summaryrefslogtreecommitdiff
path: root/nn/runtime/ExecutionPlan.cpp
blob: 901305216e0b907f563fe3bc2ab206a5cdd9db04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "ExecutionPlan"

#include "ExecutionPlan.h"

#include <cutils/native_handle.h>
#include <fcntl.h>
#include <openssl/sha.h>
#include <sys/stat.h>
#include <sys/types.h>

#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <queue>
#include <set>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>

#include "BurstBuilder.h"
#include "Callbacks.h"
#include "CompilationBuilder.h"
#include "ExecutionBuilder.h"
#include "ExecutionBurstController.h"
#include "GraphDump.h"
#include "Manager.h"
#include "MetaModel.h"
#include "ModelBuilder.h"
#include "OperationsUtils.h"
#include "TokenHasher.h"
#include "Tracing.h"
#include "TypeManager.h"
#include "Utils.h"

namespace android {
namespace nn {

namespace {

using namespace hal;

// Compiles the model on device.
// If compilation caching is available, depending on ExecutionPlan::mState, the token may only have
// been initialized by the user provided token (SIMPLE body), or is already re-hashed by the
// operation indices to be executed (COMPOUND body). The token will be re-hashed further by the
// device name, device version string, and the execution preference in this function.
int compile(const Device& device, const ModelBuilder& model, int executionPreference,
            const std::string& cacheDir, TokenHasher* token,
            std::shared_ptr<PreparedModel>* preparedModel) {
    CHECK(token != nullptr);
    CHECK(preparedModel != nullptr);
    *preparedModel = nullptr;

    std::optional<CacheToken> cacheToken;
    if (device.isCachingSupported() && token->ok() && token->updateFromString(device.getName()) &&
        token->updateFromString(device.getVersionString()) &&
        token->update(&executionPreference, sizeof(executionPreference)) && token->finish()) {
        cacheToken.emplace(token->getCacheToken());
    }

    const ModelFactory makeModel = [&model] { return model.makeHidlModel(); };
    const ExecutionPreference preference = static_cast<ExecutionPreference>(executionPreference);
    const auto [n, returnedPreparedModel] =
            device.prepareModel(makeModel, preference, cacheDir, cacheToken);
    *preparedModel = returnedPreparedModel;
    return n;
}

typedef std::function<void(uint32_t)> OperationReadyCallback;

int copyOperandExtraParams(ModelBuilder& model, uint32_t toOperandIndex,
                           const Operand& fromOperand) {
    if (fromOperand.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL &&
        fromOperand.extraParams.getDiscriminator() ==
                Operand::ExtraParams::hidl_discriminator::channelQuant) {
        auto& fromChannelQuant = fromOperand.extraParams.channelQuant();
        ANeuralNetworksSymmPerChannelQuantParams toChannelQuant = {
                .channelDim = fromChannelQuant.channelDim,
                .scaleCount = static_cast<uint32_t>(fromChannelQuant.scales.size()),
                .scales = fromChannelQuant.scales.data(),
        };
        return model.setOperandSymmPerChannelQuantParams(toOperandIndex, toChannelQuant);
    } else if (isExtensionOperandType(fromOperand.type) &&
               fromOperand.extraParams.getDiscriminator() ==
                       Operand::ExtraParams::hidl_discriminator::extension) {
        hidl_vec<uint8_t> extensionData = fromOperand.extraParams.extension();
        return model.setOperandExtensionData(toOperandIndex, extensionData.data(),
                                             extensionData.size());
    } else if (fromOperand.extraParams.getDiscriminator() !=
                       Operand::ExtraParams::hidl_discriminator::none ||
               fromOperand.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
        LOG(ERROR) << "Type " << toString(fromOperand.type)
                   << " has an unexpected extraParams discriminator: "
                   << static_cast<int>(fromOperand.extraParams.getDiscriminator());
        return ANEURALNETWORKS_BAD_DATA;
    } else {
        return ANEURALNETWORKS_NO_ERROR;
    }
}

// This class tracks whether we know the value of an operand as operations
// are processed.
class OperandTracker {
   public:
    // Creates the tracker for this model. Figure out which operations can be
    // executed right away and cb for each one of them.
    OperandTracker(const ModelBuilder* model, OperationReadyCallback cb);
    // Mark the specified operation as having been processed. The output
    // of the operation now being known, this may make new operations to be
    // able to run.  Call cb for each one of them.
    void markProcessed(uint32_t operationIndex, OperationReadyCallback cb);

   private:
    const ModelBuilder* mModel;
    std::multimap<uint32_t, uint32_t> mOperandToOperations;
    std::vector<uint32_t> mUnknownInputCount;  // For each operation
};

OperandTracker::OperandTracker(const ModelBuilder* model, OperationReadyCallback cb)
    : mModel(model) {
    const auto& operations = mModel->getOperations();
    mUnknownInputCount.resize(operations.size());
    for (uint32_t operationIndex = 0; operationIndex < operations.size(); operationIndex++) {
        const Operation& operation = operations[operationIndex];
        uint32_t count = 0;
        for (uint32_t operandIndex : operation.inputs) {
            auto lifetime = mModel->getOperand(operandIndex).lifetime;
            if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
                lifetime == OperandLifeTime::MODEL_OUTPUT) {
                count++;
                mOperandToOperations.insert(
                        std::pair<uint32_t, uint32_t>(operandIndex, operationIndex));
            }
        }
        if (count == 0) {
            cb(operationIndex);
        }
        mUnknownInputCount[operationIndex] = count;
    }
}

void OperandTracker::markProcessed(uint32_t operationIndex, OperationReadyCallback cb) {
    // Mark all its outputs as known.
    const Operation& operation = mModel->getOperations()[operationIndex];
    for (uint32_t operandIndex : operation.outputs) {
        auto range = mOperandToOperations.equal_range(operandIndex);
        for (auto i = range.first; i != range.second; i++) {
            uint32_t& count = mUnknownInputCount[i->second];
            if (--count == 0) {
                cb(i->second);
            }
        }
    }
}

}  // namespace

ExecutionStep::ExecutionStep(ExecutionPlan* plan, uint32_t stepIndex,
                             std::shared_ptr<Device> device)
    : mPlan(plan), mIndex(stepIndex), mSubModel(), mDevice(device), mToken(plan->getCacheToken()) {}

// Adds an operand if it has not been added already.
// Sets the index in the submodel for the corresponding operand.
int ExecutionStep::addOperand(uint32_t fromOperandIndex, uint32_t* toOperandIndex,
                              const ModelBuilder& fromModel, OperandKind kind) {
    // Have we added this operand already?
    auto i = mOperandMap.find(fromOperandIndex);
    if (i != mOperandMap.end()) {
        nnAssert(kind == INPUT);
        *toOperandIndex = i->second;
        return ANEURALNETWORKS_NO_ERROR;
    }

    // First time we add this operand.
    *toOperandIndex = mSubModel.operandCount();
    mOperandMap.insert(std::pair<uint32_t, uint32_t>(fromOperandIndex, *toOperandIndex));

    // Add the operand to the submodel.
    const Operand& operand = fromModel.getOperand(fromOperandIndex);
    ANeuralNetworksOperandType type = {
            .type = static_cast<int32_t>(operand.type),
            .dimensionCount = static_cast<uint32_t>(operand.dimensions.size()),
            .dimensions = operand.dimensions.size() > 0 ? operand.dimensions.data() : nullptr,
            .scale = operand.scale,
            .zeroPoint = operand.zeroPoint,
    };

    int n = mSubModel.addOperand(type);
    if (n != ANEURALNETWORKS_NO_ERROR) {
        LOG(ERROR) << "Previous error occurred when partitioning the graph";
        return n;
    }

    n = copyOperandExtraParams(mSubModel, *toOperandIndex, operand);
    if (n != ANEURALNETWORKS_NO_ERROR) {
        LOG(ERROR) << "Error when copying extra parameters to the operand";
        return n;
    }

    // Sets its value.
    switch (operand.lifetime) {
        case OperandLifeTime::CONSTANT_COPY: {
            const uint8_t* data = fromModel.getPointerToOperandValue(operand.location.offset);
            n = mSubModel.setOperandValue(*toOperandIndex, data, operand.location.length);
            if (n != ANEURALNETWORKS_NO_ERROR) {
                LOG(ERROR) << "Previous error occurred when partitioning the graph";
                return n;
            }
        } break;
        case OperandLifeTime::CONSTANT_REFERENCE: {
            const Memory* memory = fromModel.getMemories()[operand.location.poolIndex];
            n = mSubModel.setOperandValueFromMemory(
                    *toOperandIndex, memory, operand.location.offset, operand.location.length);
            if (n != ANEURALNETWORKS_NO_ERROR) {
                LOG(ERROR) << "Previous error occurred when partitioning the graph";
                return n;
            }
        } break;
        case OperandLifeTime::NO_VALUE: {
            n = mSubModel.setOperandValue(*toOperandIndex, nullptr, 0);
            if (n != ANEURALNETWORKS_NO_ERROR) {
                LOG(ERROR) << "Previous error occurred when partitioning the graph";
                return n;
            }
        } break;
        case OperandLifeTime::TEMPORARY_VARIABLE:  // handled similarly to MODEL_OUTPUT
            if (kind == INPUT) {
                // The first time we've seen this operand is as an
                // input.  That means it must be defined by a
                // different partition, and is an input to this one.
                mTempsAsSubModelInputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex));
            } else {
                // The first time we've seen this operand is as an
                // output.  It may be an input to a different
                // partition, so keep track of it.
                mPlan->recordTemporaryDef(fromOperandIndex, mIndex);
            }
            break;
        case OperandLifeTime::MODEL_INPUT:
            mModelInputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex));
            break;
        case OperandLifeTime::MODEL_OUTPUT:  // handled similarly to TEMPORARY_VARIABLE
            if (kind == INPUT) {
                // The first time we've seen this operand is as an
                // input.  That means it must be defined by a
                // different partition, and is an input to this one.
                mOutputsAsSubModelInputs.push_back(
                        std::make_pair(fromOperandIndex, *toOperandIndex));
            } else {
                // The first time we've seen this operand is as an
                // output.
                mModelOutputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex));
            }
            break;
        default:
            nnAssert(false);
            break;
    }

    return ANEURALNETWORKS_NO_ERROR;
}

int ExecutionStep::addOperation(int operationIndex, const ModelBuilder& fromModel) {
    const Operation& operation = fromModel.getOperation(operationIndex);
    if (mToken.ok()) {
        mToken.update(&operationIndex, sizeof(operationIndex));
    }

    // Convert the input and output operand indexes.
    //
    // We expect operations to be added in topological order.  Therefore:
    //
    // - We may not have seen an input if it is a model input, a
    //   constant, or an operand written by a different partition.
    //
    // - We should not have seen any outputs.
    const uint32_t inputCount = static_cast<uint32_t>(operation.inputs.size());
    const uint32_t outputCount = static_cast<uint32_t>(operation.outputs.size());
    std::vector<uint32_t> inputs(inputCount);
    std::vector<uint32_t> outputs(outputCount);

    auto addOperands = [this, &fromModel](const hidl_vec<uint32_t>& globalOperands,
                                          std::vector<uint32_t>& localOperands,
                                          OperandKind kind) -> int {
        const uint32_t operandCount = static_cast<uint32_t>(globalOperands.size());
        for (uint32_t i = 0; i < operandCount; i++) {
            uint32_t localOperand = ~0U;
            int n = addOperand(globalOperands[i], &localOperand, fromModel, kind);
            if (n != ANEURALNETWORKS_NO_ERROR) return n;
            localOperands[i] = localOperand;
        }
        return ANEURALNETWORKS_NO_ERROR;
    };

    int n;
    if ((n = addOperands(operation.inputs, inputs, INPUT)) != ANEURALNETWORKS_NO_ERROR ||
        (n = addOperands(operation.outputs, outputs, OUTPUT)) != ANEURALNETWORKS_NO_ERROR) {
        return n;
    }

    return mSubModel.addOperation(static_cast<uint32_t>(operation.type), inputCount, inputs.data(),
                                  outputCount, outputs.data());
}

void ExecutionStep::mapInputsAndOutputs(std::shared_ptr<StepExecutor> stepExecutor) const {
    for (uint32_t i = 0, e = mInputIndexSubModelToFromModel.size(); i < e; i++) {
        stepExecutor->mapInput(mInputIndexSubModelToFromModel[i], i);
    }
    for (uint32_t i = 0, e = mOutputIndexSubModelToFromModel.size(); i < e; i++) {
        stepExecutor->mapOutput(mOutputIndexSubModelToFromModel[i], i);
    }
}

void ExecutionPlan::CompoundBody::findTempsAsSubModelOutputs() {
    for (const auto& step : mSteps) {
        for (const auto& input : step->getTempsAsSubModelInputs()) {
            const uint32_t fromModelIndex = input.first;
            const auto it = mTemporaryToDefiningStep.find(fromModelIndex);
            nnAssert(it != mTemporaryToDefiningStep.end());
            const uint32_t stepIndex = it->second;
            nnAssert(stepIndex < mSteps.size());
            mSteps[stepIndex]->recordTempAsSubModelOutput(fromModelIndex);
        }
    }
}

void ExecutionStep::logSubModel() const {
    VLOG(COMPILATION) << "ExecutionStep::finishSubModel, step " << mIndex;

    auto logRemapEntry = [](std::string& toLog, const std::pair<uint32_t, uint32_t>& e) {
        if (!toLog.empty()) {
            toLog += ", ";
        }
        toLog += "(";
        toLog += std::to_string(e.first);
        toLog += "->";
        toLog += std::to_string(e.second);
        toLog += ")";
    };

    auto logRemapVector = [&logRemapEntry](const char* name, const RemapVectorType& map) {
        std::string toLog;
        for (const auto& e : map) {
            logRemapEntry(toLog, e);
        }
        VLOG(COMPILATION) << name << ": " << toLog;
    };
    auto logRemapSet = [&logRemapEntry](const char* name, const SubModelOutputSetType& set) {
        std::string toLog;
        for (const auto& e : set) {
            logRemapEntry(toLog, e);
        }
        VLOG(COMPILATION) << name << ": " << toLog;
    };

    logRemapVector("model inputs", mModelInputs);
    logRemapVector("model outputs", mModelOutputs);
    logRemapVector("temps as submodel inputs", mTempsAsSubModelInputs);
    logRemapSet("temps as submodel outputs", mTempsAsSubModelOutputs);
    logRemapVector("outputs as submodel inputs", mOutputsAsSubModelInputs);
}

static void convertModelInputsOrOutputs(
        // IN: mModel{Inputs|Outputs}
        const ExecutionStep::RemapVectorType& myModelInputsOrOutputs,
        // IN: fromModel->{input|output}Count()
        uint32_t fromModelInputOrOutputCount,
        // IN: fromModel->get{Input|Output}OperandIndex
        std::function<uint32_t(uint32_t)> fromModelGetInputOrOutputOperandIndex,
        // OUT: for v : mModel{Inputs|Outputs} : v.second
        std::vector<uint32_t>* inputsOrOutputs,
        // OUT: submodel input-or-output index to original model input-or-output index
        std::vector<uint32_t>* inputOrOutputIndexSubModelToFromModel) {
    std::map<uint32_t, uint32_t> fromModelIndexMap;  // operand index to input-or-output index
    for (uint32_t i = 0; i < fromModelInputOrOutputCount; i++) {
        fromModelIndexMap[fromModelGetInputOrOutputOperandIndex(i)] = i;
    }
    for (const auto& myInputOrOutput : myModelInputsOrOutputs) {
        inputsOrOutputs->push_back(myInputOrOutput.second);
        const uint32_t fromModelInputOrOutputIndex = fromModelIndexMap[myInputOrOutput.first];
        inputOrOutputIndexSubModelToFromModel->push_back(fromModelInputOrOutputIndex);
    }
}

int ExecutionStep::finishSubModel(const ModelBuilder* fromModel, bool* hasOutputOfUnknownSize,
                                  int32_t executionPreference) {
    nnAssert(mDevice != nullptr);
    if (VLOG_IS_ON(COMPILATION)) {
        logSubModel();
    }

    mSubModel.relaxComputationFloat32toFloat16(fromModel->isComputationFloat32RelaxedToFloat16());

    // Input order: mModelInputs, mTempsAsSubModelInputs, mOutputsAsSubModelInputs
    // Output order: mModelOutputs, mTempsAsSubModelOutputs
    //
    // ExecutionPlan::next() depends on these orderings.

    std::vector<uint32_t> inputs;
    convertModelInputsOrOutputs(
            mModelInputs, fromModel->inputCount(),
            [=](uint32_t i) { return fromModel->getInputOperandIndex(i); }, &inputs,
            &mInputIndexSubModelToFromModel);
    for (const auto& subModelInput : mTempsAsSubModelInputs) {
        inputs.push_back(subModelInput.second);
    }
    for (const auto& subModelInput : mOutputsAsSubModelInputs) {
        inputs.push_back(subModelInput.second);
    }

    std::vector<uint32_t> outputs;
    convertModelInputsOrOutputs(
            mModelOutputs, fromModel->outputCount(),
            [=](uint32_t i) { return fromModel->getOutputOperandIndex(i); }, &outputs,
            &mOutputIndexSubModelToFromModel);
    for (const auto& subModelOutput : mTempsAsSubModelOutputs) {
        outputs.push_back(subModelOutput.second);
        const Operand& operand = mSubModel.getOperand(subModelOutput.second);
        if (operand.dimensions.size() == 0) {
            *hasOutputOfUnknownSize = true;
        } else {
            for (uint32_t dimension : operand.dimensions) {
                if (dimension == 0) {
                    *hasOutputOfUnknownSize = true;
                    break;
                }
            }
        }
        if (*hasOutputOfUnknownSize) {
            VLOG(COMPILATION) << "SubModelOutput (operand#" << subModelOutput.first
                              << " of original graph) has unknown size: " << toString(operand);
        }
    }

    {
        int n = mSubModel.identifyInputsAndOutputs(inputs.size(), &inputs[0], outputs.size(),
                                                   &outputs[0]);
        if (n != ANEURALNETWORKS_NO_ERROR) {
            return n;
        }
        n = mSubModel.finish();
        if (n != ANEURALNETWORKS_NO_ERROR) {
            return n;
        }
    }

    {
        // Compute mOutputsAsSubModelInputsIndexToFromModel.

        std::map<uint32_t, uint32_t> fromModelOperandIndexToOutputIndex;
        for (unsigned i = 0, e = fromModel->outputCount(); i < e; ++i) {
            fromModelOperandIndexToOutputIndex[fromModel->getOutputOperandIndex(i)] = i;
        }

        for (unsigned i = 0, e = mOutputsAsSubModelInputs.size(); i < e; i++) {
            const uint32_t fromModelOperandIndex = mOutputsAsSubModelInputs[i].first;
            const auto it = fromModelOperandIndexToOutputIndex.find(fromModelOperandIndex);
            if (it == fromModelOperandIndexToOutputIndex.end()) {
                LOG(ERROR) << "Could not find main model output operand " << fromModelOperandIndex
                           << " in main model output operand list";
                return ANEURALNETWORKS_BAD_STATE;
            }
            mOutputsAsSubModelInputsIndexToFromModel.push_back(it->second);
        }
    }

    // TODO: Move compilation elsewhere?
    VLOG(COMPILATION) << "ExecutionStep::finishSubModel, compilation on " << mDevice->getName();
    return compile(*mDevice, mSubModel, executionPreference, *mPlan->getCacheDir(), &mToken,
                   &mPreparedSubModel);
}

void ExecutionStep::dump() const {
    if (VLOG_IS_ON(COMPILATION)) {
        VLOG(COMPILATION) << "ExecutionStep#" << mIndex << " for " << mDevice->getName();
        logModelToInfo(mSubModel.makeHidlModel());
    }
}

int ExecutionPlan::CompoundBody::finish(const ModelBuilder* fromModel,
                                        int32_t executionPreference) {
    findTempsAsSubModelOutputs();
    for (const auto& step : mSteps) {
        int n = step->finishSubModel(fromModel, &mHasSubModelOutputOfUnknownSize,
                                     executionPreference);
        if (n != ANEURALNETWORKS_NO_ERROR) {
            VLOG(COMPILATION) << "ExecutionPlan::CompoundBody::finish -- finishSubModel failed";
            return n;
        }
    }
    if (mHasSubModelOutputOfUnknownSize) {
        VLOG(COMPILATION)
                << "ExecutionPlan::CompoundBody::finish -- mHasSubModelOutputOfUnknownSize";
        return ANEURALNETWORKS_OP_FAILED;
    }

    mSuccessfulFinish = true;
    return ANEURALNETWORKS_NO_ERROR;
}

int ExecutionPlan::SimpleBody::finish([[maybe_unused]] const ModelBuilder* fromModel,
                                      int32_t executionPreference) {
    nnAssert(mDevice != nullptr);
    VLOG(COMPILATION) << "ExecutionPlan::SimpleBody::finish, compilation";
    const int n =
            compile(*mDevice, *mModel, executionPreference, *mCacheDir, &mToken, &mPreparedModel);
    mSuccessfulFinish = (n == ANEURALNETWORKS_NO_ERROR);
    return n;
}

int ExecutionPlan::finish(const ModelBuilder* fromModel, int32_t executionPreference) {
    nnAssert(mBody != nullptr);
    return mBody->finish(fromModel, executionPreference);
}

ExecutionPlan::Controller::Controller(
        const ExecutionPlan* plan, ExecutionBuilder* executionBuilder,
        const BurstBuilder* burstBuilder,
        std::shared_ptr<const SubModelInputsAndOutputsType> subModelInputsAndOutputs,
        uint32_t totalSizeOfTemporaries)
    : mPlan(plan),
      mExecutionBuilder(executionBuilder),
      mBurstBuilder(burstBuilder),
      mSubModelInputsAndOutputs(subModelInputsAndOutputs),
      mNextStepIndex(0) {
    if (totalSizeOfTemporaries) {
        int n;
        std::tie(n, mTemporaries) = MemoryAshmem::create(totalSizeOfTemporaries);
        if (n != ANEURALNETWORKS_NO_ERROR) {
            LOG(ERROR) << "ExecutionPlan::Controller failed to allocate temporaries";
            mNextStepIndex = kBadStepIndex;
        }
    }
}

// Attempt to create a burst object for each PreparedModel/Partition. If the
// burst controller object cannot be made, return a nullptr in its place to
// indicate the regular execution path should be used. This can occur either
// because PreparedModel was nullptr (cpu was best choice), or because the
// IPreparedModel was of insufficient version or failed to configure the burst.
std::vector<std::shared_ptr<ExecutionBurstController>> ExecutionPlan::makeBursts(
        int preference) const {
    switch (mState) {
        // burst object for each partition in the compound case
        case COMPOUND: {
            std::vector<std::shared_ptr<ExecutionBurstController>> bursts;
            bursts.reserve(compound()->mSteps.size());
            for (const auto& step : compound()->mSteps) {
                if (const auto preparedModel = step->getPreparedSubModel()) {
                    const bool preferPowerOverLatency =
                            (preference == ANEURALNETWORKS_PREFER_LOW_POWER);
                    bursts.push_back(
                            preparedModel->configureExecutionBurst(preferPowerOverLatency));
                } else {
                    bursts.push_back(nullptr);
                }
            }
            return bursts;
        }
        // single burst object for the simple case
        case SIMPLE: {
            std::vector<std::shared_ptr<ExecutionBurstController>> burst;
            auto simpleBody = simple();
            if (const auto preparedModel = simpleBody->mPreparedModel) {
                const bool preferPowerOverLatency =
                        (preference == ANEURALNETWORKS_PREFER_LOW_POWER);
                burst.push_back(preparedModel->configureExecutionBurst(preferPowerOverLatency));
            } else {
                burst.push_back(nullptr);
            }
            return burst;
        }
        // no burst objects made
        default:
            return {};
    }
}

std::shared_ptr<ExecutionPlan::Controller> ExecutionPlan::makeController(
        ExecutionBuilder* executionBuilder, const BurstBuilder* burstBuilder) const {
    nnAssert(isValid());

    // Create the layout for a Memory object big enough for to hold
    // every TEMPORARY in the original model that is live across
    // partition boundaries.
    //
    // TODO: Rethink this approach for managing temporaries.  Some
    // alternatives:
    //
    // 1) Adopt a memory layout scheme analogous to stack allocation,
    // where objects of non-overlapping lifetime can occupy the same
    // storage.  We would still have a single Memory object in this
    // case.
    //
    // 2) Do something like what CpuExecutor does, and do allocations
    // and deallocations on the fly (during execution) before first
    // reference and after last reference, respectively.  This would
    // mean having one Memory object per TEMPORARY; or, in a more
    // complicated implementation, one Memory object per set of
    // temporaries that have the same lifetime.  Note that the Android
    // system limits the number of shared memory objects, which are
    // what our Memory objects represent.
    //
    uint32_t totalSizeOfTemporaries = 0;
    std::shared_ptr<Controller::SubModelInputsAndOutputsType> subModelInputsAndOutputs;
    if (mState == COMPOUND) {
        const ModelBuilder* fromModel = executionBuilder->getModel();
        for (const auto& step : compound()->mSteps) {
            for (const auto& output : step->getTempsAsSubModelOutputs()) {
                const uint32_t fromModelOperandIndex = output.first;
                const Operand& fromModelOperand = fromModel->getOperand(fromModelOperandIndex);
                if (subModelInputsAndOutputs == nullptr) {
                    subModelInputsAndOutputs =
                            std::make_shared<Controller::SubModelInputsAndOutputsType>();
                }
                const uint32_t size = TypeManager::get()->getSizeOfData(fromModelOperand);
                totalSizeOfTemporaries += alignBytesNeeded(totalSizeOfTemporaries, size);
                subModelInputsAndOutputs->insert(
                        std::make_pair(fromModelOperandIndex, totalSizeOfTemporaries));
                totalSizeOfTemporaries += size;
            }
        }
        if (VLOG_IS_ON(EXECUTION) && (subModelInputsAndOutputs != nullptr)) {
            for (const auto& io : *subModelInputsAndOutputs) {
                VLOG(EXECUTION) << "temp: origOpndIdx = " << io.first << ", offset = " << io.second;
            }
        }
    }

    return std::shared_ptr<Controller>(new Controller(this, executionBuilder, burstBuilder,
                                                      subModelInputsAndOutputs,
                                                      totalSizeOfTemporaries));
}

// TODO: Find a better way to provide this functionality.
int ExecutionPlan::fallback(std::shared_ptr<Controller> controller,
                            std::shared_ptr<StepExecutor>* executor) const {
    *executor = nullptr;

    VLOG(EXECUTION) << "ExecutionPlan::fallback(" << controller << ", " << executor
                    << "): mNextStepIndex = " << controller->mNextStepIndex;

    if (controller->mNextStepIndex == 0) {
        // We haven't called next().
        return ANEURALNETWORKS_OP_FAILED;
    }

    if (controller->mNextStepIndex == Controller::kBadStepIndex) {
        // The last call to next() did not produce an executor.
        return ANEURALNETWORKS_OP_FAILED;
    }

    --controller->mNextStepIndex;
    return next(controller, executor);
}

int ExecutionPlan::next(std::shared_ptr<Controller> controller,
                        std::shared_ptr<StepExecutor>* executor,
                        std::shared_ptr<ExecutionBurstController>* burstController) const {
    *executor = nullptr;
    if (burstController != nullptr) {
        *burstController = nullptr;
    }

    VLOG(EXECUTION) << "ExecutionPlan::next(" << SHOW_IF_DEBUG(controller << ", " << executor)
                    << "): mNextStepIndex = " << controller->mNextStepIndex;

    if (controller->mNextStepIndex == Controller::kBadStepIndex) {
        return ANEURALNETWORKS_OP_FAILED;
    }

    if (mState == EMPTY) {
        nnAssert(controller->mNextStepIndex == 0);  // end
        controller->mNextStepIndex = Controller::kBadStepIndex;
        return ANEURALNETWORKS_NO_ERROR;
    }

    if (mState == SIMPLE) {
        if (controller->mNextStepIndex == 0) {
            // First (and only) step.
            auto simpleBody = simple();
            *executor = std::make_shared<StepExecutor>(controller->mExecutionBuilder,
                                                       simpleBody->mModel, simpleBody->mDevice,
                                                       simpleBody->mPreparedModel);
            (*executor)->mapInputsAndOutputsTrivially();
            if (burstController != nullptr && controller->mBurstBuilder != nullptr) {
                *burstController = controller->mBurstBuilder->getControllerAt(0);
            }
            controller->mNextStepIndex = 1;
            return ANEURALNETWORKS_NO_ERROR;
        }

        nnAssert(controller->mNextStepIndex == 1);  // end
        controller->mNextStepIndex = Controller::kBadStepIndex;
        return ANEURALNETWORKS_NO_ERROR;
    }

    auto compoundBody = compound();

    if (controller->mNextStepIndex == compoundBody->mSteps.size()) {
        // end
        controller->mNextStepIndex = Controller::kBadStepIndex;
        return ANEURALNETWORKS_NO_ERROR;
    }

    // Input order: model inputs, temps as submodel inputs, outputs as submodel inputs
    // Output order: model outputs, temps as submodel outputs
    //
    // ExecutionStep::finishSubModel() establishes these orderings.

    const auto step = compoundBody->mSteps[controller->mNextStepIndex];
    *executor = std::make_shared<StepExecutor>(controller->mExecutionBuilder, step->getSubModel(),
                                               step->getDevice(), step->getPreparedSubModel());
    (*executor)->setExecutionStep(step);
    step->mapInputsAndOutputs(*executor);
    if (burstController != nullptr && controller->mBurstBuilder != nullptr) {
        *burstController = controller->mBurstBuilder->getControllerAt(controller->mNextStepIndex);
    }
    if (controller->mSubModelInputsAndOutputs != nullptr) {
        {
            // Tell executor about temps as submodel outputs.

            const size_t firstSubModelOutputIndex = step->getModelOutputs().size();
            const auto& subModelOutputs = step->getTempsAsSubModelOutputs();

            uint32_t idx = 0;
            for (auto I = subModelOutputs.begin(), E = subModelOutputs.end(); I != E; I++, idx++) {
                const uint32_t fromModelOperandIndex = I->first;
                const uint32_t offsetOfTemporary =
                        controller->mSubModelInputsAndOutputs->at(fromModelOperandIndex);
                int n = (*executor)->setOutputFromTemporaryMemory(firstSubModelOutputIndex + idx,
                                                                  controller->mTemporaries.get(),
                                                                  offsetOfTemporary);
                if (n != ANEURALNETWORKS_NO_ERROR) {
                    controller->mNextStepIndex = Controller::kBadStepIndex;
                    return n;
                }
            }
        }
        {
            // Tell executor about temps as submodel inputs.

            const size_t firstSubModelInputIndex = step->getModelInputs().size();
            const auto& subModelInputs = step->getTempsAsSubModelInputs();

            uint32_t idx = 0;
            for (auto I = subModelInputs.begin(), E = subModelInputs.end(); I != E; I++, idx++) {
                const uint32_t fromModelOperandIndex = I->first;
                const uint32_t offsetOfTemporary =
                        controller->mSubModelInputsAndOutputs->at(fromModelOperandIndex);
                int n = (*executor)->setInputFromTemporaryMemory(firstSubModelInputIndex + idx,
                                                                 controller->mTemporaries.get(),
                                                                 offsetOfTemporary);
                if (n != ANEURALNETWORKS_NO_ERROR) {
                    controller->mNextStepIndex = Controller::kBadStepIndex;
                    return n;
                }
            }
        }
    }
    {
        // Tell executor about outputs as submodel inputs.

        const size_t firstOutputsAsSubModelInputIndex =
                step->getModelInputs().size() + step->getTempsAsSubModelInputs().size();
        const auto& outputsAsSubModelInputsIndexToFromModel =
                step->getOutputsAsSubModelInputsIndexToFromModel();
        for (uint32_t i = 0, e = outputsAsSubModelInputsIndexToFromModel.size(); i < e; i++) {
            uint32_t o = outputsAsSubModelInputsIndexToFromModel[i];
            (*executor)->mapOutputToInput(o, firstOutputsAsSubModelInputIndex + i);
        }
    }

    controller->mNextStepIndex++;
    return ANEURALNETWORKS_NO_ERROR;
}

std::shared_ptr<ExecutionStep> ExecutionPlan::createNewStep(const std::shared_ptr<Device> device) {
    nnAssert(mState != SIMPLE);
    if (mState == EMPTY) {
        mBody = new CompoundBody();
        mState = COMPOUND;
    }
    auto& steps = compound()->mSteps;
    auto step = std::make_shared<ExecutionStep>(this, steps.size(), device);
    steps.push_back(step);
    return step;
}

void ExecutionPlan::becomeSingleStep(const std::shared_ptr<Device> device,
                                     const ModelBuilder* model) {
    nnAssert(mState == EMPTY);
    mBody = new SimpleBody(device, model, mCacheDir, mToken);
    mState = SIMPLE;
}

void ExecutionPlan::dump() const {
    if (mBody) {
        mBody->dump();
    } else {
        VLOG(COMPILATION) << "EMPTY";
    }
}

void ExecutionPlan::reset() {
    if (mBody) {
        delete mBody;
        mBody = nullptr;
    }
    mState = EMPTY;
}

bool ExecutionPlan::isSimpleCpu() const {
    return isSimple() && simple()->mDevice == DeviceManager::getCpuDevice();
}

ExecutionPlan::Kind ExecutionPlan::forTest_getKind() const {
    switch (mState) {
        case EMPTY:
            return Kind::EMPTY;
        case SIMPLE:
            nnAssert(mBody);
            return mBody->mSuccessfulFinish ? Kind::SIMPLE : Kind::ERROR;
        case COMPOUND:
            nnAssert(mBody);
            return mBody->mSuccessfulFinish ? Kind::COMPOUND : Kind::ERROR;
        default:
            nnAssert(!"unexpected state");
            return Kind::ERROR;
    }
}

std::shared_ptr<const Device> ExecutionPlan::forTest_simpleGetDevice() const {
    return simple()->mDevice;
}

const std::vector<std::shared_ptr<ExecutionStep>>& ExecutionPlan::forTest_compoundGetSteps() const {
    return compound()->mSteps;
}

bool ExecutionPlan::forTest_hasSubModelOutputsOfUnknownSize() const {
    return mBody->hasSubModelOutputsOfUnknownSize();
}

const uint8_t* ExecutionPlan::forTest_simpleGetCacheToken() const {
    return simple()->mToken.getCacheToken();
}

void ExecutionPlan::SimpleBody::dump() const {
    VLOG(COMPILATION) << "SIMPLE for " << mDevice->getName();
}

void ExecutionPlan::CompoundBody::dump() const {
    for (const auto& step : mSteps) {
        step->dump();
    }
}

int ModelBuilder::partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices,
                                   uint32_t preference, ExecutionPlan* plan) const {
    // This function uses a heuristic approach to partitioning the graph.
    // It should be good enough for the first release.

    const size_t deviceCount = devices.size();
    const size_t operationCount = mOperations.size();

    VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: deviceCount = " << deviceCount
                      << ", operationCount = " << operationCount;

    // Figure out where each operation will best execute.
    // The value of the vector is the index in the devices vector.
    std::vector<int> bestDeviceForOperation(operationCount);
    NN_RETURN_IF_ERROR(
            findBestDeviceForEachOperation(preference, devices, &bestDeviceForOperation));

    // If one device will run all the operations, we don't need to split the work.
    if (std::adjacent_find(bestDeviceForOperation.begin(), bestDeviceForOperation.end(),
                           std::not_equal_to<int>()) == bestDeviceForOperation.end()) {
        const int bestDeviceIndex = bestDeviceForOperation[0];
        VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: only one best device: "
                          << bestDeviceIndex << " = " << devices[bestDeviceIndex]->getName();
        plan->becomeSingleStep(devices[bestDeviceIndex], this);
        return plan->finish(this, preference);
    }

    // No easy solution, we need to split the work.

    // We keep track of the operations that are ready to run for each device.
    std::vector<std::queue<uint32_t>> perDeviceQueue(deviceCount);

    // This helper function enqueues the operation on the appropriate queue.
    auto enqueueOnAppropriateDevice = [&](uint32_t operationIndex) {
        int deviceIndex = bestDeviceForOperation[operationIndex];
        perDeviceQueue[deviceIndex].push(operationIndex);
        VLOG(COMPILATION) << "enqueueOnAppropriateDevice " << operationIndex << " onto "
                          << deviceIndex;
    };

    // This helper function finds a device that has operations ready to process.
    // We start by looking at the CPU. We do this to try to maximize the
    // size of the graph we'll send to non-CPU devices. If the CPU runs first,
    // it will have the chance to prepare more of the inputs required by the
    // other devices. This function returns -1 if all queues are empty.
    auto findNextDeviceToProcess = [&]() -> int {
        for (int i = deviceCount - 1; i >= 0; i--) {
            if (!perDeviceQueue[i].empty()) {
                return i;
            }
        }
        return -1;
    };

    OperandTracker tracker(this, enqueueOnAppropriateDevice);
    // For each iteration of this loop, we'll create an execution step.
    while (true) {
        // Find the device we'll do this step for.
        int deviceIndex = findNextDeviceToProcess();
        VLOG(COMPILATION) << "findNextDeviceToProcess: " << deviceIndex;
        if (deviceIndex < 0) {
            break;
        }

        // Assign as much as possible to this device.
        std::shared_ptr<ExecutionStep> step = plan->createNewStep(devices[deviceIndex]);
        auto& queue = perDeviceQueue[deviceIndex];
        while (!queue.empty()) {
            uint32_t operationIndex = queue.front();
            queue.pop();
            int n = step->addOperation(operationIndex, *this);
            if (n != ANEURALNETWORKS_NO_ERROR) {
                LOG(ERROR) << "failed to add operation " << operationIndex << " to step";
                return n;
            }
            tracker.markProcessed(operationIndex, enqueueOnAppropriateDevice);
        }
    }

    int n = plan->finish(this, preference);
    if (VLOG_IS_ON(COMPILATION)) {
        VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: original model: ";
        logModelToInfo(makeHidlModel());
        plan->dump();
    }
    return n;
}

PerformanceInfo ModelBuilder::getPerformanceInfo(const std::shared_ptr<Device> device,
                                                 uint32_t operationIndex) const {
    const Operation& operation = getOperation(operationIndex);
    // TODO This assumes that the type is dictated by the first operand. This is
    // currently the case but is not a safe assumption to make in the long term.
    const uint32_t operandIndex = operation.inputs[0];
    const OperandType operandType = mOperands[operandIndex].type;
    switch (operandType) {
        case OperandType::FLOAT32:
            if (mRelaxComputationFloat32toFloat16) {
                return device->getRelaxedFloat32toFloat16PerformanceScalar();
            }
            break;
        case OperandType::TENSOR_FLOAT32:
            if (mRelaxComputationFloat32toFloat16) {
                return device->getRelaxedFloat32toFloat16PerformanceTensor();
            }
            break;
        default:
            break;
    }

    return device->getPerformance(operandType);
}

namespace {

// This class determines whether a given device can execute a given operation
class CanDo {
   public:
    CanDo() {}

    void initialize(const MetaModel& metaModel, std::shared_ptr<Device> device) {
        device->getSupportedOperations(metaModel, &mSupportsOperationByIndex);
    }

    bool check(size_t operationIndex) const { return mSupportsOperationByIndex[operationIndex]; }

   private:
    hidl_vec<bool> mSupportsOperationByIndex;
};

}  // anonymous namespace

int ModelBuilder::findBestDeviceForEachOperation(
        uint32_t preference, const std::vector<std::shared_ptr<Device>>& devices,
        std::vector<int>* bestDeviceForOperation) const {
    const MetaModel metaModel(makeHidlModel(), DeviceManager::get()->strictSlicing());

    const size_t deviceCount = devices.size();
    std::vector<CanDo> canDo(deviceCount);
    for (size_t deviceIndex = 0; deviceIndex < deviceCount; deviceIndex++) {
        canDo[deviceIndex].initialize(metaModel, devices[deviceIndex]);
    }

    // Figure out the best driver for each operation.
    const size_t operationCount = mOperations.size();
    for (size_t operationIndex = 0; operationIndex < operationCount; operationIndex++) {
        // Find which device, including CPU fallback, gives the best performance for this operation.
        int bestChoice = -1;
        float bestPerfVal = 0.0;  // Do not check bestPerfVal if bestChoice < 0.
        for (size_t deviceIndex = 0; deviceIndex < deviceCount; deviceIndex++) {
            const auto& device = devices[deviceIndex];
            if (canDo[deviceIndex].check(operationIndex)) {
                const PerformanceInfo perf = getPerformanceInfo(device, operationIndex);
                const float perfVal =
                        (preference == ANEURALNETWORKS_PREFER_LOW_POWER ? perf.powerUsage
                                                                        : perf.execTime);
                if (bestChoice < 0 || perfVal < bestPerfVal ||
                    (perfVal == bestPerfVal && device == DeviceManager::getCpuDevice())) {
                    bestChoice = deviceIndex;
                    bestPerfVal = perfVal;
                }
            } else {
                // Somewhat noisy logging, but only place where the user of
                // NNAPI can get feedback on why an operation was not run on a
                // specific device.
                // Logs O(operationCount * deviceCount) times, but
                // typically deviceCount is very small.
                VLOG(COMPILATION) << "Device " << device->getName() << " can't do operation "
                                  << toString(getOperation(operationIndex).type);
            }
        }
        if (bestChoice < 0) {
            LOG(ERROR) << "No driver can do the op";
            return ANEURALNETWORKS_BAD_DATA;
        }

        (*bestDeviceForOperation)[operationIndex] = bestChoice;
        VLOG(COMPILATION) << "ModelBuilder::findBestDeviceForEachOperation("
                          << toString(getOperation(operationIndex).type) << ") = " << bestChoice
                          << " (" << devices[bestChoice]->getName() << ")";
    }
    return ANEURALNETWORKS_NO_ERROR;
}

}  // namespace nn
}  // namespace android