summaryrefslogtreecommitdiff
path: root/nn/runtime/test/TestMemory.cpp
blob: 122bde2b6c3859dca8b19926ba7ffd9bf6540d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "TestMemory.h"

#include "TestNeuralNetworksWrapper.h"

#include <gtest/gtest.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
using WrapperExecution = ::android::nn::test_wrapper::Execution;
using WrapperMemory = ::android::nn::test_wrapper::Memory;
using WrapperModel = ::android::nn::test_wrapper::Model;
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
using WrapperResult = ::android::nn::test_wrapper::Result;
using WrapperType = ::android::nn::test_wrapper::Type;

namespace {

// Tests the various ways to pass weights and input/output data.
class MemoryTest : public ::testing::Test {
   protected:
    void SetUp() override {}
};

TEST_F(MemoryTest, TestFd) {
    // Create a file that contains matrix2 and matrix3.
    char path[] = "/data/local/tmp/TestMemoryXXXXXX";
    int fd = mkstemp(path);
    const uint32_t offsetForMatrix2 = 20;
    const uint32_t offsetForMatrix3 = 200;
    static_assert(offsetForMatrix2 + sizeof(matrix2) < offsetForMatrix3, "matrices overlap");
    lseek(fd, offsetForMatrix2, SEEK_SET);
    write(fd, matrix2, sizeof(matrix2));
    lseek(fd, offsetForMatrix3, SEEK_SET);
    write(fd, matrix3, sizeof(matrix3));
    fsync(fd);

    WrapperMemory weights(offsetForMatrix3 + sizeof(matrix3), PROT_READ, fd, 0);
    ASSERT_TRUE(weights.isValid());

    WrapperModel model;
    WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4});
    WrapperOperandType scalarType(WrapperType::INT32, {});
    int32_t activation(0);
    auto a = model.addOperand(&matrixType);
    auto b = model.addOperand(&matrixType);
    auto c = model.addOperand(&matrixType);
    auto d = model.addOperand(&matrixType);
    auto e = model.addOperand(&matrixType);
    auto f = model.addOperand(&scalarType);

    model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
    model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
    model.setOperandValue(f, &activation, sizeof(activation));
    model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
    model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
    model.identifyInputsAndOutputs({c}, {d});
    ASSERT_TRUE(model.isValid());
    model.finish();

    // Test the three node model.
    Matrix3x4 actual;
    memset(&actual, 0, sizeof(actual));
    WrapperCompilation compilation2(&model);
    ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR);
    WrapperExecution execution2(&compilation2);
    ASSERT_EQ(execution2.setInput(0, matrix1, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
    ASSERT_EQ(execution2.setOutput(0, actual, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
    ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR);
    ASSERT_EQ(CompareMatrices(expected3, actual), 0);

    close(fd);
    unlink(path);
}

TEST_F(MemoryTest, TestAHardwareBuffer) {
    const uint32_t offsetForMatrix2 = 20;
    const uint32_t offsetForMatrix3 = 200;

    AHardwareBuffer_Desc desc{
            .width = offsetForMatrix3 + sizeof(matrix3),
            .height = 1,
            .layers = 1,
            .format = AHARDWAREBUFFER_FORMAT_BLOB,
            .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN,
    };
    AHardwareBuffer* buffer = nullptr;
    ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0);

    void* bufferPtr = nullptr;
    ASSERT_EQ(AHardwareBuffer_lock(buffer, desc.usage, -1, NULL, &bufferPtr), 0);
    memcpy((uint8_t*)bufferPtr + offsetForMatrix2, matrix2, sizeof(matrix2));
    memcpy((uint8_t*)bufferPtr + offsetForMatrix3, matrix3, sizeof(matrix3));
    ASSERT_EQ(AHardwareBuffer_unlock(buffer, nullptr), 0);

    WrapperMemory weights(buffer);
    ASSERT_TRUE(weights.isValid());

    WrapperModel model;
    WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4});
    WrapperOperandType scalarType(WrapperType::INT32, {});
    int32_t activation(0);
    auto a = model.addOperand(&matrixType);
    auto b = model.addOperand(&matrixType);
    auto c = model.addOperand(&matrixType);
    auto d = model.addOperand(&matrixType);
    auto e = model.addOperand(&matrixType);
    auto f = model.addOperand(&scalarType);

    model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
    model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
    model.setOperandValue(f, &activation, sizeof(activation));
    model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
    model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
    model.identifyInputsAndOutputs({c}, {d});
    ASSERT_TRUE(model.isValid());
    model.finish();

    // Test the three node model.
    Matrix3x4 actual;
    memset(&actual, 0, sizeof(actual));
    WrapperCompilation compilation2(&model);
    ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR);
    WrapperExecution execution2(&compilation2);
    ASSERT_EQ(execution2.setInput(0, matrix1, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
    ASSERT_EQ(execution2.setOutput(0, actual, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
    ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR);
    ASSERT_EQ(CompareMatrices(expected3, actual), 0);

    AHardwareBuffer_release(buffer);
    buffer = nullptr;
}
}  // end namespace