summaryrefslogtreecommitdiff
path: root/nn/runtime/ModelBuilder.cpp
blob: 73ec1af8cfdd428da4744309cab62aa2dfbbd06a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "ModelBuilder"

#include "ModelBuilder.h"

#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <utility>
#include <vector>

#include "CompilationBuilder.h"
#include "GraphDump.h"
#include "Manager.h"
#include "TypeManager.h"
#include "Utils.h"
#include "ValidateHal.h"

namespace android {
namespace nn {

using namespace hal;

// The maximum number of operands and operations that a model may have.
const uint32_t MAX_NUMBER_OF_OPERANDS = 0xFFFFFFFE;
const uint32_t MAX_NUMBER_OF_OPERATIONS = 0xFFFFFFFE;

bool ModelBuilder::badState(const char* name) {
    if (mCompletedModel) {
        LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify after model finished";
        return true;
    }
    if (mInvalidModel) {
        LOG(ERROR) << "ANeuralNetworksModel_" << name << " can't modify an invalid model";
        return true;
    }
    return false;
}

int ModelBuilder::getExtensionType(const char* extensionName, uint16_t typeWithinExtension,
                                   int32_t* type) {
    return TypeManager::get()->getExtensionType(extensionName, typeWithinExtension, type)
                   ? ANEURALNETWORKS_NO_ERROR
                   : ANEURALNETWORKS_BAD_DATA;
}

int ModelBuilder::addOperand(const ANeuralNetworksOperandType& type) {
    if (badState("addOperand")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    OperandType operandType = static_cast<OperandType>(type.type);
    if (isExtensionOperandType(operandType) && !TypeManager::get()->areExtensionsAllowed()) {
        LOG(ERROR) << "Extensions are not supported for this process.";
        return ANEURALNETWORKS_BAD_DATA;
    }
    bool isOemOperand =
            operandType == OperandType::OEM || operandType == OperandType::TENSOR_OEM_BYTE;
    if (isOemOperand && !mHasOEMOperand) {
        LOG(WARNING) << "OEM data type is deprecated. Use Extensions instead.";
    }

    const Extension::OperandTypeInformation* info = nullptr;
    if (isExtensionOperandType(operandType) &&
        !TypeManager::get()->getExtensionOperandTypeInfo(operandType, &info)) {
        LOG(ERROR) << "Extension operand type " << toString(operandType) << " is not registered";
        return ANEURALNETWORKS_BAD_DATA;
    }
    NN_RETURN_IF_ERROR(validateOperandType(type, info, "ANeuralNetworksModel_addOperand", true));
    size_t idx = mOperands.size();
    if (idx >= MAX_NUMBER_OF_OPERANDS) {
        LOG(ERROR) << "ANeuralNetworksModel_addOperand exceed max operands";
        return ANEURALNETWORKS_BAD_DATA;
    }

    mOperands.push_back({
            .type = operandType,
            .dimensions =
                    hidl_vec<uint32_t>(type.dimensions, type.dimensions + type.dimensionCount),
            .numberOfConsumers = 0,
            .scale = type.scale,
            .zeroPoint = type.zeroPoint,
            .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
            .location = {.poolIndex = 0, .offset = 0, .length = 0},
            .extraParams = OperandExtraParams(),
    });
    mHasOEMOperand |= isOemOperand;
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::setOperandValue(uint32_t index, const void* buffer, size_t length) {
    VLOG(MODEL) << __func__ << " for operand " << index << " size " << length;
    if (badState("setOperandValue")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    if (index >= operandCount()) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index << " of "
                   << operandCount();
        return ANEURALNETWORKS_BAD_DATA;
    }
    Operand& operand = mOperands[index];
    if (buffer == nullptr) {
        if (length) {
            LOG(ERROR) << "ANeuralNetworksModel_setOperandValue buffer is nullptr but length is "
                          "not 0";
            return ANEURALNETWORKS_BAD_DATA;
        }
        operand.lifetime = OperandLifeTime::NO_VALUE;
        // The location is unused and is set to zeros.
        operand.location = {.poolIndex = 0, .offset = 0, .length = 0};
    } else {
        if (TypeManager::get()->isTensorType(operand.type) &&
            tensorHasUnspecifiedDimensions(operand)) {
            LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting operand " << index
                       << " which has operand type that is not fully specified";
            return ANEURALNETWORKS_BAD_DATA;
        }
        if (length > 0xFFFFFFFF) {
            LOG(ERROR) << "ANeuralNetworksModel_setOperandValue value length of " << length
                       << " exceeds max size";
            return ANEURALNETWORKS_BAD_DATA;
        }
        uint32_t valueLength = static_cast<uint32_t>(length);
        if (operand.type != OperandType::OEM) {
            uint32_t neededLength = TypeManager::get()->getSizeOfData(operand);
            if (neededLength != valueLength) {
                LOG(ERROR) << "ANeuralNetworksModel_setOperandValue setting " << valueLength
                           << " bytes when needing " << neededLength;
                return ANEURALNETWORKS_BAD_DATA;
            }
        }
        if (valueLength <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES) {
            uint32_t existingSize = static_cast<uint32_t>(mSmallOperandValues.size());
            uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength);
            mSmallOperandValues.resize(existingSize + extraBytes + valueLength);
            operand.lifetime = OperandLifeTime::CONSTANT_COPY;
            operand.location = {
                    .poolIndex = 0, .offset = existingSize + extraBytes, .length = valueLength};
            memcpy(&mSmallOperandValues[operand.location.offset], buffer, valueLength);
            VLOG(MODEL) << "Copied small value to offset " << operand.location.offset;
        } else {
            VLOG(MODEL) << "Saving large value";
            operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE;
            // The values for poolIndex and offset will be set when the model is finished.
            typedef decltype(operand.location.poolIndex) PoolIndexType;
            typedef decltype(operand.location.offset) OffsetType;
            operand.location = {.poolIndex = ~PoolIndexType(0),
                                .offset = ~OffsetType(0),
                                .length = valueLength};
            // We keep track of the buffers. We'll allocate the shared memory only
            // once we know the total size, to avoid needless copies.
            mLargeOperandValues.push_back(LargeValue{.operandIndex = index, .buffer = buffer});
        }
    }
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::setOperandValueFromModel(uint32_t index, const ModelBuilder* value) {
    VLOG(MODEL) << __func__ << " for operand " << index << " model " << value;
    if (badState("setOperandValueFromModel")) {
        return ANEURALNETWORKS_BAD_STATE;
    }
    if (!value->mCompletedModel) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel value model must be finished";
        return ANEURALNETWORKS_BAD_STATE;
    }
    if (value->mInvalidModel) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel value model is invalid";
        return ANEURALNETWORKS_BAD_STATE;
    }
    if (index >= operandCount()) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromModel setting operand " << index
                   << " of " << operandCount();
        return ANEURALNETWORKS_BAD_DATA;
    }
    Operand& operand = mOperands[index];
    operand.lifetime = OperandLifeTime::SUBGRAPH;
    operand.location = {
            .poolIndex = 0,
            .offset = static_cast<uint32_t>(mReferencedModels.size()),
            .length = 0,
    };
    mReferencedModels.push_back(value);
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::setOperandSymmPerChannelQuantParams(
        uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant) {
    if (badState("setOperandSymmPerChannelQuantParams")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    if (index >= operandCount()) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams "
                   << "setting per-channel quantization parameters for operand " << index << " of "
                   << operandCount();
        return ANEURALNETWORKS_BAD_DATA;
    }
    Operand& operand = mOperands[index];

    if (!validateOperandSymmPerChannelQuantParams(
                operand, channelQuant,
                "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams")) {
        return ANEURALNETWORKS_BAD_DATA;
    }
    switch (operand.type) {
        case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
            operand.extraParams.channelQuant({
                    .scales = hidl_vec<float>(channelQuant.scales,
                                              channelQuant.scales + channelQuant.scaleCount),
                    .channelDim = channelQuant.channelDim,
            });
            break;
        default:
            LOG(ERROR) << "ANeuralNetworksModel_setOperandSymmPerChannelQuantParams "
                       << "invalid operand type " << static_cast<int32_t>(operand.type);
            return ANEURALNETWORKS_BAD_DATA;
    }
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::setOperandExtensionData(uint32_t index, const void* data, size_t length) {
    if (badState("setOperandExtensionData")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    if (index >= operandCount()) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData "
                   << "setting extension data for operand " << index << " of " << operandCount();
        return ANEURALNETWORKS_BAD_DATA;
    }
    Operand& operand = mOperands[index];

    if (data == nullptr && length != 0) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is nullptr but length is "
                   << length;
        return ANEURALNETWORKS_BAD_DATA;
    }
    if (data != nullptr && length == 0) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData data is not nullptr but length "
                   << "is zero";
        return ANEURALNETWORKS_BAD_DATA;
    }
    if (!isExtensionOperandType(operand.type)) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandExtensionData "
                   << "setting extension data for a base operand type "
                   << static_cast<int32_t>(operand.type);
        return ANEURALNETWORKS_BAD_DATA;
    }

    if (data == nullptr) {
        operand.extraParams.none();
    } else {
        operand.extraParams.extension(
                hidl_vec<uint8_t>(reinterpret_cast<const uint8_t*>(data),
                                  reinterpret_cast<const uint8_t*>(data) + length));
    }
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::copyLargeValuesToSharedMemory() {
    VLOG(MODEL) << __func__ << " has " << mLargeOperandValues.size() << " values.";
    if (!mLargeOperandValues.empty()) {
        // Calculate the size of the shared memory needed for all the large values.
        // Also sets the offset for each value within the memory.
        size_t poolSize = 0;
        for (LargeValue& l : mLargeOperandValues) {
            Operand& operand = mOperands[l.operandIndex];
            nnAssert(operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE);
            poolSize += alignBytesNeeded(poolSize, operand.location.length);
            operand.location.offset = poolSize;
            poolSize += operand.location.length;
        }

        // Allocate the shared memory.
        int n;
        std::tie(n, mLargeValueMemory) = MemoryAshmem::create(poolSize);
        NN_RETURN_IF_ERROR(n);
        uint8_t* memoryPointer = mLargeValueMemory->getPointer();
        uint32_t poolIndex = mMemories.add(mLargeValueMemory.get());
        VLOG(MODEL) << "Allocated large value pool of size " << poolSize << " at index "
                    << poolIndex;

        // Copy the values to this memory.
        for (LargeValue& l : mLargeOperandValues) {
            Operand& operand = mOperands[l.operandIndex];
            operand.location.poolIndex = poolIndex;
            memcpy(memoryPointer + operand.location.offset, l.buffer, operand.location.length);
        }
    }
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
                                            size_t length) {
    VLOG(MODEL) << __func__ << " for operand " << index << " offset " << offset << " size "
                << length;
    if (badState("setOperandValueFromMemory")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    if (index >= operandCount()) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index
                   << " of " << operandCount();
        return ANEURALNETWORKS_BAD_DATA;
    }
    Operand& operand = mOperands[index];
    if (TypeManager::get()->isTensorType(operand.type) && tensorHasUnspecifiedDimensions(operand)) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting operand " << index
                   << " which has operand type that is not fully specified";
        return ANEURALNETWORKS_BAD_DATA;
    }
    uint32_t neededLength = TypeManager::get()->getSizeOfData(operand);
    if (neededLength != length) {
        LOG(ERROR) << "ANeuralNetworksModel_setOperandValueFromMemory setting " << length
                   << " bytes when needing " << neededLength;
        return ANEURALNETWORKS_BAD_DATA;
    }
    // Set compilation = nullptr to indicate that the memory is used for a model constant.
    // In this case, IOType::INPUT is a dummy value that is ignored by the validator.
    if (!memory->getValidator().validate(/*compilation=*/nullptr, /*dummy*/ IOType::INPUT, index,
                                         nullptr, offset, length)) {
        return ANEURALNETWORKS_BAD_DATA;
    }
    operand.lifetime = OperandLifeTime::CONSTANT_REFERENCE;
    operand.location = {.poolIndex = mMemories.add(memory),
                        .offset = offset,
                        .length = static_cast<uint32_t>(length)};
    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::addOperation(ANeuralNetworksOperationType type, uint32_t inputCount,
                               const uint32_t* inputs, uint32_t outputCount,
                               const uint32_t* outputs) {
    if (badState("addOperation")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    OperationType operationType = static_cast<OperationType>(type);
    if (isExtensionOperationType(operationType) && !TypeManager::get()->areExtensionsAllowed()) {
        LOG(ERROR) << "Extensions are not supported for this process.";
        return ANEURALNETWORKS_BAD_DATA;
    }
    if (operationType == OperationType::OEM_OPERATION && !mHasOEMOperation) {
        LOG(WARNING) << "OEM_OPERATION is deprecated. Use Extensions instead.";
    }

    if (!isExtensionOperationType(operationType)) {
        if (!validCode(kNumberOfOperationTypes, kNumberOfOperationTypesOEM, type)) {
            LOG(ERROR) << "ANeuralNetworksModel_addOperation invalid operation type " << type;
            return ANEURALNETWORKS_BAD_DATA;
        }
    }

    auto isValidSubgraphReference = [this](const Operand& modelOperand) -> bool {
        NN_RET_CHECK(modelOperand.type == OperandType::SUBGRAPH)
                << "Unexpected operand type: " << toString(modelOperand.type);
        NN_RET_CHECK_LT(modelOperand.location.offset, referencedModelCount())
                << "Invalid subgraph model reference";
        return true;
    };
    auto getInputCount = [this](const Operand& modelOperand) -> uint32_t {
        return getReferencedModel(modelOperand)->inputCount();
    };
    auto getOutputCount = [this](const Operand& modelOperand) -> uint32_t {
        return getReferencedModel(modelOperand)->outputCount();
    };
    auto getInputOperand = [this](const Operand& modelOperand, uint32_t index) -> const Operand* {
        return &getReferencedModel(modelOperand)->getInputOperand(index);
    };
    auto getOutputOperand = [this](const Operand& modelOperand, uint32_t index) -> const Operand* {
        return &getReferencedModel(modelOperand)->getOutputOperand(index);
    };
    NN_RETURN_IF_ERROR(validateOperation(
            type, inputCount, inputs, outputCount, outputs, mOperands, HalVersion::LATEST,
            {.isValidSubgraphReference = isValidSubgraphReference,
             .getSubgraphInputCount = getInputCount,
             .getSubgraphOutputCount = getOutputCount,
             .getSubgraphInputOperand = getInputOperand,
             .getSubgraphOutputOperand = getOutputOperand,
             .allowControlFlowOperationWithOperandOfUnknownSize = true}));

    uint32_t operationIndex = operationCount();
    if (operationIndex >= MAX_NUMBER_OF_OPERATIONS) {
        LOG(ERROR) << "ANeuralNetworksModel_addOperation exceed max operations";
        return ANEURALNETWORKS_BAD_DATA;
    }

    mOperations.push_back({
            .type = operationType,
            .inputs = hidl_vec<uint32_t>(inputs, inputs + inputCount),
            .outputs = hidl_vec<uint32_t>(outputs, outputs + outputCount),
    });
    for (uint32_t i : mOperations.back().inputs) {
        mOperands[i].numberOfConsumers++;
    }
    mHasOEMOperation |= (operationType == OperationType::OEM_OPERATION);
    mHasExtensionOperation |= isExtensionOperationType(operationType);

    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs,
                                           uint32_t outputCount, const uint32_t* outputs) {
    if (badState("identifyInputsAndOutputs")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    int n = validateOperandList(inputCount, inputs, operandCount(),
                                "ANeuralNetworksModel_identifyInputsAndOutputs inputs");
    if (n != ANEURALNETWORKS_NO_ERROR) {
        return n;
    }
    n = validateOperandList(outputCount, outputs, operandCount(),
                            "ANeuralNetworksModel_identifyInputsAndOutputs outputs");
    if (n != ANEURALNETWORKS_NO_ERROR) {
        return n;
    }

    // Makes a copy of the index list, validates the arguments, and changes
    // the lifetime info of the corresponding operand.
    auto setArguments = [&](std::vector<uint32_t>* indexVector, uint32_t indexCount,
                            const uint32_t* indexList, OperandLifeTime lifetime) -> bool {
        indexVector->resize(indexCount);
        for (uint32_t i = 0; i < indexCount; i++) {
            const uint32_t operandIndex = indexList[i];
            if (operandIndex >= mOperands.size()) {
                LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set input or "
                              "output "
                              "to be "
                           << operandIndex << " as this exceeds the numbe of operands "
                           << mOperands.size();
                return false;
            }
            (*indexVector)[i] = operandIndex;
            Operand& operand = mOperands[operandIndex];
            if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE) {
                LOG(ERROR) << "ANeuralNetworksModel_identifyInputsAndOutputs Can't set operand "
                           << operandIndex
                           << " to be an input or output.  Check that it's not a constant or "
                              "already an input or output";
                return false;
            }
            operand.lifetime = lifetime;
        }
        return true;
    };

    if (!setArguments(&mInputIndexes, inputCount, inputs, OperandLifeTime::SUBGRAPH_INPUT) ||
        !setArguments(&mOutputIndexes, outputCount, outputs, OperandLifeTime::SUBGRAPH_OUTPUT)) {
        return ANEURALNETWORKS_BAD_DATA;
    }

    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::relaxComputationFloat32toFloat16(bool allow) {
    if (badState("relaxComputationFloat32toFloat16")) {
        return ANEURALNETWORKS_BAD_STATE;
    }

    mRelaxComputationFloat32toFloat16 = allow;

    return ANEURALNETWORKS_NO_ERROR;
}

int ModelBuilder::createCompilation(CompilationBuilder** compilation,
                                    const std::vector<std::shared_ptr<Device>>& devices,
                                    bool explicitDeviceList) {
    if (!mCompletedModel || mInvalidModel) {
        LOG(ERROR) << "ANeuralNetworksCompilation_create passed an unfinished or invalid model";
        *compilation = nullptr;
        return ANEURALNETWORKS_BAD_STATE;
    }
    *compilation = new (std::nothrow) CompilationBuilder(this, devices, explicitDeviceList);
    return (*compilation ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_OUT_OF_MEMORY);
}

int ModelBuilder::finish() {
    if (mCompletedModel) {
        LOG(ERROR) << "ANeuralNetworksModel_finish called more than once";
        return ANEURALNETWORKS_BAD_STATE;
    }
    if (mInvalidModel) {
        LOG(ERROR) << "ANeuralNetworksModel_finish called on an invalid model";
        return ANEURALNETWORKS_BAD_STATE;
    }

    int n = copyLargeValuesToSharedMemory();
    if (n != ANEURALNETWORKS_NO_ERROR) {
        return n;
    }

    // We sort the operations so that they will be in the appropriate
    // order for a single-threaded, op at a time execution.
    // TODO: we don't need this if we always run the partitioner.
    if (!sortIntoRunOrder()) {
        // We expect sortIntoRunOrder() to have logged an appropriate error message.
        mInvalidModel = true;
        return ANEURALNETWORKS_BAD_DATA;
    }

    // TODO: Modify validation so that it can be called without creating a HAL Model.
    // NOTE: Must sortIntoRunOrder() before validation; validator expects operations
    //       to have been sorted.
    // NOTE: Must copyLargeValuesToSharedMemory() before validation; otherwise,
    //       a CONSTANT_REFERENCE operand will not have correct .poolIndex, and
    //       validation will not work properly.
    const Model modelForValidation = makeHidlModel();
    if (!validateModel(modelForValidation, ValidationMode::RUNTIME)) {
        LOG(ERROR) << "ANeuralNetworksModel_finish called on invalid model";
        mInvalidModel = true;
        return ANEURALNETWORKS_BAD_DATA;
    }
    if (VLOG_IS_ON(MODEL)) {
        graphDump("ModelBuilder::finish", modelForValidation, nullptr);
    }

    removeTrailingArgumentsWithDefaultValues();

    mCompletedModel = true;
    return ANEURALNETWORKS_NO_ERROR;
}

static void logRemoval(const Operation& operation, uint32_t count,
                       const std::vector<Operand>& operands) {
    std::ostringstream message;
    message << "Operation " << toString(operation.type) << " with inputs {";
    for (uint32_t i = 0; i < operation.inputs.size(); ++i) {
        if (i != 0) {
            message << ", ";
        }
        message << toString(operands[operation.inputs[i]].type);
    }
    message << "} has trailing optional inputs set to default values. Removing " << count
            << " trailing inputs.";
    VLOG(MODEL) << message.str();
}

void ModelBuilder::removeTrailingArgumentsWithDefaultValues() {
    for (Operation& operation : mOperations) {
        const uint32_t count = getNumTrailingArgumentsToRemove(operation);
        if (count == 0) {
            continue;
        }
        if (VLOG_IS_ON(MODEL)) {
            logRemoval(operation, count, mOperands);
        }
        const uint32_t inputCount = operation.inputs.size();
        CHECK_LT(count, inputCount);
        const uint32_t newInputCount = inputCount - count;
        for (uint32_t i = newInputCount; i < inputCount; ++i) {
            --mOperands[operation.inputs[i]].numberOfConsumers;
        }
        operation.inputs.resize(newInputCount);
    }
}

// See countMatchingTrailingArguments().
enum class TailSpec {
    BOOL_FALSE,
    INT32_ONE,
    INT32_NEGATIVE_ONE,
};

// See countMatchingTrailingArguments().
static bool matchesSpec(TailSpec spec, const Operand& operand,
                        const std::vector<uint8_t>& mSmallOperandValues) {
    if (operand.lifetime != OperandLifeTime::CONSTANT_COPY) {
        // CONSTANT_REFERENCE operands are not supported to avoid mapping memory
        // during compilation.
        return false;
    }
    auto valuePtr = static_cast<const void*>(&mSmallOperandValues[operand.location.offset]);
    switch (spec) {
        case TailSpec::BOOL_FALSE:
            return operand.type == OperandType::BOOL &&
                   *static_cast<const bool8*>(valuePtr) == false;
        case TailSpec::INT32_ONE:
            return operand.type == OperandType::INT32 &&
                   *static_cast<const int32_t*>(valuePtr) == 1;
        case TailSpec::INT32_NEGATIVE_ONE:
            return operand.type == OperandType::INT32 &&
                   *static_cast<const int32_t*>(valuePtr) == -1;
        default:
            CHECK(false) << "Unhandled TailSpec: " << static_cast<int>(spec);
    }
}

// Returns the number of trailing operation inputs that match the specification.
//
// Example:
//     opeation.inputs = {BOOL_TRUE, BOOL_TRUE,  INT32_ONE, INT32_NEGATIVE_ONE}
//     tail            =            {BOOL_FALSE, INT32_ONE, INT32_NEGATIVE_ONE}
//     tailStartIndex  = 1    matching elements: ^^^^^^^^^  ^^^^^^^^^^^^^^^^^^
static uint32_t countMatchingTrailingArguments(uint32_t tailStartIndex,
                                               const std::vector<TailSpec>& tail,
                                               const Operation& operation,
                                               const std::vector<Operand>& operands,
                                               const std::vector<uint8_t>& smallOperandValues) {
    const uint32_t inputCount = operation.inputs.size();
    uint32_t count = 0;
    for (uint32_t i = inputCount - 1; i >= tailStartIndex; --i) {
        const Operand& operand = operands[operation.inputs[i]];
        if (!matchesSpec(tail[i - tailStartIndex], operand, smallOperandValues)) {
            break;
        }
        ++count;
    }
    return count;
}

uint32_t ModelBuilder::getNumTrailingArgumentsToRemove(const Operation& operation) const {
    const uint32_t inputCount = operation.inputs.size();
    auto getCount = [this, &operation](uint32_t tailStartIndex, const std::vector<TailSpec>& tail) {
        return countMatchingTrailingArguments(tailStartIndex, tail, operation, mOperands,
                                              mSmallOperandValues);
    };
    using TS = TailSpec;
    // Check if the operation has optional arguments that might be set to default
    // values. Skip the counting if no optional arguments are present.
    switch (operation.type) {
        case OperationType::AVERAGE_POOL_2D: {
            if (inputCount == 11 && mOperands[operation.inputs[7]].type == OperandType::INT32) {
                // Explicit padding
                // API level 29: 10 to 11 inputs
                // API level 27: 10 inputs
                return getCount(10, {TS::BOOL_FALSE});
            } else if (inputCount == 8 &&
                       mOperands[operation.inputs[7]].type == OperandType::BOOL) {
                // Implicit padding
                // API level 29: 7 to 8 inputs
                // API level 27: 7 inputs
                return getCount(7, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::CONV_2D: {
            if (10 < inputCount && inputCount <= 13 &&
                mOperands[operation.inputs[7]].type == OperandType::INT32) {
                // Explicit padding
                // API level 29: 10 to 13 inputs
                // API level 27: 10 inputs
                uint32_t count = getCount(10, {TS::BOOL_FALSE, TS::INT32_ONE, TS::INT32_ONE});
                // Inputs 11 and 12 must come together.
                return inputCount - count == 12 ? 0 : count;
            } else if (7 < inputCount && inputCount <= 10 &&
                       mOperands[operation.inputs[7]].type == OperandType::BOOL) {
                // Implicit padding
                // API level 29: 7 to 10 inputs
                // API level 27: 7 inputs
                uint32_t count = getCount(7, {TS::BOOL_FALSE, TS::INT32_ONE, TS::INT32_ONE});
                // Inputs 8 and 9 must come together.
                return inputCount - count == 9 ? 0 : count;
            }
        } break;
        case OperationType::DEPTHWISE_CONV_2D: {
            if (11 < inputCount && inputCount <= 14 &&
                mOperands[operation.inputs[8]].type == OperandType::INT32) {
                // Explicit padding
                // API level 29: 11 to 14 inputs
                // API level 27: 11 inputs
                uint32_t count = getCount(11, {TS::BOOL_FALSE, TS::INT32_ONE, TS::INT32_ONE});
                // Inputs 12 and 13 must come together.
                return inputCount - count == 13 ? 0 : count;
            } else if (8 < inputCount && inputCount <= 11 &&
                       mOperands[operation.inputs[8]].type == OperandType::BOOL) {
                // Implicit padding
                // API level 29: 8 to 11 inputs
                // API level 27: 8 inputs
                uint32_t count = getCount(8, {TS::BOOL_FALSE, TS::INT32_ONE, TS::INT32_ONE});
                // Inputs 9 and 10 must come together.
                return inputCount - count == 10 ? 0 : count;
            }
        } break;
        case OperationType::DEPTH_TO_SPACE: {
            if (inputCount == 3) {
                // API level 29: 2 to 3 inputs
                // API level 27: 2 inputs
                return getCount(2, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::L2_NORMALIZATION: {
            if (inputCount == 2) {
                // API level 29: 1 to 2 inputs
                // API level 27: 1 inputs
                return getCount(1, {TS::INT32_NEGATIVE_ONE});
            }
        } break;
        case OperationType::L2_POOL_2D: {
            if (inputCount == 11 && mOperands[operation.inputs[7]].type == OperandType::INT32) {
                // Explicit padding
                // API level 29: 10 to 11 inputs
                // API level 27: 10 inputs
                return getCount(10, {TS::BOOL_FALSE});
            } else if (inputCount == 8 &&
                       mOperands[operation.inputs[7]].type == OperandType::BOOL) {
                // Implicit padding
                // API level 29: 7 to 8 inputs
                // API level 27: 7 inputs
                return getCount(7, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
            if (inputCount == 6) {
                // API level 29: 5 to 6 inputs
                // API level 27: 5 inputs
                return getCount(5, {TS::INT32_NEGATIVE_ONE});
            }
        } break;
        case OperationType::MAX_POOL_2D: {
            if (inputCount == 11 && mOperands[operation.inputs[7]].type == OperandType::INT32) {
                // Explicit padding
                // API level 29: 10 to 11 inputs
                // API level 27: 10 inputs
                return getCount(10, {TS::BOOL_FALSE});
            } else if (inputCount == 8 &&
                       mOperands[operation.inputs[7]].type == OperandType::BOOL) {
                // Implicit padding
                // API level 29: 7 to 8 inputs
                // API level 27: 7 inputs
                return getCount(7, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::RESIZE_BILINEAR: {
            if (3 < inputCount && inputCount <= 6) {
                // By shape:
                //     API level 30: 3 to 6 inputs
                //     API level 29: 3 to 4 inputs
                //     API level 27: 3 inputs
                // By scale:
                //     API level 30: 3 to 6 inputs
                //     API level 29: 3 to 4 inputs
                return getCount(3, {TS::BOOL_FALSE, TS::BOOL_FALSE, TS::BOOL_FALSE});
            }
        } break;
        case OperationType::SOFTMAX: {
            if (inputCount == 3) {
                // API level 29: 2 to 3 inputs
                // API level 27: 2 inputs
                return getCount(2, {TS::INT32_NEGATIVE_ONE});
            }
        } break;
        case OperationType::SPACE_TO_DEPTH: {
            if (inputCount == 3) {
                // API level 29: 2 to 3 inputs
                // API level 27: 2 inputs
                return getCount(2, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::BATCH_TO_SPACE_ND: {
            if (inputCount == 3) {
                // API level 29: 2 to 3 inputs
                // API level 28: 2 inputs
                return getCount(2, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::SPACE_TO_BATCH_ND: {
            if (inputCount == 4) {
                // API level 29: 3 to 4 inputs
                // API level 28: 3 inputs
                return getCount(3, {TS::BOOL_FALSE});
            }
        } break;
        case OperationType::RESIZE_NEAREST_NEIGHBOR: {
            if (4 < inputCount && inputCount <= 6) {
                // By shape or scale
                // API level 30: 4 to 6 inputs
                // API level 29: 4 inputs
                return getCount(4, {TS::BOOL_FALSE, TS::BOOL_FALSE});
            }
        } break;
        default: {
            // Do nothing.
        } break;
    }
    // No trailing optional arguments to check.
    return 0;
}

bool ModelBuilder::sortIntoRunOrder() {
    // Note that this may be called before the model has been
    // validated, so we must code defensively.  However, we can assume
    // an Operation's inputs and outputs have legal indices -- this
    // should have been checked in addOperation().

    if (!mSortedOperationIndexMap.empty()) {
        LOG(ERROR) << "Operations were already sorted into run order.";
        return true;
    }

    // Tracks the operations that can be executed.
    std::vector<uint32_t> sortedOperationIndexMap;
    std::vector<uint32_t> opsReadyToRun;
    std::vector<Operation> runOrder;

    // Tracks how many inputs are needed for each operation to be ready to run.
    std::multimap<uint32_t, uint32_t> operandToOperations;
    std::vector<uint32_t> unknownInputCount(operationCount());
    for (uint32_t operationIndex = 0; operationIndex < operationCount(); operationIndex++) {
        uint32_t& count = unknownInputCount[operationIndex];
        count = 0;
        for (uint32_t operandIndex : mOperations[operationIndex].inputs) {
            auto lifetime = mOperands[operandIndex].lifetime;
            if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
                lifetime == OperandLifeTime::SUBGRAPH_OUTPUT) {
                count++;
                operandToOperations.insert(
                        std::pair<uint32_t, uint32_t>(operandIndex, operationIndex));
            }
        }
        if (count == 0) {
            opsReadyToRun.push_back(operationIndex);
        }
    }

    while (opsReadyToRun.size() > 0) {
        // Execute the next op
        int opIndex = opsReadyToRun.back();
        opsReadyToRun.pop_back();
        const Operation& operation = mOperations[opIndex];

        runOrder.push_back(mOperations[opIndex]);
        sortedOperationIndexMap.push_back(opIndex);

        // Mark all its outputs as known.
        for (uint32_t operandIndex : operation.outputs) {
            auto range = operandToOperations.equal_range(operandIndex);
            for (auto i = range.first; i != range.second; i++) {
                uint32_t& count = unknownInputCount[i->second];
                if (--count == 0) {
                    opsReadyToRun.push_back(i->second);
                }
            }
        }
    }

    if (runOrder.size() != mOperations.size()) {
        nnAssert(runOrder.size() < mOperations.size());
        // Graph must contain at least one cycle or one never-written
        // operand, because there is at least one Operation that never
        // became ready.
        LOG(ERROR) << "Graph contains at least one cycle or one never-written operand";
        return false;
    }

    mSortedOperationIndexMap = std::move(sortedOperationIndexMap);
    mOperations = std::move(runOrder);
    return true;
}

// A helper class to simplify state management when creating a HIDL model.
class ModelBuilder::HidlModelMaker {
   public:
    static Model run(const ModelBuilder* model);

   private:
    static Subgraph makeSubgraph(const ModelBuilder* model);
    HidlModelMaker() {}
    Model makeHidlModel(const ModelBuilder* mainModel);
    uint32_t addSubgraph(const ModelBuilder* refModel);
    void updateOperandLocations(const ModelBuilder* refModel, Subgraph* subgraph);
    void addExtensions(const ModelBuilder* model);
    void addExtensionWithPrefix(uint16_t prefix);

    std::vector<Subgraph> mRefSubgraphs;
    std::vector<uint8_t> mOperandValues;
    MemoryTracker mMemories;
    std::vector<ExtensionNameAndPrefix> mExtensionNameToPrefix;
    std::set<uint16_t> mPrefixSet;
};

Model ModelBuilder::makeHidlModel() const {
    // TODO: Cache the HIDL model to speed up subsequent calls.
    return HidlModelMaker::run(this);
}

Model ModelBuilder::HidlModelMaker::run(const ModelBuilder* model) {
    // run() ensures the state of HidlModelMaker is destroyed after the call.
    return HidlModelMaker().makeHidlModel(model);
}

Model ModelBuilder::HidlModelMaker::makeHidlModel(const ModelBuilder* mainModel) {
    addExtensions(mainModel);
    Model model;
    model.main = makeSubgraph(mainModel);
    updateOperandLocations(mainModel, &model.main);
    model.referenced = std::move(mRefSubgraphs);
    model.operandValues = std::move(mOperandValues);
    model.pools.resize(mMemories.size());
    std::transform(mMemories.begin(), mMemories.end(), model.pools.begin(),
                   [](const Memory* m) { return m->getHidlMemory(); });
    model.relaxComputationFloat32toFloat16 = mainModel->mRelaxComputationFloat32toFloat16;
    model.extensionNameToPrefix = std::move(mExtensionNameToPrefix);
    return model;
}

Subgraph ModelBuilder::HidlModelMaker::makeSubgraph(const ModelBuilder* model) {
    Subgraph subgraph;
    subgraph.operands = model->mOperands;
    subgraph.operations = model->mOperations;
    subgraph.inputIndexes = model->mInputIndexes;
    subgraph.outputIndexes = model->mOutputIndexes;
    return subgraph;
}

void ModelBuilder::HidlModelMaker::updateOperandLocations(const ModelBuilder* refModel,
                                                          Subgraph* subgraph) {
    for (Operand& operand : subgraph->operands) {
        if (operand.lifetime == OperandLifeTime::CONSTANT_COPY) {
            uint32_t valueLength = operand.location.length;
            uint32_t existingSize = mOperandValues.size();
            uint32_t extraBytes = alignBytesNeeded(existingSize, valueLength);
            uint32_t originalOffset = operand.location.offset;
            uint32_t offset = existingSize + extraBytes;
            mOperandValues.resize(offset + valueLength);
            memcpy(&mOperandValues[offset], &refModel->mSmallOperandValues[originalOffset],
                   valueLength);
            operand.location.offset = offset;
        } else if (operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE) {
            uint32_t originalPoolIndex = operand.location.poolIndex;
            operand.location.poolIndex = mMemories.add(refModel->mMemories[originalPoolIndex]);
        }
    }
    // Do recursive calls at the end to improve locality of mOperandValues.
    for (Operand& operand : subgraph->operands) {
        if (operand.lifetime == OperandLifeTime::SUBGRAPH) {
            uint32_t refModelIndex = operand.location.offset;
            // TODO(b/147875885): Avoid creating duplicate refSubgraphs when
            // a single refModel is referenced multiple times.
            operand.location.offset = addSubgraph(refModel->mReferencedModels[refModelIndex]);
        }
    }
}

uint32_t ModelBuilder::HidlModelMaker::addSubgraph(const ModelBuilder* refModel) {
    uint32_t index = mRefSubgraphs.size();
    mRefSubgraphs.push_back(makeSubgraph(refModel));
    updateOperandLocations(refModel, &mRefSubgraphs.back());
    return index;
}

void ModelBuilder::HidlModelMaker::addExtensions(const ModelBuilder* model) {
    constexpr uint8_t kLowBitsType = static_cast<uint8_t>(ExtensionTypeEncoding::LOW_BITS_TYPE);
    for (const auto& operand : model->mOperands) {
        if (isExtensionOperandType(operand.type)) {
            addExtensionWithPrefix(static_cast<uint32_t>(operand.type) >> kLowBitsType);
        }
    }
    for (const auto& operation : model->mOperations) {
        if (isExtensionOperationType(operation.type)) {
            addExtensionWithPrefix(static_cast<uint32_t>(operation.type) >> kLowBitsType);
        }
    }
    for (const auto& refModel : model->mReferencedModels) {
        addExtensions(refModel);
    }
}

void ModelBuilder::HidlModelMaker::addExtensionWithPrefix(uint16_t prefix) {
    if (!mPrefixSet.insert(prefix).second) {
        return;
    }
    const Extension* extension;
    CHECK(TypeManager::get()->getExtensionInfo(prefix, &extension));
    mExtensionNameToPrefix.push_back({
            .name = extension->name,
            .prefix = prefix,
    });
}

}  // namespace nn
}  // namespace android