/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- Sensor::Sensor(const char * name) : mName(name), mHandle(0), mType(0), mMinValue(0), mMaxValue(0), mResolution(0), mPower(0), mMinDelay(0), mVersion(0), mFifoReservedEventCount(0), mFifoMaxEventCount(0), mRequiredAppOp(-1), mMaxDelay(0), mFlags(0) { } Sensor::Sensor(struct sensor_t const* hwSensor, int halVersion) : Sensor(*hwSensor, uuid_t(), halVersion) { } Sensor::Sensor(struct sensor_t const& hwSensor, const uuid_t& uuid, int halVersion) : Sensor("") { mName = hwSensor.name; mVendor = hwSensor.vendor; mVersion = hwSensor.version; mHandle = hwSensor.handle; mType = hwSensor.type; mMinValue = 0; // FIXME: minValue mMaxValue = hwSensor.maxRange; // FIXME: maxValue mResolution = hwSensor.resolution; mPower = hwSensor.power; mMinDelay = hwSensor.minDelay; mFlags = 0; mUuid = uuid; // Set fifo event count zero for older devices which do not support batching. Fused // sensors also have their fifo counts set to zero. if (halVersion > SENSORS_DEVICE_API_VERSION_1_0) { mFifoReservedEventCount = hwSensor.fifoReservedEventCount; mFifoMaxEventCount = hwSensor.fifoMaxEventCount; } else { mFifoReservedEventCount = 0; mFifoMaxEventCount = 0; } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { if (hwSensor.maxDelay > INT_MAX) { // Max delay is declared as a 64 bit integer for 64 bit architectures. But it should // always fit in a 32 bit integer, log error and cap it to INT_MAX. ALOGE("Sensor maxDelay overflow error %s %" PRId64, mName.string(), static_cast(hwSensor.maxDelay)); mMaxDelay = INT_MAX; } else { mMaxDelay = static_cast(hwSensor.maxDelay); } } else { // For older hals set maxDelay to 0. mMaxDelay = 0; } // Ensure existing sensors have correct string type, required permissions and reporting mode. // Set reportingMode for all android defined sensor types, set wake-up flag only for proximity // sensor, significant motion, tilt, pick_up gesture, wake gesture and glance gesture on older // HALs. Newer HALs can define both wake-up and non wake-up proximity sensors. // All the OEM defined defined sensors have flags set to whatever is provided by the HAL. switch (mType) { case SENSOR_TYPE_ACCELEROMETER: mStringType = SENSOR_STRING_TYPE_ACCELEROMETER; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_AMBIENT_TEMPERATURE: mStringType = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_GAME_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_GAME_ROTATION_VECTOR; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_GEOMAGNETIC_ROTATION_VECTOR; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_GRAVITY: mStringType = SENSOR_STRING_TYPE_GRAVITY; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_GYROSCOPE: mStringType = SENSOR_STRING_TYPE_GYROSCOPE; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_GYROSCOPE_UNCALIBRATED; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_HEART_RATE: { mStringType = SENSOR_STRING_TYPE_HEART_RATE; mRequiredPermission = SENSOR_PERMISSION_BODY_SENSORS; AppOpsManager appOps; mRequiredAppOp = appOps.permissionToOpCode(String16(SENSOR_PERMISSION_BODY_SENSORS)); mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; } break; case SENSOR_TYPE_LIGHT: mStringType = SENSOR_STRING_TYPE_LIGHT; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_LINEAR_ACCELERATION: mStringType = SENSOR_STRING_TYPE_LINEAR_ACCELERATION; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_MAGNETIC_FIELD: mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_ORIENTATION: mStringType = SENSOR_STRING_TYPE_ORIENTATION; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_PRESSURE: mStringType = SENSOR_STRING_TYPE_PRESSURE; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_PROXIMITY: mStringType = SENSOR_STRING_TYPE_PROXIMITY; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_RELATIVE_HUMIDITY: mStringType = SENSOR_STRING_TYPE_RELATIVE_HUMIDITY; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_ROTATION_VECTOR; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_SIGNIFICANT_MOTION: mStringType = SENSOR_STRING_TYPE_SIGNIFICANT_MOTION; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_STEP_COUNTER: mStringType = SENSOR_STRING_TYPE_STEP_COUNTER; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_STEP_DETECTOR: mStringType = SENSOR_STRING_TYPE_STEP_DETECTOR; mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; break; case SENSOR_TYPE_TEMPERATURE: mStringType = SENSOR_STRING_TYPE_TEMPERATURE; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_TILT_DETECTOR: mStringType = SENSOR_STRING_TYPE_TILT_DETECTOR; mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_WAKE_GESTURE: mStringType = SENSOR_STRING_TYPE_WAKE_GESTURE; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_GLANCE_GESTURE: mStringType = SENSOR_STRING_TYPE_GLANCE_GESTURE; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_PICK_UP_GESTURE: mStringType = SENSOR_STRING_TYPE_PICK_UP_GESTURE; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_LOW_LATENCY_OFFBODY_DETECT: mStringType = SENSOR_STRING_TYPE_LOW_LATENCY_OFFBODY_DETECT; mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; break; case SENSOR_TYPE_WRIST_TILT_GESTURE: mStringType = SENSOR_STRING_TYPE_WRIST_TILT_GESTURE; mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_DYNAMIC_SENSOR_META: mStringType = SENSOR_STRING_TYPE_DYNAMIC_SENSOR_META; mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; // special trigger if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_POSE_6DOF: mStringType = SENSOR_STRING_TYPE_POSE_6DOF; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; case SENSOR_TYPE_STATIONARY_DETECT: mStringType = SENSOR_STRING_TYPE_STATIONARY_DETECT; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_MOTION_DETECT: mStringType = SENSOR_STRING_TYPE_MOTION_DETECT; mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; if (halVersion < SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= SENSOR_FLAG_WAKE_UP; } break; case SENSOR_TYPE_HEART_BEAT: mStringType = SENSOR_STRING_TYPE_HEART_BEAT; mFlags |= SENSOR_FLAG_SPECIAL_REPORTING_MODE; break; // TODO: Placeholder for LLOB sensor type case SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_ACCELEROMETER_UNCALIBRATED; mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; break; default: // Only pipe the stringType, requiredPermission and flags for custom sensors. if (halVersion > SENSORS_DEVICE_API_VERSION_1_0 && hwSensor.stringType) { mStringType = hwSensor.stringType; } if (halVersion > SENSORS_DEVICE_API_VERSION_1_0 && hwSensor.requiredPermission) { mRequiredPermission = hwSensor.requiredPermission; if (!strcmp(mRequiredPermission, SENSOR_PERMISSION_BODY_SENSORS)) { AppOpsManager appOps; mRequiredAppOp = appOps.permissionToOpCode(String16(SENSOR_PERMISSION_BODY_SENSORS)); } } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { mFlags = static_cast(hwSensor.flags); } else { // This is an OEM defined sensor on an older HAL. Use minDelay to determine the // reporting mode of the sensor. if (mMinDelay > 0) { mFlags |= SENSOR_FLAG_CONTINUOUS_MODE; } else if (mMinDelay == 0) { mFlags |= SENSOR_FLAG_ON_CHANGE_MODE; } else if (mMinDelay < 0) { mFlags |= SENSOR_FLAG_ONE_SHOT_MODE; } } break; } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { // Wake-up flag of HAL 1.3 and above is set here mFlags |= (hwSensor.flags & SENSOR_FLAG_WAKE_UP); // Log error if the reporting mode is not as expected, but respect HAL setting. int actualReportingMode = (hwSensor.flags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT; int expectedReportingMode = (mFlags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT; if (actualReportingMode != expectedReportingMode) { ALOGE("Reporting Mode incorrect: sensor %s handle=%#010" PRIx32 " type=%" PRId32 " " "actual=%d expected=%d", mName.string(), mHandle, mType, actualReportingMode, expectedReportingMode); } } // Feature flags // Set DYNAMIC_SENSOR_MASK and ADDITIONAL_INFO_MASK flag here. Compatible with HAL 1_3. if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { mFlags |= hwSensor.flags & (DYNAMIC_SENSOR_MASK | ADDITIONAL_INFO_MASK); } // Set DIRECT_REPORT_MASK and DIRECT_CHANNEL_MASK flags. Compatible with HAL 1_3. if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { // only on continuous sensors direct report mode is defined if ((mFlags & REPORTING_MODE_MASK) == SENSOR_FLAG_CONTINUOUS_MODE) { mFlags |= hwSensor.flags & (SENSOR_FLAG_MASK_DIRECT_REPORT | SENSOR_FLAG_MASK_DIRECT_CHANNEL); } } // Set DATA_INJECTION flag here. Defined in HAL 1_4. if (halVersion >= SENSORS_DEVICE_API_VERSION_1_4) { mFlags |= (hwSensor.flags & DATA_INJECTION_MASK); } if (mRequiredPermission.length() > 0) { // If the sensor is protected by a permission we need to know if it is // a runtime one to determine whether we can use the permission cache. sp binder = defaultServiceManager()->getService(String16("permission")); if (binder != 0) { sp permCtrl = interface_cast(binder); mRequiredPermissionRuntime = permCtrl->isRuntimePermission( String16(mRequiredPermission)); } } } Sensor::~Sensor() { } const String8& Sensor::getName() const { return mName; } const String8& Sensor::getVendor() const { return mVendor; } int32_t Sensor::getHandle() const { return mHandle; } int32_t Sensor::getType() const { return mType; } float Sensor::getMinValue() const { return mMinValue; } float Sensor::getMaxValue() const { return mMaxValue; } float Sensor::getResolution() const { return mResolution; } float Sensor::getPowerUsage() const { return mPower; } int32_t Sensor::getMinDelay() const { return mMinDelay; } nsecs_t Sensor::getMinDelayNs() const { return getMinDelay() * 1000; } int32_t Sensor::getVersion() const { return mVersion; } uint32_t Sensor::getFifoReservedEventCount() const { return mFifoReservedEventCount; } uint32_t Sensor::getFifoMaxEventCount() const { return mFifoMaxEventCount; } const String8& Sensor::getStringType() const { return mStringType; } const String8& Sensor::getRequiredPermission() const { return mRequiredPermission; } bool Sensor::isRequiredPermissionRuntime() const { return mRequiredPermissionRuntime; } int32_t Sensor::getRequiredAppOp() const { return mRequiredAppOp; } int32_t Sensor::getMaxDelay() const { return mMaxDelay; } uint32_t Sensor::getFlags() const { return mFlags; } bool Sensor::isWakeUpSensor() const { return (mFlags & SENSOR_FLAG_WAKE_UP) != 0; } bool Sensor::isDynamicSensor() const { return (mFlags & SENSOR_FLAG_DYNAMIC_SENSOR) != 0; } bool Sensor::isDataInjectionSupported() const { return (mFlags & SENSOR_FLAG_DATA_INJECTION) != 0; } bool Sensor::hasAdditionalInfo() const { return (mFlags & SENSOR_FLAG_ADDITIONAL_INFO) != 0; } int32_t Sensor::getHighestDirectReportRateLevel() const { return ((mFlags & SENSOR_FLAG_MASK_DIRECT_REPORT) >> SENSOR_FLAG_SHIFT_DIRECT_REPORT); } bool Sensor::isDirectChannelTypeSupported(int32_t sharedMemType) const { switch (sharedMemType) { case SENSOR_DIRECT_MEM_TYPE_ASHMEM: return mFlags & SENSOR_FLAG_DIRECT_CHANNEL_ASHMEM; case SENSOR_DIRECT_MEM_TYPE_GRALLOC: return mFlags & SENSOR_FLAG_DIRECT_CHANNEL_GRALLOC; default: return false; } } int32_t Sensor::getReportingMode() const { return ((mFlags & REPORTING_MODE_MASK) >> REPORTING_MODE_SHIFT); } const Sensor::uuid_t& Sensor::getUuid() const { return mUuid; } void Sensor::setId(int32_t id) { mUuid.i64[0] = id; mUuid.i64[1] = 0; } int32_t Sensor::getId() const { return int32_t(mUuid.i64[0]); } size_t Sensor::getFlattenedSize() const { size_t fixedSize = sizeof(mVersion) + sizeof(mHandle) + sizeof(mType) + sizeof(mMinValue) + sizeof(mMaxValue) + sizeof(mResolution) + sizeof(mPower) + sizeof(mMinDelay) + sizeof(mFifoMaxEventCount) + sizeof(mFifoMaxEventCount) + sizeof(mRequiredPermissionRuntime) + sizeof(mRequiredAppOp) + sizeof(mMaxDelay) + sizeof(mFlags) + sizeof(mUuid); size_t variableSize = sizeof(uint32_t) + FlattenableUtils::align<4>(mName.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mVendor.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mStringType.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mRequiredPermission.length()); return fixedSize + variableSize; } status_t Sensor::flatten(void* buffer, size_t size) const { if (size < getFlattenedSize()) { return NO_MEMORY; } flattenString8(buffer, size, mName); flattenString8(buffer, size, mVendor); FlattenableUtils::write(buffer, size, mVersion); FlattenableUtils::write(buffer, size, mHandle); FlattenableUtils::write(buffer, size, mType); FlattenableUtils::write(buffer, size, mMinValue); FlattenableUtils::write(buffer, size, mMaxValue); FlattenableUtils::write(buffer, size, mResolution); FlattenableUtils::write(buffer, size, mPower); FlattenableUtils::write(buffer, size, mMinDelay); FlattenableUtils::write(buffer, size, mFifoReservedEventCount); FlattenableUtils::write(buffer, size, mFifoMaxEventCount); flattenString8(buffer, size, mStringType); flattenString8(buffer, size, mRequiredPermission); FlattenableUtils::write(buffer, size, mRequiredPermissionRuntime); FlattenableUtils::write(buffer, size, mRequiredAppOp); FlattenableUtils::write(buffer, size, mMaxDelay); FlattenableUtils::write(buffer, size, mFlags); if (mUuid.i64[1] != 0) { // We should never hit this case with our current API, but we // could via a careless API change. If that happens, // this code will keep us from leaking our UUID (while probably // breaking dynamic sensors). See b/29547335. ALOGW("Sensor with UUID being flattened; sending 0. Expect " "bad dynamic sensor behavior"); uuid_t tmpUuid; // default constructor makes this 0. FlattenableUtils::write(buffer, size, tmpUuid); } else { FlattenableUtils::write(buffer, size, mUuid); } return NO_ERROR; } status_t Sensor::unflatten(void const* buffer, size_t size) { if (!unflattenString8(buffer, size, mName)) { return NO_MEMORY; } if (!unflattenString8(buffer, size, mVendor)) { return NO_MEMORY; } size_t fixedSize1 = sizeof(mVersion) + sizeof(mHandle) + sizeof(mType) + sizeof(mMinValue) + sizeof(mMaxValue) + sizeof(mResolution) + sizeof(mPower) + sizeof(mMinDelay) + sizeof(mFifoMaxEventCount) + sizeof(mFifoMaxEventCount); if (size < fixedSize1) { return NO_MEMORY; } FlattenableUtils::read(buffer, size, mVersion); FlattenableUtils::read(buffer, size, mHandle); FlattenableUtils::read(buffer, size, mType); FlattenableUtils::read(buffer, size, mMinValue); FlattenableUtils::read(buffer, size, mMaxValue); FlattenableUtils::read(buffer, size, mResolution); FlattenableUtils::read(buffer, size, mPower); FlattenableUtils::read(buffer, size, mMinDelay); FlattenableUtils::read(buffer, size, mFifoReservedEventCount); FlattenableUtils::read(buffer, size, mFifoMaxEventCount); if (!unflattenString8(buffer, size, mStringType)) { return NO_MEMORY; } if (!unflattenString8(buffer, size, mRequiredPermission)) { return NO_MEMORY; } size_t fixedSize2 = sizeof(mRequiredPermissionRuntime) + sizeof(mRequiredAppOp) + sizeof(mMaxDelay) + sizeof(mFlags) + sizeof(mUuid); if (size < fixedSize2) { return NO_MEMORY; } FlattenableUtils::read(buffer, size, mRequiredPermissionRuntime); FlattenableUtils::read(buffer, size, mRequiredAppOp); FlattenableUtils::read(buffer, size, mMaxDelay); FlattenableUtils::read(buffer, size, mFlags); FlattenableUtils::read(buffer, size, mUuid); return NO_ERROR; } void Sensor::flattenString8(void*& buffer, size_t& size, const String8& string8) { uint32_t len = static_cast(string8.length()); FlattenableUtils::write(buffer, size, len); memcpy(static_cast(buffer), string8.string(), len); FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len)); } bool Sensor::unflattenString8(void const*& buffer, size_t& size, String8& outputString8) { uint32_t len; if (size < sizeof(len)) { return false; } FlattenableUtils::read(buffer, size, len); if (size < len) { return false; } outputString8.setTo(static_cast(buffer), len); FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len)); return true; } // ---------------------------------------------------------------------------- }; // namespace android