summaryrefslogtreecommitdiff
path: root/nn/common/operations/Activation.cpp
blob: f85f6b4bfcd49f92eb315a8b3a08d2684e9e636b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ActivationFunctor.h"
#include "CpuOperationUtils.h"
#include "OperationResolver.h"

#include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"

#include "Tracing.h"

namespace android {
namespace nn {

namespace activation {

constexpr uint32_t kNumInputs = 1;
constexpr uint32_t kInputTensor = 0;

constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;

namespace {

template <typename T>
bool reluFloat(const T* inputData, const Shape& inputShape, T* outputData, const Shape& outputShape,
               float reluMin = 0.f, float reluMax = std::numeric_limits<float>::max()) {
    NNTRACE_COMP("reluX");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<T>(
                std::min(std::max(reluMin, static_cast<float>(*inputData)), reluMax));
    }
    return true;
}
template bool reluFloat<float>(const float* inputData, const Shape& inputShape, float* outputData,
                               const Shape& outputShape, float reluMin, float reluMax);
template bool reluFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                  _Float16* outputData, const Shape& outputShape, float reluMin,
                                  float reluMax);

template <typename T>
bool relu1Float(const T* inputData, const Shape& inputShape, T* outputData,
                const Shape& outputShape) {
    return reluFloat(inputData, inputShape, outputData, outputShape, -1.f, 1.f);
}
template bool relu1Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
                                const Shape& outputShape);
template bool relu1Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                   _Float16* outputData, const Shape& outputShape);

template <typename T>
bool relu6Float(const T* inputData, const Shape& inputShape, T* outputData,
                const Shape& outputShape) {
    return reluFloat(inputData, inputShape, outputData, outputShape, 0.f, 6.f);
}
template bool relu6Float<float>(const float* inputData, const Shape& inputShape, float* outputData,
                                const Shape& outputShape);
template bool relu6Float<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                   _Float16* outputData, const Shape& outputShape);

bool tanhFloat16(const _Float16* inputData, const Shape& inputShape, _Float16* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("tanhFloat16");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<_Float16>(std::tanh(static_cast<float>(*inputData)));
    }
    return true;
}

bool tanhFloat32(const float* inputData, const Shape& inputShape, float* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("tanhFloat32");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = std::tanh(*inputData);
    }
    return true;
}

template <typename T>
bool logisticFloat(const T* inputData, const Shape& inputShape, T* outputData,
                   const Shape& outputShape) {
    NNTRACE_COMP("logisticFloat");
    int numElements = getNumberOfElements(inputShape);
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {
        *outputData = static_cast<T>(1.f / (1.f + std::exp(static_cast<float>(-*inputData))));
    }
    return true;
}
template bool logisticFloat<float>(const float* inputData, const Shape& inputShape,
                                   float* outputData, const Shape& outputShape);
template bool logisticFloat<_Float16>(const _Float16* inputData, const Shape& inputShape,
                                      _Float16* outputData, const Shape& outputShape);

#define ANDROID_NN_RELUX_QUANT8(activation)                                           \
    int numElements = getNumberOfElements(inputShape);                                \
    int32_t output_activation_min = 0;                                                \
    int32_t output_activation_max = 0;                                                \
                                                                                      \
    CalculateActivationRangeUint8(activation, inputShape, &output_activation_min,     \
                                  &output_activation_max);                            \
                                                                                      \
    for (int i = 0; i < numElements; i++, inputData++, outputData++) {                \
        *outputData = std::min((uint8_t)output_activation_max,                        \
                               std::max((uint8_t)output_activation_min, *inputData)); \
    }

bool reluQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                const Shape& outputShape) {
    NNTRACE_COMP("reluQuant8");
    ANDROID_NN_RELUX_QUANT8(kActivationRelu)
    return true;
}

bool relu1Quant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("relu1Quant8");
    ANDROID_NN_RELUX_QUANT8(kActivationRelu1)
    return true;
}

bool relu6Quant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                 const Shape& outputShape) {
    NNTRACE_COMP("relu6Quant8");
    ANDROID_NN_RELUX_QUANT8(kActivationRelu6)
    return true;
}

#undef ANDROID_NN_RELUX_QUANT8

bool tanhQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                const Shape& outputShape) {
    NNTRACE_TRANS("tanhQuant8");
    if (outputShape.offset != 128 || outputShape.scale != 1.f / 128) {
        LOG(ERROR) << "incorrect scale or offset for TANH output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("optimized_ops::Tanh");
    tflite::optimized_ops::Tanh(inputData, convertShapeToTflshape(inputShape), inputShape.offset,
                                input_range_radius, input_multiplier, input_left_shift, outputData,
                                convertShapeToTflshape(outputShape));

    return true;
}

bool logisticQuant8(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
                    const Shape& outputShape) {
    NNTRACE_TRANS("logisticQuant8");
    if (outputShape.offset != 0 || outputShape.scale != 1.f / 256) {
        LOG(ERROR) << "incorrect scale / offset for output";
        return false;
    }

    int numElements = getNumberOfElements(inputShape);
    static constexpr int kInputIntegerBits = 4;

    const double input_real_multiplier =
            inputShape.scale * static_cast<double>(1 << (31 - kInputIntegerBits));

    int32_t input_multiplier = 0;
    int32_t input_left_shift = 0;
    if (!QuantizeMultiplierGreaterThanOne(input_real_multiplier, &input_multiplier,
                                          &input_left_shift)) {
        return false;
    }
    int32_t input_range_radius = CalculateInputRadius(kInputIntegerBits, input_left_shift);

    NNTRACE_COMP_SWITCH("optimized_ops::Logistic");
    tflite::optimized_ops::Logistic(
            inputData, convertShapeToTflshape(inputShape), inputShape.offset, input_range_radius,
            input_multiplier, input_left_shift, outputData, convertShapeToTflshape(outputShape));

    return true;
}

}  // namespace

bool validate(OperationType opType, const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    auto inputType = context->getInputType(kInputTensor);
    if (inputType == OperandType::TENSOR_FLOAT32) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
    } else if (inputType == OperandType::TENSOR_FLOAT16) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
    } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
        if (opType == OperationType::TANH) {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
        } else {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
        }
    } else {
        NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << getOperationName(opType);
    }
    return validateInputTypes(context, {inputType}) && validateOutputTypes(context, {inputType});
}

bool prepare(OperationType opType, IOperationExecutionContext* context) {
    Shape input = context->getInputShape(kInputTensor);
    NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
    Shape output = input;
    if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
        switch (opType) {
            case OperationType::RELU:
            case OperationType::RELU1:
            case OperationType::RELU6:
                break;
            case OperationType::LOGISTIC:
                output.scale = 1.f / 256;
                output.offset = 0;
                break;
            case OperationType::TANH:
                output.scale = 1.f / 128;
                output.offset = 128;
                break;
            default:
                NN_RET_CHECK_FAIL() << "Unsupported operation type";
        }
    }
    return context->setOutputShape(kOutputTensor, output);
}

bool executeRelu(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return reluFloat(context->getInputBuffer<_Float16>(kInputTensor),
                             context->getInputShape(kInputTensor),
                             context->getOutputBuffer<_Float16>(kOutputTensor),
                             context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return reluFloat(context->getInputBuffer<float>(kInputTensor),
                             context->getInputShape(kInputTensor),
                             context->getOutputBuffer<float>(kOutputTensor),
                             context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return reluQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<uint8_t>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU";
    }
}

bool executeRelu1(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return relu1Float(context->getInputBuffer<_Float16>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<_Float16>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return relu1Float(context->getInputBuffer<float>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<float>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return relu1Quant8(context->getInputBuffer<uint8_t>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<uint8_t>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU1";
    }
}

bool executeRelu6(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return relu6Float(context->getInputBuffer<_Float16>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<_Float16>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return relu6Float(context->getInputBuffer<float>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<float>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return relu6Quant8(context->getInputBuffer<uint8_t>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<uint8_t>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation RELU6";
    }
}

bool executeLogistic(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return logisticFloat(context->getInputBuffer<_Float16>(kInputTensor),
                                 context->getInputShape(kInputTensor),
                                 context->getOutputBuffer<_Float16>(kOutputTensor),
                                 context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return logisticFloat(context->getInputBuffer<float>(kInputTensor),
                                 context->getInputShape(kInputTensor),
                                 context->getOutputBuffer<float>(kOutputTensor),
                                 context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return logisticQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                                  context->getInputShape(kInputTensor),
                                  context->getOutputBuffer<uint8_t>(kOutputTensor),
                                  context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation LOGISTIC";
    }
}

bool executeTanh(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT16:
            return tanhFloat16(context->getInputBuffer<_Float16>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<_Float16>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT32:
            return tanhFloat32(context->getInputBuffer<float>(kInputTensor),
                               context->getInputShape(kInputTensor),
                               context->getOutputBuffer<float>(kOutputTensor),
                               context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return tanhQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                              context->getInputShape(kInputTensor),
                              context->getOutputBuffer<uint8_t>(kOutputTensor),
                              context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation TANH";
    }
}

}  // namespace activation

using std::placeholders::_1;
NN_REGISTER_OPERATION(RELU, "RELU", std::bind(activation::validate, OperationType::RELU, _1),
                      std::bind(activation::prepare, OperationType::RELU, _1),
                      activation::executeRelu, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(RELU1, "RELU1", std::bind(activation::validate, OperationType::RELU1, _1),
                      std::bind(activation::prepare, OperationType::RELU1, _1),
                      activation::executeRelu1, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(RELU6, "RELU6", std::bind(activation::validate, OperationType::RELU6, _1),
                      std::bind(activation::prepare, OperationType::RELU6, _1),
                      activation::executeRelu6, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(LOGISTIC, "LOGISTIC",
                      std::bind(activation::validate, OperationType::LOGISTIC, _1),
                      std::bind(activation::prepare, OperationType::LOGISTIC, _1),
                      activation::executeLogistic, .allowZeroSizedInput = true);
NN_REGISTER_OPERATION(TANH, "TANH", std::bind(activation::validate, OperationType::TANH, _1),
                      std::bind(activation::prepare, OperationType::TANH, _1),
                      activation::executeTanh, .allowZeroSizedInput = true);

}  // namespace nn
}  // namespace android