextKey;
    }
    if (curKey.error().code() == ENOENT) return {};
    return curKey.error();
}

template <class Key, class Value>
base::Result<void> BpfMap<Key, Value>::iterate(
        const std::function<base::Result<void>(const Key& key, BpfMap<Key, Value>& map)>& filter) {
    base::Result<Key> curKey = getFirstKey();
    while (curKey.ok()) {
        const base::Result<Key>& nextKey = getNextKey(curKey.value());
        base::Result<void> status = filter(curKey.value(), *this);
        if (!status.ok()) return status;
        curKey = nextKey;
    }
    if (curKey.error().code() == ENOENT) return {};
    return curKey.error();
}

template <class Key, class Value>
base::Result<void> BpfMap<Key, Value>::iterateWithValue(
        const std::function<base::Result<void>(const Key& key, const Value& value,
                                               BpfMap<Key, Value>& map)>& filter) {
    base::Result<Key> curKey = getFirstKey();
    while (curKey.ok()) {
        const base::Result<Key>& nextKey = getNextKey(curKey.value());
        base::Result<Value> curValue = readValue(curKey.value());
        if (!curValue.ok()) return curValue.error();
        base::Result<void> status = filter(curKey.value(), curValue.value(), *this);
        if (!status.ok()) return status;
        curKey = nextKey;
    }
    if (curKey.error().code() == ENOENT) return {};
    return curKey.error();
}

template <class Key, class Value>
class BpfMapRO : public BpfMap<Key, Value> {
  public:
    explicit BpfMapRO<Key, Value>(const char* pathname)
        : BpfMap<Key, Value>(pathname, BPF_F_RDONLY) {}
};

}  // namespace bpf
}  // namespace android