summaryrefslogtreecommitdiff
path: root/nn/runtime/test/TestNeuralNetworksWrapper.h
blob: ae40121c7c59a2172d349d1900fd4683e95b4857 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Provides C++ classes to more easily use the Neural Networks API.
// TODO(b/117845862): this should be auto generated from NeuralNetworksWrapper.h.

#ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H
#define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H

#include <math.h>

#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>

#include "NeuralNetworks.h"
#include "NeuralNetworksWrapper.h"
#include "NeuralNetworksWrapperExtensions.h"

namespace android {
namespace nn {
namespace test_wrapper {

using wrapper::Event;
using wrapper::ExecutePreference;
using wrapper::ExecutePriority;
using wrapper::ExtensionModel;
using wrapper::ExtensionOperandParams;
using wrapper::ExtensionOperandType;
using wrapper::OperandType;
using wrapper::Result;
using wrapper::SymmPerChannelQuantParams;
using wrapper::Type;

class Memory {
   public:
    // Takes ownership of a ANeuralNetworksMemory
    Memory(ANeuralNetworksMemory* memory) : mMemory(memory) {}

    Memory(size_t size, int protect, int fd, size_t offset) {
        mValid = ANeuralNetworksMemory_createFromFd(size, protect, fd, offset, &mMemory) ==
                 ANEURALNETWORKS_NO_ERROR;
    }

    Memory(AHardwareBuffer* buffer) {
        mValid = ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &mMemory) ==
                 ANEURALNETWORKS_NO_ERROR;
    }

    virtual ~Memory() { ANeuralNetworksMemory_free(mMemory); }

    // Disallow copy semantics to ensure the runtime object can only be freed
    // once. Copy semantics could be enabled if some sort of reference counting
    // or deep-copy system for runtime objects is added later.
    Memory(const Memory&) = delete;
    Memory& operator=(const Memory&) = delete;

    // Move semantics to remove access to the runtime object from the wrapper
    // object that is being moved. This ensures the runtime object will be
    // freed only once.
    Memory(Memory&& other) { *this = std::move(other); }
    Memory& operator=(Memory&& other) {
        if (this != &other) {
            ANeuralNetworksMemory_free(mMemory);
            mMemory = other.mMemory;
            mValid = other.mValid;
            other.mMemory = nullptr;
            other.mValid = false;
        }
        return *this;
    }

    ANeuralNetworksMemory* get() const { return mMemory; }
    bool isValid() const { return mValid; }

   private:
    ANeuralNetworksMemory* mMemory = nullptr;
    bool mValid = true;
};

class Model {
   public:
    Model() {
        // TODO handle the value returned by this call
        ANeuralNetworksModel_create(&mModel);
    }
    ~Model() { ANeuralNetworksModel_free(mModel); }

    // Disallow copy semantics to ensure the runtime object can only be freed
    // once. Copy semantics could be enabled if some sort of reference counting
    // or deep-copy system for runtime objects is added later.
    Model(const Model&) = delete;
    Model& operator=(const Model&) = delete;

    // Move semantics to remove access to the runtime object from the wrapper
    // object that is being moved. This ensures the runtime object will be
    // freed only once.
    Model(Model&& other) { *this = std::move(other); }
    Model& operator=(Model&& other) {
        if (this != &other) {
            ANeuralNetworksModel_free(mModel);
            mModel = other.mModel;
            mNextOperandId = other.mNextOperandId;
            mValid = other.mValid;
            mRelaxed = other.mRelaxed;
            mFinished = other.mFinished;
            other.mModel = nullptr;
            other.mNextOperandId = 0;
            other.mValid = false;
            other.mRelaxed = false;
            other.mFinished = false;
        }
        return *this;
    }

    Result finish() {
        if (mValid) {
            auto result = static_cast<Result>(ANeuralNetworksModel_finish(mModel));
            if (result != Result::NO_ERROR) {
                mValid = false;
            }
            mFinished = true;
            return result;
        } else {
            return Result::BAD_STATE;
        }
    }

    uint32_t addOperand(const OperandType* type) {
        if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) !=
            ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
        if (type->channelQuant) {
            if (ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
                        mModel, mNextOperandId, &type->channelQuant.value().params) !=
                ANEURALNETWORKS_NO_ERROR) {
                mValid = false;
            }
        }
        return mNextOperandId++;
    }

    template <typename T>
    uint32_t addConstantOperand(const OperandType* type, const T& value) {
        static_assert(sizeof(T) <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES,
                      "Values larger than ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES "
                      "not supported");
        uint32_t index = addOperand(type);
        setOperandValue(index, &value);
        return index;
    }

    uint32_t addModelOperand(const Model* value) {
        OperandType operandType(Type::MODEL, {});
        uint32_t operand = addOperand(&operandType);
        setOperandValueFromModel(operand, value);
        return operand;
    }

    void setOperandValue(uint32_t index, const void* buffer, size_t length) {
        if (ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) !=
            ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
    }

    template <typename T>
    void setOperandValue(uint32_t index, const T* value) {
        static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
        return setOperandValue(index, value, sizeof(T));
    }

    void setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
                                   size_t length) {
        if (ANeuralNetworksModel_setOperandValueFromMemory(mModel, index, memory->get(), offset,
                                                           length) != ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
    }

    void setOperandValueFromModel(uint32_t index, const Model* value) {
        if (ANeuralNetworksModel_setOperandValueFromModel(mModel, index, value->mModel) !=
            ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
    }

    void addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs,
                      const std::vector<uint32_t>& outputs) {
        if (ANeuralNetworksModel_addOperation(mModel, type, static_cast<uint32_t>(inputs.size()),
                                              inputs.data(), static_cast<uint32_t>(outputs.size()),
                                              outputs.data()) != ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
    }
    void identifyInputsAndOutputs(const std::vector<uint32_t>& inputs,
                                  const std::vector<uint32_t>& outputs) {
        if (ANeuralNetworksModel_identifyInputsAndOutputs(
                    mModel, static_cast<uint32_t>(inputs.size()), inputs.data(),
                    static_cast<uint32_t>(outputs.size()),
                    outputs.data()) != ANEURALNETWORKS_NO_ERROR) {
            mValid = false;
        }
    }

    void relaxComputationFloat32toFloat16(bool isRelax) {
        if (ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, isRelax) ==
            ANEURALNETWORKS_NO_ERROR) {
            mRelaxed = isRelax;
        }
    }

    ANeuralNetworksModel* getHandle() const { return mModel; }
    bool isValid() const { return mValid; }
    bool isRelaxed() const { return mRelaxed; }
    bool isFinished() const { return mFinished; }

   protected:
    ANeuralNetworksModel* mModel = nullptr;
    // We keep track of the operand ID as a convenience to the caller.
    uint32_t mNextOperandId = 0;
    bool mValid = true;
    bool mRelaxed = false;
    bool mFinished = false;
};

class Compilation {
   public:
    // On success, createForDevice(s) will return Result::NO_ERROR and the created compilation;
    // otherwise, it will return the error code and Compilation object wrapping a nullptr handle.
    static std::pair<Result, Compilation> createForDevice(const Model* model,
                                                          const ANeuralNetworksDevice* device) {
        return createForDevices(model, {device});
    }
    static std::pair<Result, Compilation> createForDevices(
            const Model* model, const std::vector<const ANeuralNetworksDevice*>& devices) {
        ANeuralNetworksCompilation* compilation = nullptr;
        const Result result = static_cast<Result>(ANeuralNetworksCompilation_createForDevices(
                model->getHandle(), devices.empty() ? nullptr : devices.data(), devices.size(),
                &compilation));
        return {result, Compilation(compilation)};
    }

    Compilation(const Model* model) {
        int result = ANeuralNetworksCompilation_create(model->getHandle(), &mCompilation);
        if (result != 0) {
            // TODO Handle the error
        }
    }

    Compilation() {}

    ~Compilation() { ANeuralNetworksCompilation_free(mCompilation); }

    // Disallow copy semantics to ensure the runtime object can only be freed
    // once. Copy semantics could be enabled if some sort of reference counting
    // or deep-copy system for runtime objects is added later.
    Compilation(const Compilation&) = delete;
    Compilation& operator=(const Compilation&) = delete;

    // Move semantics to remove access to the runtime object from the wrapper
    // object that is being moved. This ensures the runtime object will be
    // freed only once.
    Compilation(Compilation&& other) { *this = std::move(other); }
    Compilation& operator=(Compilation&& other) {
        if (this != &other) {
            ANeuralNetworksCompilation_free(mCompilation);
            mCompilation = other.mCompilation;
            other.mCompilation = nullptr;
        }
        return *this;
    }

    Result setPreference(ExecutePreference preference) {
        return static_cast<Result>(ANeuralNetworksCompilation_setPreference(
                mCompilation, static_cast<int32_t>(preference)));
    }

    Result setPriority(ExecutePriority priority) {
        return static_cast<Result>(ANeuralNetworksCompilation_setPriority(
                mCompilation, static_cast<int32_t>(priority)));
    }

    Result setCaching(const std::string& cacheDir, const std::vector<uint8_t>& token) {
        if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) {
            return Result::BAD_DATA;
        }
        return static_cast<Result>(ANeuralNetworksCompilation_setCaching(
                mCompilation, cacheDir.c_str(), token.data()));
    }

    Result finish() { return static_cast<Result>(ANeuralNetworksCompilation_finish(mCompilation)); }

    ANeuralNetworksCompilation* getHandle() const { return mCompilation; }

   protected:
    // Takes the ownership of ANeuralNetworksCompilation.
    Compilation(ANeuralNetworksCompilation* compilation) : mCompilation(compilation) {}

    ANeuralNetworksCompilation* mCompilation = nullptr;
};

class Execution {
   public:
    Execution(const Compilation* compilation) : mCompilation(compilation->getHandle()) {
        int result = ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution);
        if (result != 0) {
            // TODO Handle the error
        }
    }

    ~Execution() { ANeuralNetworksExecution_free(mExecution); }

    // Disallow copy semantics to ensure the runtime object can only be freed
    // once. Copy semantics could be enabled if some sort of reference counting
    // or deep-copy system for runtime objects is added later.
    Execution(const Execution&) = delete;
    Execution& operator=(const Execution&) = delete;

    // Move semantics to remove access to the runtime object from the wrapper
    // object that is being moved. This ensures the runtime object will be
    // freed only once.
    Execution(Execution&& other) { *this = std::move(other); }
    Execution& operator=(Execution&& other) {
        if (this != &other) {
            ANeuralNetworksExecution_free(mExecution);
            mCompilation = other.mCompilation;
            other.mCompilation = nullptr;
            mExecution = other.mExecution;
            other.mExecution = nullptr;
        }
        return *this;
    }

    Result setInput(uint32_t index, const void* buffer, size_t length,
                    const ANeuralNetworksOperandType* type = nullptr) {
        return static_cast<Result>(
                ANeuralNetworksExecution_setInput(mExecution, index, type, buffer, length));
    }

    template <typename T>
    Result setInput(uint32_t index, const T* value,
                    const ANeuralNetworksOperandType* type = nullptr) {
        static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
        return setInput(index, value, sizeof(T), type);
    }

    Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
                              uint32_t length, const ANeuralNetworksOperandType* type = nullptr) {
        return static_cast<Result>(ANeuralNetworksExecution_setInputFromMemory(
                mExecution, index, type, memory->get(), offset, length));
    }

    Result setOutput(uint32_t index, void* buffer, size_t length,
                     const ANeuralNetworksOperandType* type = nullptr) {
        return static_cast<Result>(
                ANeuralNetworksExecution_setOutput(mExecution, index, type, buffer, length));
    }

    template <typename T>
    Result setOutput(uint32_t index, T* value, const ANeuralNetworksOperandType* type = nullptr) {
        static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
        return setOutput(index, value, sizeof(T), type);
    }

    Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
                               uint32_t length, const ANeuralNetworksOperandType* type = nullptr) {
        return static_cast<Result>(ANeuralNetworksExecution_setOutputFromMemory(
                mExecution, index, type, memory->get(), offset, length));
    }

    Result setLoopTimeout(uint64_t duration) {
        return static_cast<Result>(ANeuralNetworksExecution_setLoopTimeout(mExecution, duration));
    }

    Result startCompute(Event* event) {
        ANeuralNetworksEvent* ev = nullptr;
        Result result = static_cast<Result>(ANeuralNetworksExecution_startCompute(mExecution, &ev));
        event->set(ev);
        return result;
    }

    Result startComputeWithDependencies(const std::vector<const Event*>& dependencies,
                                        uint64_t duration, Event* event) {
        std::vector<const ANeuralNetworksEvent*> deps(dependencies.size());
        std::transform(dependencies.begin(), dependencies.end(), deps.begin(),
                       [](const Event* e) { return e->getHandle(); });
        ANeuralNetworksEvent* ev = nullptr;
        Result result = static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies(
                mExecution, deps.data(), deps.size(), duration, &ev));
        event->set(ev);
        return result;
    }

    Result compute() {
        switch (mComputeMode) {
            case ComputeMode::SYNC: {
                return static_cast<Result>(ANeuralNetworksExecution_compute(mExecution));
            }
            case ComputeMode::ASYNC: {
                ANeuralNetworksEvent* event = nullptr;
                Result result = static_cast<Result>(
                        ANeuralNetworksExecution_startCompute(mExecution, &event));
                if (result != Result::NO_ERROR) {
                    return result;
                }
                // TODO how to manage the lifetime of events when multiple waiters is not
                // clear.
                result = static_cast<Result>(ANeuralNetworksEvent_wait(event));
                ANeuralNetworksEvent_free(event);
                return result;
            }
            case ComputeMode::BURST: {
                ANeuralNetworksBurst* burst = nullptr;
                Result result =
                        static_cast<Result>(ANeuralNetworksBurst_create(mCompilation, &burst));
                if (result != Result::NO_ERROR) {
                    return result;
                }
                result = static_cast<Result>(
                        ANeuralNetworksExecution_burstCompute(mExecution, burst));
                ANeuralNetworksBurst_free(burst);
                return result;
            }
            case ComputeMode::FENCED: {
                ANeuralNetworksEvent* event = nullptr;
                Result result =
                        static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies(
                                mExecution, nullptr, 0, 0, &event));
                if (result != Result::NO_ERROR) {
                    return result;
                }
                result = static_cast<Result>(ANeuralNetworksEvent_wait(event));
                ANeuralNetworksEvent_free(event);
                return result;
            }
        }
        return Result::BAD_DATA;
    }

    // By default, compute() uses the synchronous API. setComputeMode() can be
    // used to change the behavior of compute() to either:
    // - use the asynchronous API and then wait for computation to complete
    // or
    // - use the burst API
    // Returns the previous ComputeMode.
    enum class ComputeMode { SYNC, ASYNC, BURST, FENCED };
    static ComputeMode setComputeMode(ComputeMode mode) {
        ComputeMode oldComputeMode = mComputeMode;
        mComputeMode = mode;
        return oldComputeMode;
    }

    Result getOutputOperandDimensions(uint32_t index, std::vector<uint32_t>* dimensions) {
        uint32_t rank = 0;
        Result result = static_cast<Result>(
                ANeuralNetworksExecution_getOutputOperandRank(mExecution, index, &rank));
        dimensions->resize(rank);
        if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) ||
            rank == 0) {
            return result;
        }
        result = static_cast<Result>(ANeuralNetworksExecution_getOutputOperandDimensions(
                mExecution, index, dimensions->data()));
        return result;
    }

    ANeuralNetworksExecution* getHandle() { return mExecution; };

   private:
    ANeuralNetworksCompilation* mCompilation = nullptr;
    ANeuralNetworksExecution* mExecution = nullptr;

    // Initialized to ComputeMode::SYNC in TestNeuralNetworksWrapper.cpp.
    static ComputeMode mComputeMode;
};

}  // namespace test_wrapper
}  // namespace nn
}  // namespace android

#endif  // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H