/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Utils" #include "Utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ControlFlow.h" #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include "OperationResolver.h" #include "ValidateHal.h" namespace android { namespace nn { using namespace hal; constexpr PerformanceInfo kNoPerformanceInfo = {.execTime = FLT_MAX, .powerUsage = FLT_MAX}; const char kVLogPropKey[] = "debug.nn.vlog"; int vLogMask = ~0; // Split the space separated list of tags from verbose log setting and build the // logging mask from it. note that '1' and 'all' are special cases to enable all // verbose logging. // // NN API verbose logging setting comes from system property debug.nn.vlog. // Example: // setprop debug.nn.vlog 1 : enable all logging tags. // setprop debug.nn.vlog "model compilation" : only enable logging for MODEL and // COMPILATION tags. void initVLogMask() { vLogMask = 0; const std::string vLogSetting = android::base::GetProperty(kVLogPropKey, ""); if (vLogSetting.empty()) { return; } std::unordered_map vLogFlags = {{"1", -1}, {"all", -1}, {"model", MODEL}, {"compilation", COMPILATION}, {"execution", EXECUTION}, {"cpuexe", CPUEXE}, {"manager", MANAGER}, {"driver", DRIVER}, {"memory", MEMORY}}; std::vector elements = android::base::Split(vLogSetting, " ,:"); for (const auto& elem : elements) { const auto& flag = vLogFlags.find(elem); if (flag == vLogFlags.end()) { LOG(ERROR) << "Unknown trace flag: " << elem; continue; } if (flag->second == -1) { // -1 is used for the special values "1" and "all" that enable all // tracing. vLogMask = ~0; return; } else { vLogMask |= 1 << flag->second; } } } Deadline makeDeadline(uint64_t duration) { const auto maxTime = Deadline::max(); const auto currentTime = std::chrono::steady_clock::now(); // Create Deadline. If there would be an overflow, use the max value. const uint64_t remainingNanoseconds = std::chrono::duration_cast(maxTime - currentTime).count(); if (duration > remainingNanoseconds) { return maxTime; } return currentTime + std::chrono::nanoseconds{duration}; } std::optional makeDeadline(std::optional duration) { return duration.has_value() ? makeDeadline(*duration) : std::optional{}; } static uint64_t getMaxNanosecondsSinceEpoch() { const auto maxTime = std::chrono::time_point::max(); return maxTime.time_since_epoch().count(); } std::optional makeDeadline(const OptionalTimePoint& timePoint) { using Discriminator = hal::OptionalTimePoint::hidl_discriminator; if (timePoint.getDiscriminator() == Discriminator::none) { return std::nullopt; } const uint64_t nanosecondsSinceEpoch = timePoint.nanosecondsSinceEpoch(); const uint64_t maxNanosecondsSinceEpoch = getMaxNanosecondsSinceEpoch(); // Clamp time point to max. if (nanosecondsSinceEpoch >= maxNanosecondsSinceEpoch) { return Deadline::max(); } // Return provided time point. return Deadline{std::chrono::nanoseconds{nanosecondsSinceEpoch}}; } bool hasDeadlinePassed(const std::optional& deadline) { if (!deadline.has_value()) { return false; } return std::chrono::steady_clock::now() >= *deadline; } static OptionalTimePoint makeTimePoint(const Deadline& deadline) { const auto timeSinceEpoch = deadline.time_since_epoch(); const uint64_t nanosecondsSinceEpoch = std::chrono::duration_cast(timeSinceEpoch).count(); OptionalTimePoint ret; ret.nanosecondsSinceEpoch(nanosecondsSinceEpoch); return ret; } OptionalTimePoint makeTimePoint(const std::optional& deadline) { return deadline.has_value() ? makeTimePoint(*deadline) : OptionalTimePoint{}; } static bool isExtensionOperandType(int32_t type) { return static_cast(type) > static_cast(OperandTypeRange::BASE_MAX); } static bool isExtensionOperationType(ANeuralNetworksOperationType type) { return static_cast(type) > static_cast(OperationTypeRange::BASE_MAX); } bool isExtensionOperandType(OperandType type) { return isExtensionOperandType(static_cast(type)); } bool isExtensionOperationType(OperationType type) { return isExtensionOperationType(static_cast(type)); } namespace { template EntryType tableLookup(const EntryType (&table)[entryCount], const EntryType (&tableOEM)[entryCountOEM], uint32_t code) { if (code < entryCount) { return table[code]; } else if (code >= kOEMCodeBase && (code - kOEMCodeBase) < entryCountOEM) { return tableOEM[code - kOEMCodeBase]; } else { nnAssert(!"tableLookup: bad code"); return EntryType(); } } class OperationValidationContext : public IOperationValidationContext { DISALLOW_IMPLICIT_CONSTRUCTORS(OperationValidationContext); public: OperationValidationContext(const char* operationName, uint32_t inputCount, const uint32_t* inputIndexes, uint32_t outputCount, const uint32_t* outputIndexes, const Operand* operands, HalVersion halVersion) : operationName(operationName), inputCount(inputCount), inputIndexes(inputIndexes), outputCount(outputCount), outputIndexes(outputIndexes), operands(operands), halVersion(halVersion) {} const char* getOperationName() const override; HalVersion getHalVersion() const override; uint32_t getNumInputs() const override; OperandType getInputType(uint32_t index) const override; Shape getInputShape(uint32_t index) const override; const OperandExtraParams getInputExtraParams(uint32_t index) const override; uint32_t getNumOutputs() const override; OperandType getOutputType(uint32_t index) const override; Shape getOutputShape(uint32_t index) const override; private: const Operand* getInputOperand(uint32_t index) const; const Operand* getOutputOperand(uint32_t index) const; const char* operationName; uint32_t inputCount; const uint32_t* inputIndexes; uint32_t outputCount; const uint32_t* outputIndexes; const Operand* operands; HalVersion halVersion; }; const char* OperationValidationContext::getOperationName() const { return operationName; } HalVersion OperationValidationContext::getHalVersion() const { return halVersion; } const Operand* OperationValidationContext::getInputOperand(uint32_t index) const { CHECK(index < static_cast(inputCount)); return &operands[inputIndexes[index]]; } const Operand* OperationValidationContext::getOutputOperand(uint32_t index) const { CHECK(index < static_cast(outputCount)); return &operands[outputIndexes[index]]; } uint32_t OperationValidationContext::getNumInputs() const { return inputCount; } uint32_t OperationValidationContext::getNumOutputs() const { return outputCount; } OperandType OperationValidationContext::getInputType(uint32_t index) const { return getInputOperand(index)->type; } Shape OperationValidationContext::getInputShape(uint32_t index) const { const Operand* operand = getInputOperand(index); return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint, operand->extraParams}; } const OperandExtraParams OperationValidationContext::getInputExtraParams(uint32_t index) const { return getInputOperand(index)->extraParams; } OperandType OperationValidationContext::getOutputType(uint32_t index) const { return getOutputOperand(index)->type; } Shape OperationValidationContext::getOutputShape(uint32_t index) const { const Operand* operand = getOutputOperand(index); return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint, operand->extraParams}; } }; // anonymous namespace #define COUNT(X) (sizeof(X) / sizeof(X[0])) std::string getOperandTypeName(OperandType type) { return toString(type); } static std::string getOperationName(uint32_t code) { return getOperationName(static_cast(code)); } std::string getOperationName(OperationType type) { return toString(type); } const uint32_t kSizeOfDataType[]{ 4, // ANEURALNETWORKS_FLOAT32 4, // ANEURALNETWORKS_INT32 4, // ANEURALNETWORKS_UINT32 4, // ANEURALNETWORKS_TENSOR_FLOAT32 4, // ANEURALNETWORKS_TENSOR_INT32 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM 1, // ANEURALNETWORKS_BOOL 2, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM 2, // ANEURALNETWORKS_TENSOR_FLOAT16 1, // ANEURALNETWORKS_TENSOR_BOOL8 2, // ANEURALNETWORKS_FLOAT16 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL 2, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED 0, // ANEURALNETWORKS_MODEL }; static_assert(COUNT(kSizeOfDataType) == kNumberOfDataTypes, "kSizeOfDataType is incorrect"); const bool kScalarDataType[]{ true, // ANEURALNETWORKS_FLOAT32 true, // ANEURALNETWORKS_INT32 true, // ANEURALNETWORKS_UINT32 false, // ANEURALNETWORKS_TENSOR_FLOAT32 false, // ANEURALNETWORKS_TENSOR_INT32 false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM true, // ANEURALNETWORKS_BOOL false, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM false, // ANEURALNETWORKS_TENSOR_FLOAT16 false, // ANEURALNETWORKS_TENSOR_BOOL8 true, // ANEURALNETWORKS_FLOAT16 false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL false, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED true, // ANEURALNETWORKS_MODEL }; static_assert(COUNT(kScalarDataType) == kNumberOfDataTypes, "kScalarDataType is incorrect"); const uint32_t kSizeOfDataTypeOEM[]{ 0, // ANEURALNETWORKS_OEM 1, // ANEURALNETWORKS_TENSOR_OEM_BYTE }; static_assert(COUNT(kSizeOfDataTypeOEM) == kNumberOfDataTypesOEM, "kSizeOfDataTypeOEM is incorrect"); const bool kScalarDataTypeOEM[]{ true, // ANEURALNETWORKS_OEM false, // ANEURALNETWORKS_TENSOR_OEM_BYTE }; static_assert(COUNT(kScalarDataTypeOEM) == kNumberOfDataTypesOEM, "kScalarDataTypeOEM is incorrect"); bool nonExtensionOperandTypeIsScalar(int type) { CHECK(!isExtensionOperandType(type)) << "Extension operand types are not supported"; return tableLookup(kScalarDataType, kScalarDataTypeOEM, type); } uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector& dimensions) { CHECK(!isExtensionOperandType(type)) << "Size of extension operand data is unknown"; int n = static_cast(type); uint32_t sizeOfElement = tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, n); return tableLookup(kScalarDataType, kScalarDataTypeOEM, n) ? sizeOfElement : sizeOfTensorData(sizeOfElement, dimensions); } // Returns a pair of {false, size} on success, {true, 0} if size overflows uint32_t. static std::pair sizeOfTensorDataHelper(uint32_t sizeOfElement, const std::vector& dimensions) { if (dimensions.empty()) { return {false, 0}; } uint64_t size = static_cast(sizeOfElement); constexpr uint64_t kMaxSize = static_cast(std::numeric_limits::max()); for (uint32_t d : dimensions) { size *= d; if (size > kMaxSize) return {true, 0}; } return {false, static_cast(size)}; } uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector& dimensions) { const auto [overflow, size] = sizeOfTensorDataHelper(sizeOfElement, dimensions); CHECK(!overflow); return size; } bool nonExtensionOperandSizeOfDataOverflowsUInt32(hal::OperandType type, const std::vector& dimensions) { CHECK(!isExtensionOperandType(type)) << "Size of extension operand data is unknown"; int n = static_cast(type); uint32_t sizeOfElement = tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, n); return tableLookup(kScalarDataType, kScalarDataTypeOEM, n) ? false : sizeOfTensorDataOverflowsUInt32(sizeOfElement, dimensions); } bool sizeOfTensorDataOverflowsUInt32(uint32_t sizeOfElement, const std::vector& dimensions) { return sizeOfTensorDataHelper(sizeOfElement, dimensions).first; } bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount) { if (!isExtensionOperandType(type)) { CHECK(!nonExtensionOperandTypeIsScalar(type)) << "A scalar type can never have unspecified dimensions"; } return dimCount == 0 || std::find(dim, dim + dimCount, 0) != (dim + dimCount); } bool tensorHasUnspecifiedDimensions(OperandType type, const std::vector& dimensions) { return tensorHasUnspecifiedDimensions(static_cast(type), dimensions.data(), dimensions.size()); } bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type) { return tensorHasUnspecifiedDimensions(type->type, type->dimensions, type->dimensionCount); } bool tensorHasUnspecifiedDimensions(const Operand& operand) { return tensorHasUnspecifiedDimensions(static_cast(operand.type), operand.dimensions.data(), operand.dimensions.size()); } uint32_t alignBytesNeeded(uint32_t index, size_t length) { uint32_t pattern; if (length < 2) { pattern = 0; // No alignment necessary } else if (length < 4) { pattern = 1; // Align on 2-byte boundary } else { pattern = 3; // Align on 4-byte boundary } uint32_t extra = (~(index - 1)) & pattern; return extra; } void logModelToInfo(const V1_0::Model& model) { LOG(INFO) << "V1_0::Model start"; LOG(INFO) << "operands" << toString(model.operands); LOG(INFO) << "operations" << toString(model.operations); LOG(INFO) << "inputIndexes" << toString(model.inputIndexes); LOG(INFO) << "outputIndexes" << toString(model.outputIndexes); LOG(INFO) << "operandValues size" << model.operandValues.size(); LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools)); } void logModelToInfo(const V1_1::Model& model) { LOG(INFO) << "V1_1::Model start"; LOG(INFO) << "operands" << toString(model.operands); LOG(INFO) << "operations" << toString(model.operations); LOG(INFO) << "inputIndexes" << toString(model.inputIndexes); LOG(INFO) << "outputIndexes" << toString(model.outputIndexes); LOG(INFO) << "operandValues size " << model.operandValues.size(); LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools)); } void logModelToInfo(const V1_2::Model& model) { LOG(INFO) << "V1_2::Model start"; LOG(INFO) << "operands" << toString(model.operands); LOG(INFO) << "operations" << toString(model.operations); LOG(INFO) << "inputIndexes" << toString(model.inputIndexes); LOG(INFO) << "outputIndexes" << toString(model.outputIndexes); LOG(INFO) << "operandValues size" << model.operandValues.size(); LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools)); LOG(INFO) << "relaxComputationFloat32toFloat16" << model.relaxComputationFloat32toFloat16; LOG(INFO) << "extensionNameToPrefix" << toString(model.extensionNameToPrefix); } static void logSubgraphToInfo(std::string label, const V1_3::Subgraph& subgraph) { LOG(INFO) << label << ".operands" << toString(subgraph.operands); LOG(INFO) << label << ".operations" << toString(subgraph.operations); LOG(INFO) << label << ".inputIndexes" << toString(subgraph.inputIndexes); LOG(INFO) << label << ".outputIndexes" << toString(subgraph.outputIndexes); } void logModelToInfo(const V1_3::Model& model) { LOG(INFO) << "V1_3::Model start"; logSubgraphToInfo("main", model.main); for (uint32_t i = 0, n = model.referenced.size(); i < n; ++i) { logSubgraphToInfo("referenced[" + std::to_string(i) + "]", model.referenced[i]); } LOG(INFO) << "operandValues size " << model.operandValues.size(); LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools)); LOG(INFO) << "relaxComputationFloat32toFloat16 " << model.relaxComputationFloat32toFloat16; LOG(INFO) << "extensionNameToPrefix" << toString(model.extensionNameToPrefix); } bool validateOperandSymmPerChannelQuantParams( const Operand& halOperand, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant, const char* tag) { if (halOperand.type != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { return false; } NN_RET_CHECK_LT(channelQuant.channelDim, halOperand.dimensions.size()) << tag; NN_RET_CHECK(channelQuant.scales != nullptr) << tag; NN_RET_CHECK_EQ(channelQuant.scaleCount, halOperand.dimensions[channelQuant.channelDim]) << tag; NN_RET_CHECK_NE(halOperand.dimensions[channelQuant.channelDim], 0u) << tag << " channel dimension " << channelQuant.channelDim << " is underspecified"; for (uint32_t i = 0; i < halOperand.dimensions[channelQuant.channelDim]; i++) { NN_RET_CHECK_GT(channelQuant.scales[i], 0.0f) << tag << " invalid scaleArray[" << i << "]"; } return true; } static bool validateScalarDimensions(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK_EQ(type.dimensionCount, 0u) << tag << " invalid dimensions for scalar type"; NN_RET_CHECK(type.dimensions == nullptr) << tag << " invalid dimensions for scalar type"; return true; } static bool validateQuant8AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 255) << tag << " invalid zeroPoint: " << type.zeroPoint; NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; return true; } static bool validateQuant8AsymmSignedParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK(-128 <= type.zeroPoint && type.zeroPoint <= 127) << tag << " invalid zeroPoint: " << type.zeroPoint; NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; return true; } static bool validateQuant8SymmParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " invalid zeroPoint: " << type.zeroPoint; NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; return true; } static bool validateQuant16AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 65535) << tag << " invalid zeroPoint: " << type.zeroPoint; NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; return true; } static bool validateQuantSymmParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero"; NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale"; return true; } static bool validateNoQuantParams(const ANeuralNetworksOperandType& type, const char* tag) { NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero"; NN_RET_CHECK_EQ(type.scale, 0.f) << tag << " scale is not zero"; return true; } static bool validateTensorDimensions( const ANeuralNetworksOperandType& type, const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, bool allowPartial) { if (!allowPartial) { NN_RET_CHECK_GT(type.dimensionCount, 0u) << tag << " invalid operand dimensions"; } uint64_t size = isExtensionOperandType(type.type) ? extensionOperandTypeInfo->byteSize : tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, static_cast(type.type)); constexpr uint64_t kMaxSize = std::numeric_limits::max(); for (uint32_t i = 0; i < type.dimensionCount; i++) { if (!allowPartial) { NN_RET_CHECK_NE(type.dimensions[i], 0u) << tag << " invalid operand dimensions"; } if (type.dimensions[i] != 0) { size *= type.dimensions[i]; NN_RET_CHECK_LE(size, kMaxSize) << tag << " operand byte size exceeds " << kMaxSize; } } return true; } static bool validateOperandTypeHelper( const ANeuralNetworksOperandType& type, const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, bool allowPartial) { NN_RET_CHECK_EQ(type.dimensionCount == 0, type.dimensions == nullptr); if (isExtensionOperandType(type.type)) { NN_RET_CHECK(extensionOperandTypeInfo != nullptr); if (extensionOperandTypeInfo->isTensor) { NN_RET_CHECK( validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial)); } else { NN_RET_CHECK(validateScalarDimensions(type, tag)); } return validateNoQuantParams(type, tag); } NN_RET_CHECK(extensionOperandTypeInfo == nullptr); NN_RET_CHECK(validCode(kNumberOfDataTypes, kNumberOfDataTypesOEM, type.type)) << tag << " invalid OperandType: " << type.type; bool isScalar = tableLookup(kScalarDataType, kScalarDataTypeOEM, type.type); if (isScalar) { NN_RET_CHECK(validateScalarDimensions(type, tag)); if (type.type != ANEURALNETWORKS_OEM_SCALAR) { // Historically, we have allowed OEM types // to use quantization parameters. NN_RET_CHECK(validateNoQuantParams(type, tag)); } } else { NN_RET_CHECK(validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial)); if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) { NN_RET_CHECK(validateQuant8AsymmParams(type, tag)); } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED) { NN_RET_CHECK(validateQuant8AsymmSignedParams(type, tag)); } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_SYMM) { NN_RET_CHECK(validateQuant8SymmParams(type, tag)); } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_ASYMM) { NN_RET_CHECK(validateQuant16AsymmParams(type, tag)); } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_SYMM) { NN_RET_CHECK(validateQuantSymmParams(type, tag)); } else if (type.type == ANEURALNETWORKS_TENSOR_INT32) { // TODO(b/119869082): TENSOR_INT32 should not use quantization parameters. } else if (type.type == ANEURALNETWORKS_TENSOR_OEM_BYTE) { // Historically, we have allowed OEM types to use quantization parameters. } else { NN_RET_CHECK(validateNoQuantParams(type, tag)); } } return true; } int validateOperandType(const ANeuralNetworksOperandType& type, const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag, bool allowPartial) { return validateOperandTypeHelper(type, extensionOperandTypeInfo, tag, allowPartial) ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_DATA; } int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount, const char* tag) { for (uint32_t i = 0; i < count; i++) { if (list[i] >= operandCount) { LOG(ERROR) << tag << " invalid operand index at " << i << " = " << list[i] << ", operandCount " << operandCount; return ANEURALNETWORKS_BAD_DATA; } } return ANEURALNETWORKS_NO_ERROR; } int validateOperationOperandTypes(const std::vector& operands, uint32_t inOperandCount, const uint32_t* inOperandIndexes, const std::vector& inExpectedTypes, uint32_t outOperandCount, const uint32_t* outOperandIndexes, const std::vector& outExpectedInTypes) { if (inOperandCount != static_cast(inExpectedTypes.size()) || outOperandCount != static_cast(outExpectedInTypes.size())) { LOG(ERROR) << "Wrong operand count: expected " << inExpectedTypes.size() << " inputs and " << outExpectedInTypes.size() << " outputs," << "got " << inOperandCount << " inputs and " << outOperandCount << " outputs"; return ANEURALNETWORKS_BAD_DATA; } for (uint32_t i = 0; i < inOperandCount; i++) { if (operands[inOperandIndexes[i]].type != inExpectedTypes[i]) { LOG(ERROR) << "Invalid input tensor type " << toString(operands[inOperandIndexes[i]].type) << " for input " << i << ", expected " << toString(inExpectedTypes[i]); return ANEURALNETWORKS_BAD_DATA; } } for (uint32_t i = 0; i < outOperandCount; i++) { if (operands[outOperandIndexes[i]].type != outExpectedInTypes[i]) { LOG(ERROR) << "Invalid output tensor type " << toString(operands[outOperandIndexes[i]].type) << " for input " << i << ", expected " << toString(outExpectedInTypes[i]); return ANEURALNETWORKS_BAD_DATA; } } return ANEURALNETWORKS_NO_ERROR; } static int validateHalVersion(ANeuralNetworksOperationType opType, HalVersion halVersion, HalVersion minSupportedHalVersion) { if (halVersion < minSupportedHalVersion) { LOG(ERROR) << "The given inputs and outputs for operation " << getOperationName(opType) << " are only supported in " << toString(minSupportedHalVersion) << " and later (validating using " << toString(halVersion) << ")"; return ANEURALNETWORKS_BAD_DATA; } return ANEURALNETWORKS_NO_ERROR; } // Checks if two operands have the same types, ranks (if specified), dimensions // (if specified), scales, zeroPoints, and extraParams. static bool compatible(const Operand& a, const Operand& b) { NN_RET_CHECK(a.type == b.type) << toString(a.type) << " != " << toString(b.type); if (a.dimensions.size() != 0 && b.dimensions.size() != 0) { NN_RET_CHECK_EQ(a.dimensions.size(), b.dimensions.size()) << "Incompatible dimensions"; for (uint32_t i = 0, n = a.dimensions.size(); i < n; ++i) { if (a.dimensions[i] != 0 && b.dimensions[i] != 0) { NN_RET_CHECK_EQ(a.dimensions[i], b.dimensions[i]) << "Incompatible dimensions"; } } } NN_RET_CHECK_EQ(a.scale, b.scale); NN_RET_CHECK_EQ(a.zeroPoint, b.zeroPoint); NN_RET_CHECK(a.extraParams == b.extraParams) << toString(a.extraParams) << " != " << toString(b.extraParams); return true; } static bool validateConditionOperand(const Operand& operand) { NN_RET_CHECK(operand.type == OperandType::TENSOR_BOOL8) << "Unexpected condition operand type: " << toString(operand.type); NN_RET_CHECK_EQ(operand.dimensions.size(), 1u) << "Condition operand must be a singleton"; NN_RET_CHECK_EQ(operand.dimensions[0], 1u) << "Condition operand must be a singleton"; return true; } static void checkSubgraphValidationHelper(const SubgraphValidationHelper& helper) { CHECK(helper.isValidSubgraphReference != nullptr); CHECK(helper.getSubgraphInputCount != nullptr); CHECK(helper.getSubgraphOutputCount != nullptr); CHECK(helper.getSubgraphInputOperand != nullptr); CHECK(helper.getSubgraphOutputOperand != nullptr); } static bool validateIfOperation(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs, const std::vector& operands, const SubgraphValidationHelper& helper) { namespace op = operation_if; checkSubgraphValidationHelper(helper); NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_IF must have at least 3 inputs"; NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_IF must have at least 1 output"; auto validateBranchOperand = [&](const Operand& branchModelOperand) -> bool { NN_RET_CHECK(helper.isValidSubgraphReference(branchModelOperand)) << "Operand is not a valid subgraph reference"; const uint32_t branchModelInputCount = helper.getSubgraphInputCount(branchModelOperand); const uint32_t branchModelOutputCount = helper.getSubgraphOutputCount(branchModelOperand); NN_RET_CHECK_EQ(inputCount, op::kFirstInput + branchModelInputCount); NN_RET_CHECK_EQ(outputCount, branchModelOutputCount); for (uint32_t i = 0; i < branchModelInputCount; ++i) { const Operand& innerOperand = *helper.getSubgraphInputOperand(branchModelOperand, i); const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; NN_RET_CHECK(compatible(innerOperand, outerOperand)); } for (uint32_t i = 0; i < branchModelOutputCount; ++i) { const Operand& innerOperand = *helper.getSubgraphOutputOperand(branchModelOperand, i); const Operand& outerOperand = operands[outputs[i]]; NN_RET_CHECK(compatible(innerOperand, outerOperand)); } return true; }; NN_RET_CHECK(validateConditionOperand(operands[inputs[op::kCondBoolOperand]])) << "Validation failed for IF condition operand"; NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kThenModelOperand]])) << "Validation failed for IF then model"; NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kElseModelOperand]])) << "Validation failed for IF else model"; return true; } static bool validateWhileOperation(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs, const std::vector& operands, const SubgraphValidationHelper& helper) { // Let the loop have // - m >= 1 input-output operands, // - k >= 0 state-only operands, and // - n >= 0 input-only operands. // Then // - the WHILE loop operation has (2 + m + k + n) inputs and m outputs. // - the condition model has (m + k + n) inputs and 1 output. // - the body model has (m + k + n) inputs and (m + k) outputs. namespace op = operation_while; checkSubgraphValidationHelper(helper); NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_WHILE must have at least 3 inputs"; NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_WHILE must have at least 1 output"; auto validateCondOperand = [&](const Operand& condModelOperand) -> bool { NN_RET_CHECK(helper.isValidSubgraphReference(condModelOperand)) << "Operand is not a valid subgraph reference"; const uint32_t condModelInputCount = helper.getSubgraphInputCount(condModelOperand); const uint32_t condModelOutputCount = helper.getSubgraphOutputCount(condModelOperand); NN_RET_CHECK_EQ(inputCount, op::kFirstInput + condModelInputCount); NN_RET_CHECK_EQ(condModelOutputCount, 1u); for (uint32_t i = 0; i < condModelInputCount; ++i) { const Operand& innerOperand = *helper.getSubgraphInputOperand(condModelOperand, i); const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; NN_RET_CHECK(compatible(innerOperand, outerOperand)); } NN_RET_CHECK( validateConditionOperand(*helper.getSubgraphOutputOperand(condModelOperand, 0))); return true; }; auto validateBodyOperand = [&](const Operand& bodyModelOperand) -> bool { NN_RET_CHECK(helper.isValidSubgraphReference(bodyModelOperand)) << "Operand is not a valid subgraph reference"; const uint32_t bodyModelInputCount = helper.getSubgraphInputCount(bodyModelOperand); const uint32_t bodyModelOutputCount = helper.getSubgraphOutputCount(bodyModelOperand); NN_RET_CHECK_EQ(inputCount, op::kFirstInput + bodyModelInputCount); NN_RET_CHECK_GE(bodyModelOutputCount, outputCount); NN_RET_CHECK_GE(bodyModelInputCount, bodyModelOutputCount); const uint32_t inputOutputCount = outputCount; const uint32_t stateOnlyCount = bodyModelOutputCount - inputOutputCount; const uint32_t inputOnlyCount = bodyModelInputCount - bodyModelOutputCount; for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount + inputOnlyCount; i < n; ++i) { const Operand& innerOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i); const Operand& outerOperand = operands[inputs[op::kFirstInput + i]]; NN_RET_CHECK(compatible(innerOperand, outerOperand)); } for (uint32_t i = 0; i < inputOutputCount; ++i) { const Operand& innerOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i); const Operand& outerOperand = operands[outputs[i]]; NN_RET_CHECK(compatible(innerOperand, outerOperand)); } for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount; i < n; ++i) { const Operand& inputOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i); const Operand& outputOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i); NN_RET_CHECK(compatible(inputOperand, outputOperand)); } return true; }; NN_RET_CHECK(validateCondOperand(operands[inputs[op::kCondModelOperand]])) << "Validation failed for WHILE condition model"; NN_RET_CHECK(validateBodyOperand(operands[inputs[op::kBodyModelOperand]])) << "Validation failed for WHILE body model"; return true; } static inline int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount, const uint32_t* inputIndexes, uint32_t outputCount, const uint32_t* outputIndexes, const std::vector& operands, HalVersion halVersion) { if (opType == ANEURALNETWORKS_IF || opType == ANEURALNETWORKS_WHILE) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); LOG(ERROR) << "This validateOperation() overload does not support control flow"; return ANEURALNETWORKS_BAD_DATA; } return validateOperation(opType, inputCount, inputIndexes, outputCount, outputIndexes, operands, halVersion, {}); } int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount, const uint32_t* inputIndexes, uint32_t outputCount, const uint32_t* outputIndexes, const std::vector& operands, HalVersion halVersion, const SubgraphValidationHelper& helper) { NN_RETURN_IF_ERROR(validateOperandList(inputCount, inputIndexes, static_cast(operands.size()), "ANeuralNetworksModel_addOperation inputs")); NN_RETURN_IF_ERROR(validateOperandList(outputCount, outputIndexes, static_cast(operands.size()), "ANeuralNetworksModel_addOperation outputs")); if (isExtensionOperationType(opType)) { if (halVersion < HalVersion::V1_2) { LOG(ERROR) << "Extension operations are supported since HAL version 1.2, validating using " << toString(halVersion); return ANEURALNETWORKS_BAD_DATA; } // There is no other validation we can do for an extension operation. return ANEURALNETWORKS_NO_ERROR; } auto logInvalidInOutNumber = [opType, inputCount, outputCount](int expIn, int expOut) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected " << expIn << ") or output operands (" << outputCount << ", expected " << expOut << ") for operation " << getOperationName(opType); }; switch (opType) { case ANEURALNETWORKS_OEM_OPERATION: { return ANEURALNETWORKS_NO_ERROR; } case ANEURALNETWORKS_RESHAPE: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::TENSOR_INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } const auto inputRank = operands[inputIndexes[0]].dimensions.size(); if (inputRank > 4) { LOG(ERROR) << "Unsupported input tensor rank for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_DEPTH_TO_SPACE: { if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3 or 2) or output operands (" << outputCount << ", expected 1) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputCount == 3) { inExpectedTypes.push_back(OperandType::BOOL); NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_SPACE_TO_DEPTH: { if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3 or 2) or output operands (" << outputCount << ", expected 1) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputCount == 3) { inExpectedTypes.push_back(OperandType::BOOL); NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_EMBEDDING_LOOKUP: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[1]].type; if (inputType != OperandType::TENSOR_FLOAT16 && inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_INT32 && inputType != OperandType::TENSOR_QUANT8_ASYMM && inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes = {OperandType::TENSOR_INT32, inputType}; std::vector outExpectedTypes = {inputType}; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else if (inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_HASHTABLE_LOOKUP: { if (inputCount != 3 || outputCount != 2) { logInvalidInOutNumber(3, 2); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[2]].type; if (inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_INT32 && inputType != OperandType::TENSOR_QUANT8_ASYMM) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes = {OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, inputType}; std::vector outExpectedTypes = {inputType, OperandType::TENSOR_QUANT8_ASYMM}; NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_LSH_PROJECTION: { if (inputCount != 4 || outputCount != 1) { logInvalidInOutNumber(4, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[1]].type; if (inputType != OperandType::TENSOR_FLOAT16 && inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_INT32 && inputType != OperandType::TENSOR_QUANT8_ASYMM) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto hashType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; if (hashType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, inputType, OperandType::TENSOR_FLOAT16, OperandType::INT32, }; } else if (hashType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = { OperandType::TENSOR_FLOAT32, inputType, OperandType::TENSOR_FLOAT32, OperandType::INT32, }; } else { LOG(ERROR) << "Unsupported hash tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector outExpectedTypes = {OperandType::TENSOR_INT32}; return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM: { const uint32_t kNumOutputs = 2; const uint32_t kNumOutputsMerged = 1; const uint32_t kNumOutputsWithState = 6; const uint32_t kNumOutputsMergedWithState = 5; if (inputCount != 61 || (outputCount != kNumOutputs && outputCount != kNumOutputsMerged && outputCount != kNumOutputsWithState && outputCount != kNumOutputsMergedWithState)) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 61) or output operands (" << outputCount << ", expected 1, 2, 5 or 6) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes; auto inputType = operands[inputIndexes[0]].type; if (inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_FLOAT16) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } inExpectedTypes = {}; for (int i = 0; i < 48; ++i) { inExpectedTypes.push_back(inputType); } inExpectedTypes.push_back(OperandType::INT32); inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 ? OperandType::FLOAT32 : OperandType::FLOAT16); inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32 ? OperandType::FLOAT32 : OperandType::FLOAT16); inExpectedTypes.push_back(OperandType::BOOL); inExpectedTypes.push_back(OperandType::BOOL); for (int i = 0; i < 8; ++i) { inExpectedTypes.push_back(inputType); } HalVersion minSupportedHalVersion = HalVersion::V1_2; if (outputCount == kNumOutputsWithState || outputCount == kNumOutputsMergedWithState) { minSupportedHalVersion = HalVersion::V1_3; } NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, minSupportedHalVersion)); std::vector outExpectedTypes(outputCount, inputType); auto status = validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); return status; } case ANEURALNETWORKS_LSTM: { if ((inputCount != 23 && inputCount != 27) || outputCount != 4) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 23 or 27) or output operands (" << outputCount << ", expected 4) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes; std::vector outExpectedTypes; auto inputType = operands[inputIndexes[0]].type; if (inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_FLOAT16) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } inExpectedTypes = {inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, inputType, OperandType::INT32}; if (inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes.push_back(OperandType::FLOAT32); inExpectedTypes.push_back(OperandType::FLOAT32); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes.push_back(OperandType::FLOAT16); inExpectedTypes.push_back(OperandType::FLOAT16); } outExpectedTypes = {inputType, inputType, inputType, inputType}; if (inputCount == 23) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); for (int i = 0; i < 4; ++i) { inExpectedTypes.push_back(inputType); } } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_QUANTIZED_16BIT_LSTM: { if (inputCount != 15 || outputCount != 2) { logInvalidInOutNumber(15, 2); return ANEURALNETWORKS_BAD_DATA; } NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); std::vector inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, OperandType::TENSOR_QUANT16_SYMM, OperandType::TENSOR_QUANT8_ASYMM}; std::vector outExpectedTypes = {OperandType::TENSOR_QUANT16_SYMM, OperandType::TENSOR_QUANT8_ASYMM}; return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_RANDOM_MULTINOMIAL: { if (inputCount != 3 || outputCount != 1) { logInvalidInOutNumber(3, 1); return ANEURALNETWORKS_BAD_DATA; } OperandType inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { inputType, OperandType::INT32, OperandType::TENSOR_INT32, }; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector outExpectedTypes = {OperandType::TENSOR_INT32}; return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_RNN: { if (inputCount != 6 || outputCount != 2) { logInvalidInOutNumber(6, 2); return ANEURALNETWORKS_BAD_DATA; } OperandType inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::INT32, }; outExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, }; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::INT32, }; outExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, }; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_SVDF: { if (inputCount != 7 || outputCount != 2) { logInvalidInOutNumber(7, 2); return ANEURALNETWORKS_BAD_DATA; } OperandType inputType = operands[inputIndexes[0]].type; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0)); } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes = { inputType, inputType, inputType, inputType, inputType, OperandType::INT32, OperandType::INT32, }; std::vector outExpectedTypes = {inputType, inputType}; return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_BATCH_TO_SPACE_ND: { if ((inputCount != 3 && inputCount != 2) || outputCount != 1) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3 or 2) or output operands (" << outputCount << ", expected 1) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputCount == 3) { inExpectedTypes.push_back(OperandType::BOOL); NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_SPACE_TO_BATCH_ND: { if ((inputCount != 4 && inputCount != 3) || outputCount != 1) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 4 or 3) or output operands (" << outputCount << ", expected 1) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { if (operands[inputIndexes[0]].zeroPoint != 0) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputCount == 4) { inExpectedTypes.push_back(OperandType::BOOL); NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_PAD: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { if (operands[inputIndexes[0]].zeroPoint == 0) { NN_RETURN_IF_ERROR( validateHalVersion(opType, halVersion, HalVersion::V1_1)); } else { NN_RETURN_IF_ERROR( validateHalVersion(opType, halVersion, HalVersion::V1_2)); } } inExpectedTypes = { inputType, OperandType::TENSOR_INT32, }; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } const auto inputRank = operands[inputIndexes[0]].dimensions.size(); if (inputRank > 4) { LOG(ERROR) << "Unsupported input tensor rank for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_PAD_V2: { if (inputCount != 3 || outputCount != 1) { logInvalidInOutNumber(3, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32, OperandType::FLOAT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32, OperandType::FLOAT16, }; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } inExpectedTypes = { inputType, OperandType::TENSOR_INT32, OperandType::INT32, }; // TODO(b/116699425): Make it UINT8. outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } const auto inputRank = operands[inputIndexes[0]].dimensions.size(); if (inputRank > 4) { LOG(ERROR) << "Unsupported input tensor rank for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_CAST: { if (inputCount != 1 || outputCount != 1) { logInvalidInOutNumber(1, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputOperand = operands[inputIndexes[0]]; auto outputOperand = operands[outputIndexes[0]]; auto inputType = inputOperand.type; auto outputType = outputOperand.type; std::vector inExpectedTypes; std::vector outExpectedTypes; if ((inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM) && (outputType == OperandType::TENSOR_FLOAT16 || outputType == OperandType::TENSOR_FLOAT32 || outputType == OperandType::TENSOR_INT32 || outputType == OperandType::TENSOR_QUANT8_ASYMM)) { inExpectedTypes = {inputType}; outExpectedTypes = {outputType}; NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else if (inputType == OperandType::TENSOR_BOOL8 || inputType == OperandType::TENSOR_QUANT16_ASYMM || inputType == OperandType::TENSOR_QUANT16_SYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED || inputType == OperandType::TENSOR_QUANT8_SYMM) { inExpectedTypes = {inputType}; outExpectedTypes = {inputType}; // Only identity CAST is supported. NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { LOG(ERROR) << "Unsupported data type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } // Validate that output shape is equal to input shape if dimensions // are already known. auto getNumberOfElements = [](const hardware::hidl_vec& dims) { if (dims.size() == 0) { return 0; } return std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<>()); }; if (inputOperand.dimensions.size() != 0 && outputOperand.dimensions.size() != 0 && getNumberOfElements(outputOperand.dimensions) != 0 && inputOperand.dimensions != outputOperand.dimensions) { return ANEURALNETWORKS_BAD_DATA; } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_MEAN: { if (inputCount != 3 || outputCount != 1) { logInvalidInOutNumber(3, 1); return ANEURALNETWORKS_BAD_DATA; } const auto inputRank = operands[inputIndexes[0]].dimensions.size(); if (inputRank > 4) { LOG(ERROR) << "Unsupported input tensor rank for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1)); } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes = {inputType, OperandType::TENSOR_INT32, OperandType::INT32}; std::vector outExpectedTypes = {inputType}; return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_ARGMAX: case ANEURALNETWORKS_ARGMIN: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { inExpectedTypes = {inputType, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_INT32}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_EXPAND_DIMS: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { inExpectedTypes = {inputType, OperandType::INT32}; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_SPLIT: { if (inputCount != 3) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3)" << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; if (inputType != OperandType::TENSOR_FLOAT16 && inputType != OperandType::TENSOR_FLOAT32 && inputType != OperandType::TENSOR_INT32 && inputType != OperandType::TENSOR_QUANT8_ASYMM && inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } std::vector inExpectedTypes = {inputType, OperandType::INT32, OperandType::INT32}; std::vector outExpectedTypes(outputCount, inputType); return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_MAXIMUM: case ANEURALNETWORKS_MINIMUM: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } std::vector inExpectedTypes; std::vector outExpectedTypes; OperandType inputType = operands[inputIndexes[0]].type; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { inExpectedTypes = {inputType, inputType}; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_GROUPED_CONV_2D: { if ((inputCount != 12 && inputCount != 9) || outputCount != 1) { LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 12 or 9) or output operands (" << outputCount << ", expected 1) for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; auto filterType = operands[inputIndexes[1]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { if (filterType != inputType && filterType != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { LOG(ERROR) << "Unsupported filter tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL && operands[inputIndexes[1]].extraParams.channelQuant().channelDim != 0) { LOG(ERROR) << "Unsupported filter tensor channel dimension for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } inExpectedTypes = { inputType, filterType, OperandType::TENSOR_INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32, OperandType::INT32}; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputCount == 12) { std::vector explicitScalarTypes(3, OperandType::INT32); inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(), explicitScalarTypes.end()); } inExpectedTypes.push_back(OperandType::BOOL); if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_TILE: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_INT32 || inputType == OperandType::TENSOR_QUANT8_ASYMM || inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { inExpectedTypes = {inputType, OperandType::TENSOR_INT32}; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_POW: { if (inputCount != 2 || outputCount != 1) { logInvalidInOutNumber(2, 1); return ANEURALNETWORKS_BAD_DATA; } auto inputType = operands[inputIndexes[0]].type; std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32) { inExpectedTypes = {inputType, inputType}; outExpectedTypes = {inputType}; } else { LOG(ERROR) << "Unsupported input tensor type for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); } else { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2)); } return validateOperationOperandTypes(operands, inputCount, inputIndexes, inExpectedTypes, outputCount, outputIndexes, outExpectedTypes); } case ANEURALNETWORKS_IF: { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); return validateIfOperation(inputCount, inputIndexes, outputCount, outputIndexes, operands, helper) ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_DATA; } case ANEURALNETWORKS_WHILE: { NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3)); return validateWhileOperation(inputCount, inputIndexes, outputCount, outputIndexes, operands, helper) ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_DATA; } default: { const OperationRegistration* operationRegistration = BuiltinOperationResolver::get()->findOperation( static_cast(opType)); if (operationRegistration == nullptr) { if (0 <= opType && opType < kNumberOfOperationTypes) { LOG(ERROR) << getOperationName(opType) << " not registered"; } else { LOG(ERROR) << "Operation type " << opType << " out of the range [0, " << kNumberOfOperationTypes << ")"; } return ANEURALNETWORKS_UNEXPECTED_NULL; } if (operationRegistration->validate == nullptr) { LOG(ERROR) << "Incomplete operation registration: " << getOperationName(opType); return ANEURALNETWORKS_UNEXPECTED_NULL; } OperationValidationContext context(operationRegistration->name, inputCount, inputIndexes, outputCount, outputIndexes, operands.data(), halVersion); if (!operationRegistration->validate(&context)) { LOG(ERROR) << "Validation failed for operation " << getOperationName(opType); return ANEURALNETWORKS_BAD_DATA; } return ANEURALNETWORKS_NO_ERROR; } } } ErrorStatus convertResultCodeToErrorStatus(int resultCode) { switch (resultCode) { case ANEURALNETWORKS_NO_ERROR: return ErrorStatus::NONE; case ANEURALNETWORKS_BAD_DATA: case ANEURALNETWORKS_UNEXPECTED_NULL: return ErrorStatus::INVALID_ARGUMENT; case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE: return ErrorStatus::OUTPUT_INSUFFICIENT_SIZE; case ANEURALNETWORKS_UNAVAILABLE_DEVICE: return ErrorStatus::DEVICE_UNAVAILABLE; case ANEURALNETWORKS_BAD_STATE: case ANEURALNETWORKS_INCOMPLETE: case ANEURALNETWORKS_OP_FAILED: case ANEURALNETWORKS_OUT_OF_MEMORY: case ANEURALNETWORKS_UNMAPPABLE: case ANEURALNETWORKS_DEAD_OBJECT: return ErrorStatus::GENERAL_FAILURE; case ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT: return ErrorStatus::MISSED_DEADLINE_TRANSIENT; case ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT: return ErrorStatus::MISSED_DEADLINE_PERSISTENT; case ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT: return ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT; case ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT: return ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT; } LOG(ERROR) << "Unknown result code " << resultCode << " mapped to ErrorStatus::GENERAL_FAILURE"; return ErrorStatus::GENERAL_FAILURE; } int convertErrorStatusToResultCode(ErrorStatus status) { switch (status) { case ErrorStatus::NONE: return ANEURALNETWORKS_NO_ERROR; case ErrorStatus::DEVICE_UNAVAILABLE: return ANEURALNETWORKS_UNAVAILABLE_DEVICE; case ErrorStatus::GENERAL_FAILURE: return ANEURALNETWORKS_OP_FAILED; case ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: return ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE; case ErrorStatus::INVALID_ARGUMENT: return ANEURALNETWORKS_BAD_DATA; case ErrorStatus::MISSED_DEADLINE_TRANSIENT: return ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT; case ErrorStatus::MISSED_DEADLINE_PERSISTENT: return ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT; case ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT: return ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT; case ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT: return ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT; } LOG(ERROR) << "Unknown ErrorStatus " << toString(status) << " mapped to ANEURALNETWORKS_OP_FAILED"; return ANEURALNETWORKS_OP_FAILED; } std::tuple, Timing> getExecutionResult( ErrorStatus status, std::vector outputShapes, Timing timing) { constexpr Timing kNoTiming = {std::numeric_limits::max(), std::numeric_limits::max()}; const int n = convertErrorStatusToResultCode(status); if (status != ErrorStatus::NONE && status != ErrorStatus::OUTPUT_INSUFFICIENT_SIZE && !outputShapes.empty()) { LOG(ERROR) << "The driver returned OutputShapes when it shouldn't."; outputShapes.clear(); } if (status != ErrorStatus::NONE && timing != kNoTiming) { LOG(ERROR) << "The driver returned Timing when it shouldn't."; timing = kNoTiming; } return {n, std::move(outputShapes), timing}; } std::optional> combineDimensions(const std::vector& lhs, const std::vector& rhs) { if (rhs.empty()) return lhs; if (lhs.empty()) return rhs; if (lhs.size() != rhs.size()) { LOG(ERROR) << "Incompatible ranks: " << toString(lhs) << " and " << toString(rhs); return std::nullopt; } std::vector combined = lhs; for (uint32_t i = 0; i < lhs.size(); i++) { if (lhs[i] == 0) { combined[i] = rhs[i]; } else if (rhs[i] != 0 && lhs[i] != rhs[i]) { LOG(ERROR) << "Incompatible dimensions: " << toString(lhs) << " and " << toString(rhs); return std::nullopt; } } return combined; } // Capabilities::operandPerformance utilities. // The field Capabilities::operandPerformance is a vector sorted by the field // Capabilities::OperandPerformance::type. template hidl_vec> nonExtensionOperandPerformance( PerformanceInfo perf) { using OpPerf = VersionedOperandPerformance; // Note: range presents enumerators in declaration order, not in numerical order. static constexpr hidl_enum_range> kOperandTypeRange; std::vector ret; ret.reserve(kOperandTypeRange.end() - kOperandTypeRange.begin()); for (VersionedOperandType type : kOperandTypeRange) { if (static_cast(type) != OperandType::SUBGRAPH) { ret.push_back(OpPerf{type, perf}); } } std::sort(ret.begin(), ret.end(), [](const OpPerf& a, const OpPerf& b) { return a.type < b.type; }); return ret; } template hal::hidl_vec nonExtensionOperandPerformance(PerformanceInfo perf); template hal::hidl_vec nonExtensionOperandPerformance(PerformanceInfo perf); template void update(hal::hidl_vec>* operandPerformance, VersionedOperandType type, hal::PerformanceInfo perf) { CHECK(operandPerformance != nullptr); const auto it = std::lower_bound(operandPerformance->begin(), operandPerformance->end(), type, [](const VersionedOperandPerformance& perf, VersionedOperandType type) { return perf.type < type; }); CHECK(it != operandPerformance->end()) << toString(type) << " not in " << toString(*operandPerformance); it->info = perf; } void update(hidl_vec* operandPerformance, V1_2::OperandType type, PerformanceInfo perf) { update(operandPerformance, type, perf); } void update(hidl_vec* operandPerformance, V1_3::OperandType type, PerformanceInfo perf) { update(operandPerformance, type, perf); } template PerformanceInfo lookup(const hidl_vec>& operandPerformance, VersionedOperandType type) { const auto it = std::lower_bound(operandPerformance.begin(), operandPerformance.end(), type, [](const VersionedOperandPerformance& perf, VersionedOperandType type) { return static_cast(perf.type) < static_cast(type); }); if (it == operandPerformance.end()) { LOG(WARNING) << "No PerformanceInfo for " << toString(type); return kNoPerformanceInfo; } else { return it->info; } } PerformanceInfo lookup(const hidl_vec& operandPerformance, V1_2::OperandType type) { return lookup(operandPerformance, type); } PerformanceInfo lookup(const hidl_vec& operandPerformance, V1_3::OperandType type) { CHECK(type != V1_3::OperandType::SUBGRAPH) << "Use Capabilities::ifPerformance or Capabilities::whilePerformance"; return lookup(operandPerformance, type); } // Versioning // In Android P, most data types are treated as having the same performance as TENSOR_QUANT8_ASYMM. // This array must be in sorted order. static const OperandType kQuantized8PerformanceConsistentWithP[] = { OperandType::INT32, OperandType::UINT32, OperandType::TENSOR_INT32, OperandType::OEM, OperandType::TENSOR_OEM_BYTE}; static bool isQuantized8PerformanceConsistentWithP(const V1_2::Capabilities& capabilities) { const PerformanceInfo quantized8Performance = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_ASYMM); return std::all_of(std::begin(kQuantized8PerformanceConsistentWithP), std::end(kQuantized8PerformanceConsistentWithP), [quantized8Performance, &capabilities](OperandType type) { return quantized8Performance == lookup(capabilities.operandPerformance, static_cast(type)); }); } static bool isQuantized8PerformanceConsistentWithP(const V1_3::Capabilities& capabilities) { const PerformanceInfo quantized8Performance = lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM); return std::all_of(std::begin(kQuantized8PerformanceConsistentWithP), std::end(kQuantized8PerformanceConsistentWithP), [quantized8Performance, &capabilities](OperandType type) { return quantized8Performance == lookup(capabilities.operandPerformance, type); }); } static hidl_vec makeQuantized8PerformanceConsistentWithP( PerformanceInfo quantized8Performance) { hidl_vec ret( std::size(kQuantized8PerformanceConsistentWithP)); std::transform( std::begin(kQuantized8PerformanceConsistentWithP), std::end(kQuantized8PerformanceConsistentWithP), ret.begin(), [quantized8Performance](OperandType type) -> V1_2::Capabilities::OperandPerformance { return {static_cast(type), quantized8Performance}; }); return ret; } bool compliantWithV1_0(const V1_0::Capabilities&) { return true; } bool compliantWithV1_0(const V1_1::Capabilities& capabilities) { return capabilities.relaxedFloat32toFloat16Performance == capabilities.float32Performance; } bool compliantWithV1_0(const V1_2::Capabilities& capabilities) { const PerformanceInfo perfTensorFloat32 = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT32); const PerformanceInfo perfFloat32 = lookup(capabilities.operandPerformance, V1_2::OperandType::FLOAT32); if (perfTensorFloat32 != perfFloat32 || perfTensorFloat32 != capabilities.relaxedFloat32toFloat16PerformanceTensor || perfFloat32 != capabilities.relaxedFloat32toFloat16PerformanceScalar) { return false; } return isQuantized8PerformanceConsistentWithP(capabilities); } bool compliantWithV1_0(const V1_3::Capabilities& capabilities) { const PerformanceInfo perfTensorFloat32 = lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32); const PerformanceInfo perfFloat32 = lookup(capabilities.operandPerformance, OperandType::FLOAT32); if (perfTensorFloat32 != perfFloat32 || perfTensorFloat32 != capabilities.relaxedFloat32toFloat16PerformanceTensor || perfFloat32 != capabilities.relaxedFloat32toFloat16PerformanceScalar) { return false; } return isQuantized8PerformanceConsistentWithP(capabilities); } bool compliantWithV1_1(const V1_0::Capabilities&) { return true; } bool compliantWithV1_1(const V1_1::Capabilities&) { return true; } bool compliantWithV1_1(const V1_2::Capabilities& capabilities) { if ((capabilities.relaxedFloat32toFloat16PerformanceTensor != capabilities.relaxedFloat32toFloat16PerformanceScalar) || (lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT32) != lookup(capabilities.operandPerformance, V1_2::OperandType::FLOAT32))) { return false; } return isQuantized8PerformanceConsistentWithP(capabilities); } bool compliantWithV1_1(const V1_3::Capabilities& capabilities) { if ((capabilities.relaxedFloat32toFloat16PerformanceTensor != capabilities.relaxedFloat32toFloat16PerformanceScalar) || (lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32) != lookup(capabilities.operandPerformance, OperandType::FLOAT32))) { return false; } return isQuantized8PerformanceConsistentWithP(capabilities); } bool compliantWithV1_2(const V1_0::Capabilities&) { return true; } bool compliantWithV1_2(const V1_1::Capabilities&) { return true; } bool compliantWithV1_2(const V1_2::Capabilities&) { return true; } bool compliantWithV1_2(const V1_3::Capabilities&) { return true; } bool compliantWithV1_3(const V1_0::Capabilities&) { return true; } bool compliantWithV1_3(const V1_1::Capabilities&) { return true; } bool compliantWithV1_3(const V1_2::Capabilities&) { return true; } bool compliantWithV1_3(const V1_3::Capabilities&) { return true; } V1_0::ErrorStatus convertToV1_0(V1_0::ErrorStatus status) { return status; } V1_0::ErrorStatus convertToV1_0(V1_3::ErrorStatus status) { switch (status) { case V1_3::ErrorStatus::NONE: return V1_0::ErrorStatus::NONE; case V1_3::ErrorStatus::DEVICE_UNAVAILABLE: return V1_0::ErrorStatus::DEVICE_UNAVAILABLE; case V1_3::ErrorStatus::GENERAL_FAILURE: return V1_0::ErrorStatus::GENERAL_FAILURE; case V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: return V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE; case V1_3::ErrorStatus::INVALID_ARGUMENT: return V1_0::ErrorStatus::INVALID_ARGUMENT; case V1_3::ErrorStatus::MISSED_DEADLINE_TRANSIENT: return V1_0::ErrorStatus::GENERAL_FAILURE; case V1_3::ErrorStatus::MISSED_DEADLINE_PERSISTENT: return V1_0::ErrorStatus::GENERAL_FAILURE; case V1_3::ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT: return V1_0::ErrorStatus::GENERAL_FAILURE; case V1_3::ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT: return V1_0::ErrorStatus::GENERAL_FAILURE; } LOG(ERROR) << "Unknown ErrorStatus: " << toString(status) << " mapped to GENERAL_FAILURE"; return V1_0::ErrorStatus::GENERAL_FAILURE; } V1_3::ErrorStatus convertToV1_3(V1_0::ErrorStatus status) { return static_cast(status); } V1_3::ErrorStatus convertToV1_3(V1_3::ErrorStatus status) { return status; } static V1_0::OperationType uncheckedConvertToV1_0(V1_1::OperationType type) { return static_cast(type); } static V1_0::OperationType uncheckedConvertToV1_0(V1_2::OperationType type) { return static_cast(type); } V1_0::OperationType uncheckedConvertToV1_0(V1_3::OperationType type) { return static_cast(type); } static V1_1::OperationType convertToV1_1(V1_0::OperationType type) { return static_cast(type); } static V1_1::OperationType uncheckedConvertToV1_1(V1_2::OperationType type) { return static_cast(type); } V1_1::OperationType uncheckedConvertToV1_1(V1_3::OperationType type) { return static_cast(type); } static V1_2::OperationType convertToV1_2(V1_0::OperationType type) { return static_cast(type); } static V1_2::OperationType convertToV1_2(V1_1::OperationType type) { return static_cast(type); } V1_2::OperationType uncheckedConvertToV1_2(V1_3::OperationType type) { return static_cast(type); } static V1_3::OperationType convertToV1_3(V1_0::OperationType type) { return static_cast(type); } static V1_3::OperationType convertToV1_3(V1_1::OperationType type) { return static_cast(type); } static V1_3::OperationType convertToV1_3(V1_2::OperationType type) { return static_cast(type); } V1_0::Capabilities convertToV1_0(const V1_0::Capabilities& capabilities) { return capabilities; } V1_0::Capabilities convertToV1_0(const V1_1::Capabilities& capabilities) { if (!compliantWithV1_0(capabilities)) { LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities) << " from V1_1::Capabilities to V1_0::Capabilities"; } return {.float32Performance = capabilities.float32Performance, .quantized8Performance = capabilities.quantized8Performance}; } V1_0::Capabilities convertToV1_0(const V1_2::Capabilities& capabilities) { if (!compliantWithV1_0(capabilities)) { LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities) << " from V1_2::Capabilities to V1_0::Capabilities"; } return {.float32Performance = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT32), .quantized8Performance = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_ASYMM)}; } V1_0::Capabilities convertToV1_0(const V1_3::Capabilities& capabilities) { if (!compliantWithV1_0(capabilities)) { LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities) << " from V1_3::Capabilities to V1_0::Capabilities"; } return {.float32Performance = lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32), .quantized8Performance = lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM)}; } V1_1::Capabilities convertToV1_1(const V1_0::Capabilities& capabilities) { return {.float32Performance = capabilities.float32Performance, .quantized8Performance = capabilities.quantized8Performance, .relaxedFloat32toFloat16Performance = capabilities.float32Performance}; } V1_1::Capabilities convertToV1_1(const V1_1::Capabilities& capabilities) { return capabilities; } V1_1::Capabilities convertToV1_1(const V1_2::Capabilities& capabilities) { if (!compliantWithV1_1(capabilities)) { LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities) << " from V1_2::Capabilities to V1_1::Capabilities"; } return {.float32Performance = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_FLOAT32), .quantized8Performance = lookup(capabilities.operandPerformance, V1_2::OperandType::TENSOR_QUANT8_ASYMM), .relaxedFloat32toFloat16Performance = capabilities.relaxedFloat32toFloat16PerformanceTensor}; } V1_1::Capabilities convertToV1_1(const V1_3::Capabilities& capabilities) { if (!compliantWithV1_1(capabilities)) { LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities) << " from V1_3::Capabilities to V1_1::Capabilities"; } return {.float32Performance = lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32), .quantized8Performance = lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM), .relaxedFloat32toFloat16Performance = capabilities.relaxedFloat32toFloat16PerformanceTensor}; } V1_2::Capabilities convertToV1_2(const V1_0::Capabilities& capabilities) { V1_2::Capabilities ret = { .relaxedFloat32toFloat16PerformanceScalar = capabilities.float32Performance, .relaxedFloat32toFloat16PerformanceTensor = capabilities.float32Performance, .operandPerformance = makeQuantized8PerformanceConsistentWithP(capabilities.quantized8Performance)}; auto& opPerf = ret.operandPerformance; opPerf.resize(opPerf.size() + 2); opPerf[opPerf.size() - 2] = {V1_2::OperandType::TENSOR_FLOAT32, capabilities.float32Performance}; opPerf[opPerf.size() - 1] = {V1_2::OperandType::FLOAT32, capabilities.float32Performance}; using OperandPerformance = V1_2::Capabilities::OperandPerformance; std::sort(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a, const OperandPerformance& b) { return a.type < b.type; }); return ret; } V1_2::Capabilities convertToV1_2(const V1_1::Capabilities& capabilities) { V1_2::Capabilities ret = {.relaxedFloat32toFloat16PerformanceScalar = capabilities.relaxedFloat32toFloat16Performance, .relaxedFloat32toFloat16PerformanceTensor = capabilities.relaxedFloat32toFloat16Performance, .operandPerformance = makeQuantized8PerformanceConsistentWithP( capabilities.quantized8Performance)}; auto& opPerf = ret.operandPerformance; opPerf.resize(opPerf.size() + 2); opPerf[opPerf.size() - 2] = {V1_2::OperandType::TENSOR_FLOAT32, capabilities.float32Performance}; opPerf[opPerf.size() - 1] = {V1_2::OperandType::FLOAT32, capabilities.float32Performance}; using OperandPerformance = V1_2::Capabilities::OperandPerformance; std::sort(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a, const OperandPerformance& b) { return a.type < b.type; }); return ret; } V1_2::Capabilities convertToV1_2(const V1_2::Capabilities& capabilities) { return capabilities; } V1_2::Capabilities convertToV1_2(const V1_3::Capabilities& capabilities) { V1_2::Capabilities ret = { .relaxedFloat32toFloat16PerformanceScalar = capabilities.relaxedFloat32toFloat16PerformanceScalar, .relaxedFloat32toFloat16PerformanceTensor = capabilities.relaxedFloat32toFloat16PerformanceTensor, }; const auto& inputOpPerf = capabilities.operandPerformance; hidl_vec opPerfSupported; opPerfSupported.resize(inputOpPerf.size()); auto last = std::copy_if(inputOpPerf.begin(), inputOpPerf.end(), opPerfSupported.begin(), [](V1_3::Capabilities::OperandPerformance opPerf) { return validOperandType(static_cast(opPerf.type)); }); opPerfSupported.resize(std::distance(opPerfSupported.begin(), last)); auto& convertedOpPerf = ret.operandPerformance; convertedOpPerf.resize(opPerfSupported.size()); std::transform(opPerfSupported.begin(), opPerfSupported.end(), convertedOpPerf.begin(), [](V1_3::Capabilities::OperandPerformance opPerf) { return V1_2::Capabilities::OperandPerformance{ static_cast(opPerf.type), opPerf.info}; }); return ret; } V1_3::Capabilities convertToV1_3(const V1_0::Capabilities& capabilities) { return convertToV1_3(convertToV1_2(capabilities)); } V1_3::Capabilities convertToV1_3(const V1_1::Capabilities& capabilities) { return convertToV1_3(convertToV1_2(capabilities)); } V1_3::Capabilities convertToV1_3(const V1_2::Capabilities& capabilities) { V1_3::Capabilities ret = { .relaxedFloat32toFloat16PerformanceScalar = capabilities.relaxedFloat32toFloat16PerformanceScalar, .relaxedFloat32toFloat16PerformanceTensor = capabilities.relaxedFloat32toFloat16PerformanceTensor, .ifPerformance = kNoPerformanceInfo, .whilePerformance = kNoPerformanceInfo, }; auto& opPerf = ret.operandPerformance; opPerf.resize(capabilities.operandPerformance.size()); std::transform(capabilities.operandPerformance.begin(), capabilities.operandPerformance.end(), opPerf.begin(), [](V1_2::Capabilities::OperandPerformance opPerf) { return V1_3::Capabilities::OperandPerformance{ static_cast(opPerf.type), opPerf.info}; }); return ret; } V1_3::Capabilities convertToV1_3(const V1_3::Capabilities& capabilities) { return capabilities; } static V1_0::Operation uncheckedConvertToV1_0(const V1_1::Operation& operation) { return {.type = uncheckedConvertToV1_0(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_1::Operation convertToV1_1(const V1_0::Operation& operation) { return {.type = convertToV1_1(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static hidl_vec uncheckedConvertToV1_0( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_1::Operation& operation) { return uncheckedConvertToV1_0(operation); }); return result; } static hidl_vec convertToV1_1(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_0::Operation& operation) { return convertToV1_1(operation); }); return result; } bool compliantWithV1_0(const V1_3::Operand& operand) { return validOperandType(static_cast(operand.type)) && (nonExtensionOperandTypeIsScalar(static_cast(operand.type)) || operand.dimensions.size() != 0) && compliantWithV1_0(operand.lifetime); } bool compliantWithV1_2(const V1_3::Operand& operand) { return validOperandType(static_cast(operand.type)) && compliantWithV1_0(operand.lifetime); } bool compliantWithV1_3(const V1_3::Operand& operand) { return true; } static bool compliantWith(HalVersion version, const V1_3::Model& model, std::set* noncompliantOperations) { // A boolean vector indicating whether each pool is compliant with the target HAL version. std::vector isPoolCompliant(model.pools.size(), false); std::transform(model.pools.begin(), model.pools.end(), isPoolCompliant.begin(), [version](const hidl_memory& pool) { return validatePool(pool, version); }); // A boolean vector indicating whether each operand is compliant with the target HAL version. std::vector isOperandCompliant(model.main.operands.size(), false); std::transform(model.main.operands.begin(), model.main.operands.end(), isOperandCompliant.begin(), [&isPoolCompliant, version](const Operand& op) { bool is_operand_compliant = false; switch (version) { case HalVersion::UNKNOWN: is_operand_compliant = false; break; case HalVersion::V1_0: is_operand_compliant = compliantWithV1_0(op); break; case HalVersion::V1_1: // There is no V1_1::Operand -- both V1_0::Model // and V1_1::Model use V1_0::Operand. is_operand_compliant = compliantWithV1_0(op); break; case HalVersion::V1_2: is_operand_compliant = compliantWithV1_2(op); break; case HalVersion::V1_3: is_operand_compliant = compliantWithV1_3(op); break; } return is_operand_compliant && !(op.lifetime == OperandLifeTime::CONSTANT_REFERENCE && !isPoolCompliant[op.location.poolIndex]); }); auto allOperandsCompliant = [&isOperandCompliant](const hidl_vec& indices) { return std::all_of( indices.begin(), indices.end(), [&isOperandCompliant](const uint32_t ind) { return isOperandCompliant[ind]; }); }; auto localValidateOperation = [&model, version, &allOperandsCompliant](const Operation& op) { if (!allOperandsCompliant(op.inputs) || !allOperandsCompliant(op.outputs)) return false; int error = validateOperation( static_cast(op.type), op.inputs.size(), op.inputs.size() > 0 ? op.inputs.data() : nullptr, op.outputs.size(), op.outputs.size() > 0 ? op.outputs.data() : nullptr, model.main.operands, version); return error == ANEURALNETWORKS_NO_ERROR; }; if (noncompliantOperations) { CHECK(noncompliantOperations->empty()); for (uint32_t idx = 0; idx < model.main.operations.size(); ++idx) { if (!localValidateOperation(model.main.operations[idx])) { noncompliantOperations->insert(idx); } } return noncompliantOperations->empty(); } else { return std::all_of(model.main.operations.begin(), model.main.operations.end(), localValidateOperation); } } bool compliantWithV1_0(const V1_0::Model& model) { return true; } bool compliantWithV1_0(const V1_1::Model& model) { // In addition to new enumeration values being introduced in V1_1::Model, a // new flag was introduced to indicate whether or not float32 data can be // calculated using float16 units. This 'relaxComputationFloat32toFloat16' // flag is not relevant in whether a V1_1::Model is compliant with a // V1_0::Model because all 1.0 drivers require strict calculation by default // in the P NN runtime. Even if fp16 calculations are allowed, they can // still be computed by a strict fp32 driver. return std::all_of( model.operations.begin(), model.operations.end(), [&model](const V1_1::Operation& op) { int error = validateOperation(static_cast(op.type), op.inputs.size(), op.inputs.size() > 0 ? op.inputs.data() : nullptr, op.outputs.size(), op.outputs.size() > 0 ? op.outputs.data() : nullptr, convertToV1_3(model.operands), HalVersion::V1_0); return error == ANEURALNETWORKS_NO_ERROR; }); } bool compliantWithV1_0(const V1_2::Model& model, std::set* noncompliantOperations) { return compliantWith(HalVersion::V1_0, convertToV1_3(model), noncompliantOperations); } bool compliantWithV1_0(const V1_3::Model& model, std::set* noncompliantOperations) { return compliantWith(HalVersion::V1_0, model, noncompliantOperations); } bool compliantWithV1_1(const V1_0::Model&) { return true; } bool compliantWithV1_1(const V1_1::Model&) { return true; } bool compliantWithV1_1(const V1_2::Model& model, std::set* noncompliantOperations) { return compliantWith(HalVersion::V1_1, convertToV1_3(model), noncompliantOperations); } bool compliantWithV1_1(const V1_3::Model& model, std::set* noncompliantOperations) { return compliantWith(HalVersion::V1_1, model, noncompliantOperations); } bool compliantWithV1_2(const V1_0::Model&) { return true; } bool compliantWithV1_2(const V1_1::Model&) { return true; } bool compliantWithV1_2(const V1_2::Model&, std::set* noncompliantOperations) { return true; } bool compliantWithV1_2(const V1_3::Model& model, std::set* noncompliantOperations) { return compliantWith(HalVersion::V1_2, model, noncompliantOperations); } static V1_0::Operation uncheckedConvertToV1_0(const V1_2::Operation& operation) { return {.type = uncheckedConvertToV1_0(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_0::Operation uncheckedConvertToV1_0(const V1_3::Operation& operation) { return {.type = uncheckedConvertToV1_0(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_1::Operation uncheckedConvertToV1_1(const V1_2::Operation& operation) { return {.type = uncheckedConvertToV1_1(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_1::Operation uncheckedConvertToV1_1(const V1_3::Operation& operation) { return {.type = uncheckedConvertToV1_1(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_2::Operation convertToV1_2(const V1_0::Operation& operation) { return {.type = convertToV1_2(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_2::Operation convertToV1_2(const V1_1::Operation& operation) { return {.type = convertToV1_2(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_2::Operation uncheckedConvertToV1_2(const V1_3::Operation& operation) { return {.type = uncheckedConvertToV1_2(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_3::Operation convertToV1_3(const V1_0::Operation& operation) { return {.type = convertToV1_3(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_3::Operation convertToV1_3(const V1_1::Operation& operation) { return {.type = convertToV1_3(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static V1_3::Operation convertToV1_3(const V1_2::Operation& operation) { return {.type = convertToV1_3(operation.type), .inputs = operation.inputs, .outputs = operation.outputs}; } static hidl_vec uncheckedConvertToV1_0( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_3::Operation& operation) { return uncheckedConvertToV1_0(operation); }); return result; } static hidl_vec uncheckedConvertToV1_0( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_2::Operation& operation) { return uncheckedConvertToV1_0(operation); }); return result; } static hidl_vec uncheckedConvertToV1_2( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_3::Operation& operation) { return uncheckedConvertToV1_2(operation); }); return result; } static hidl_vec uncheckedConvertToV1_1( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_2::Operation& operation) { return uncheckedConvertToV1_1(operation); }); return result; } static hidl_vec uncheckedConvertToV1_1( const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform( operations.begin(), operations.end(), result.begin(), [](const V1_3::Operation& operation) { return uncheckedConvertToV1_1(operation); }); return result; } static hidl_vec convertToV1_2(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_0::Operation& operation) { return convertToV1_2(operation); }); return result; } static hidl_vec convertToV1_2(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_1::Operation& operation) { return convertToV1_2(operation); }); return result; } static hidl_vec convertToV1_3(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_0::Operation& operation) { return convertToV1_3(operation); }); return result; } static hidl_vec convertToV1_3(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_1::Operation& operation) { return convertToV1_3(operation); }); return result; } static hidl_vec convertToV1_3(const hidl_vec& operations) { hidl_vec result(operations.size()); std::transform(operations.begin(), operations.end(), result.begin(), [](const V1_2::Operation& operation) { return convertToV1_3(operation); }); return result; } static bool compliantWithV1_0(const V1_2::OperandType& operandType) { return validOperandType(static_cast(operandType)); } static bool compliantWithV1_0(const V1_3::OperandType& operandType) { return validOperandType(static_cast(operandType)); } static bool compliantWithV1_2(const V1_3::OperandType& operandType) { return validOperandType(static_cast(operandType)); } V1_0::OperandType convertToV1_0(const V1_2::OperandType& operandType) { if (!compliantWithV1_0(operandType)) { LOG(ERROR) << "Upcasting non-compliant operand type " << toString(operandType) << " from V1_2::OperandType to V1_0::OperandType"; } return static_cast(operandType); } V1_2::OperandType convertToV1_2(const V1_0::OperandType& operandType) { return static_cast(operandType); } V1_2::OperandType convertToV1_2(const V1_3::OperandType& operandType) { if (!compliantWithV1_2(operandType)) { LOG(ERROR) << "Upcasting non-compliant operand type " << toString(operandType) << " from V1_3::OperandType to V1_2::OperandType"; } return static_cast(operandType); } V1_0::OperandType convertToV1_0(const V1_3::OperandType& operandType) { if (!compliantWithV1_0(operandType)) { LOG(ERROR) << "Upcasting non-compliant operand type " << toString(operandType) << " from V1_3::Operand to V1_0::Operand"; } return static_cast(operandType); } bool compliantWithV1_0(hal::V1_0::OperandLifeTime lifetime) { return true; } bool compliantWithV1_0(hal::V1_3::OperandLifeTime lifetime) { return lifetime != V1_3::OperandLifeTime::SUBGRAPH; } bool compliantWithV1_3(hal::V1_0::OperandLifeTime lifetime) { return true; } bool compliantWithV1_3(hal::V1_3::OperandLifeTime lifetime) { return true; } V1_0::OperandLifeTime convertToV1_0(V1_0::OperandLifeTime lifetime) { return lifetime; } V1_0::OperandLifeTime convertToV1_0(V1_3::OperandLifeTime lifetime) { if (!compliantWithV1_0(lifetime)) { LOG(ERROR) << "Upcasting non-compliant lifetime " << toString(lifetime) << " from V1_3 to V1_0"; } return static_cast(lifetime); } V1_3::OperandLifeTime convertToV1_3(V1_0::OperandLifeTime lifetime) { return static_cast(lifetime); } V1_3::OperandLifeTime convertToV1_3(V1_3::OperandLifeTime lifetime) { return lifetime; } V1_0::Operand convertToV1_0(const V1_2::Operand& operand) { return {.type = convertToV1_0(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = convertToV1_0(operand.lifetime), .location = operand.location}; } V1_0::Operand convertToV1_0(const V1_3::Operand& operand) { return {.type = convertToV1_0(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = convertToV1_0(operand.lifetime), .location = operand.location}; } V1_2::Operand convertToV1_2(const V1_0::Operand& operand) { return {.type = convertToV1_2(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = operand.lifetime, .location = operand.location}; } V1_2::Operand convertToV1_2(const V1_3::Operand& operand) { return {.type = convertToV1_2(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = static_cast(operand.lifetime), .location = operand.location, .extraParams = operand.extraParams}; } V1_3::Operand convertToV1_3(const V1_0::Operand& operand) { return {.type = static_cast(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = convertToV1_3(operand.lifetime), .location = operand.location}; } V1_3::Operand convertToV1_3(const V1_2::Operand& operand) { return {.type = static_cast(operand.type), .dimensions = operand.dimensions, .numberOfConsumers = operand.numberOfConsumers, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = convertToV1_3(operand.lifetime), .location = operand.location, .extraParams = operand.extraParams}; } V1_3::Operand convertToV1_3(const V1_3::Operand& operand) { return operand; } hidl_vec convertToV1_0(const hidl_vec& operands) { return operands; } hidl_vec convertToV1_0(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_2::Operand& operand) { return convertToV1_0(operand); }); return result; } hidl_vec convertToV1_0(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_3::Operand& operand) { return convertToV1_0(operand); }); return result; } hidl_vec convertToV1_2(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_0::Operand& operand) { return convertToV1_2(operand); }); return result; } hidl_vec convertToV1_2(const hidl_vec& operands) { return operands; } hidl_vec convertToV1_2(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_3::Operand& operand) { return convertToV1_2(operand); }); return result; } hidl_vec convertToV1_3(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_0::Operand& operand) { return convertToV1_3(operand); }); return result; } hidl_vec convertToV1_3(const hidl_vec& operands) { hidl_vec result(operands.size()); std::transform(operands.begin(), operands.end(), result.begin(), [](const V1_2::Operand& operand) { return convertToV1_3(operand); }); return result; } hidl_vec convertToV1_3(const hidl_vec& operands) { return operands; } V1_0::Model convertToV1_0(const V1_0::Model& model) { return model; } V1_0::Model convertToV1_0(const V1_1::Model& model) { if (!compliantWithV1_0(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_1::Model to V1_0::Model"; } return {.operands = model.operands, .operations = uncheckedConvertToV1_0(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools}; } V1_0::Model convertToV1_0(const V1_2::Model& model) { if (!compliantWithV1_0(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_2::Model to V1_0::Model"; } return {.operands = convertToV1_0(model.operands), .operations = uncheckedConvertToV1_0(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools}; } V1_0::Model convertToV1_0(const V1_3::Model& model) { if (!compliantWithV1_0(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_3::Model to V1_0::Model"; } return {.operands = convertToV1_0(model.main.operands), .operations = uncheckedConvertToV1_0(model.main.operations), .inputIndexes = model.main.inputIndexes, .outputIndexes = model.main.outputIndexes, .operandValues = model.operandValues, .pools = model.pools}; } V1_1::Model convertToV1_1(const V1_0::Model& model) { return {.operands = model.operands, .operations = convertToV1_1(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = false}; } V1_1::Model convertToV1_1(const V1_1::Model& model) { return model; } V1_1::Model convertToV1_1(const V1_2::Model& model) { if (!compliantWithV1_1(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_2::Model to V1_1::Model"; } return {.operands = convertToV1_0(model.operands), // Operands in 1.1 and 1.0 are identical. .operations = uncheckedConvertToV1_1(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16}; } V1_1::Model convertToV1_1(const V1_3::Model& model) { if (!compliantWithV1_1(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_3::Model to V1_1::Model"; } return {// Operands in 1.1 and 1.0 are identical. .operands = convertToV1_0(model.main.operands), .operations = uncheckedConvertToV1_1(model.main.operations), .inputIndexes = model.main.inputIndexes, .outputIndexes = model.main.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16}; } V1_2::Model convertToV1_2(const V1_0::Model& model) { return {.operands = convertToV1_2(model.operands), .operations = convertToV1_2(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = false}; } V1_2::Model convertToV1_2(const V1_1::Model& model) { return {.operands = convertToV1_2(model.operands), .operations = convertToV1_2(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16}; } V1_2::Model convertToV1_2(const V1_2::Model& model) { return model; } V1_2::Model convertToV1_2(const V1_3::Model& model) { if (!compliantWithV1_2(model)) { LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model)) << " from V1_3::Model to V1_2::Model"; } return {.operands = convertToV1_2(model.main.operands), .operations = uncheckedConvertToV1_2(model.main.operations), .inputIndexes = model.main.inputIndexes, .outputIndexes = model.main.outputIndexes, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16, .extensionNameToPrefix = model.extensionNameToPrefix}; } V1_3::Model convertToV1_3(const V1_0::Model& model) { return {.main = {.operands = convertToV1_3(model.operands), .operations = convertToV1_3(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes}, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = false}; } V1_3::Model convertToV1_3(const V1_1::Model& model) { return {.main = {.operands = convertToV1_3(model.operands), .operations = convertToV1_3(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes}, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16}; } V1_3::Model convertToV1_3(const V1_2::Model& model) { return {.main = {.operands = convertToV1_3(model.operands), .operations = convertToV1_3(model.operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes}, .operandValues = model.operandValues, .pools = model.pools, .relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16, .extensionNameToPrefix = model.extensionNameToPrefix}; } V1_3::Model convertToV1_3(const V1_3::Model& model) { return model; } bool compliantWithV1_0(const V1_0::Request& request) { return true; } bool compliantWithV1_0(const V1_3::Request& request) { return std::all_of(request.pools.begin(), request.pools.end(), [](const auto& pool) { if (pool.getDiscriminator() != V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory) { return false; } const auto& name = pool.hidlMemory().name(); return name == "ashmem" || name == "mmap_fd"; }); } bool compliantWithV1_2(const V1_3::Request& request) { return std::all_of(request.pools.begin(), request.pools.end(), [](const auto& pool) { if (pool.getDiscriminator() != V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory) { return false; } const auto& name = pool.hidlMemory().name(); return name == "ashmem" || name == "mmap_fd" || name == "hardware_buffer_blob" || name == "hardware_buffer"; }); } static hidl_memory convertToV1_0(const V1_3::Request::MemoryPool& pool) { switch (pool.getDiscriminator()) { case V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory: return pool.hidlMemory(); case V1_3::Request::MemoryPool::hidl_discriminator::token: return hidl_memory{}; } } static V1_3::Request::MemoryPool convertToV1_3(const hidl_memory& pool) { V1_3::Request::MemoryPool ret; ret.hidlMemory(pool); return ret; } V1_0::Request convertToV1_0(const V1_0::Request& request) { return request; } static V1_0::Request uncheckedConvertToV1_0(const V1_3::Request& request) { hidl_vec pools(request.pools.size()); std::transform(request.pools.begin(), request.pools.end(), pools.begin(), [](const auto& pool) { return convertToV1_0(pool); }); return {.inputs = request.inputs, .outputs = request.outputs, .pools = std::move(pools)}; } V1_0::Request convertToV1_0(const V1_3::Request& request) { if (!compliantWithV1_0(request)) { LOG(ERROR) << "Upcasting non-compliant request " << SHOW_IF_DEBUG(toString(request)) << " from V1_3::Request to V1_0::Request of version 1.0"; } return uncheckedConvertToV1_0(request); } V1_0::Request convertToV1_2(const V1_3::Request& request) { if (!compliantWithV1_2(request)) { LOG(ERROR) << "Upcasting non-compliant request " << SHOW_IF_DEBUG(toString(request)) << " from V1_3::Request to V1_0::Request of version 1.2"; } return uncheckedConvertToV1_0(request); } V1_3::Request convertToV1_3(const V1_0::Request& request) { hidl_vec pools(request.pools.size()); std::transform(request.pools.begin(), request.pools.end(), pools.begin(), [](const auto& pool) { return convertToV1_3(pool); }); return {.inputs = request.inputs, .outputs = request.outputs, .pools = std::move(pools)}; } V1_3::Request convertToV1_3(const V1_3::Request& request) { return request; } FenceState syncWait(int fd, int timeout) { // This implementation is directly based on the ::sync_wait() implementation. struct pollfd fds; int ret; if (fd < 0) { errno = EINVAL; return FenceState::UNKNOWN; } fds.fd = fd; fds.events = POLLIN; do { ret = poll(&fds, 1, timeout); if (ret > 0) { if (fds.revents & POLLNVAL) { errno = EINVAL; return FenceState::UNKNOWN; } if (fds.revents & POLLERR) { errno = EINVAL; return FenceState::ERROR; } return FenceState::SIGNALED; } else if (ret == 0) { errno = ETIME; return FenceState::ACTIVE; } } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); return FenceState::UNKNOWN; } #ifdef NN_DEBUGGABLE uint32_t getProp(const char* str, uint32_t defaultValue) { const std::string propStr = android::base::GetProperty(str, ""); if (propStr.size() > 0) { return std::stoi(propStr); } else { return defaultValue; } } #endif // NN_DEBUGGABLE } // namespace nn } // namespace android